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Exercise 1 (Pts 3+3+3+4) Let X a solution of the SDE in Rn

dXt = b(Xt)dt+ dBt, (1)

with a vectorfield b : Rn → Rn measurable and with linear growth.

a) Prove that for all T > 0, almost surely

A(T ) =

∫ T

0

|b(Xs)|2ds <∞,

and therefore the process is unique in law.

b) Find a (deterministic) increasing function f : R+ → R+ such that, almost surely

sup
T>0

A(T )

f(T )
<∞.

[Hint: find a constant C such that supT>0
A(T )
f(T )

6
∑
n>0

CA(n)
f(n)

<∞ a.s.]

c) Use Girsanov’s transform to prove that the process is Markov when b is a bounded vectorfield.

d) (Bonus) Try to extend the proof of the Markov property for b of linear growth.

Exercise 2 (Pts 5) Let Cn = C(R+,Rn) with the Borel σ-field and Wx the law of the Brownian motion
starting at x. Let X the unique solution of the SDE (1) with b = −∇V and V a positive C2 function
such that

|∇V (x)|2 −∆V (x) > −L x ∈ Rn.
Use the path-integral formula

Ex(f(XT )) =

∫
Cn
f(ωT ) exp

(
V (ω0)− V (ωT )− 1

2

∫ T

0

(|∇V (ωs)|2 −∆V (ωs))ds

)
Wx(dω)

to show that for any two bounded functions f, g and under appropriate conditions on V :∫
(PT f)(x)g(x)e−2V (x)dx =

∫
f(x)(PT g)(x)e−2V (x)dx

which shows that PT is symmetric wrt. the measure e−2V (x)dx and taking g = 1 show that e−2V (x)dx
properly normalized is an invariant measure for the SDE

dXt = −∇V (Xt)dt+ dBt,

meaning that if X0 is taken with probability distribution ∝ e−2V (x)dx then

E[f(X0)] = E[f(XT )],

for all T > 0.
[Hint: let Wx,y the conditional law of the Brownian motion ω to have ωT = y, i.e. the Brownian bridge.
Prove that the under Wx,y the process ω̃t = ωT−t has law Wy,x and use the path integral]

Exercise 3 (Pts 3+3) Prove a Fubini theorem for stochastic integrals. Let (Λ,A) be a measure space
and (Ω,F ,F•,P) a filtered probability space.
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a) Let (Xn)n a sequence of functions Xn : Ω × Λ → R which are F ⊗ A measurable (product σ-field)
and such that (Xn(·, λ))n converges in probability for any fixed λ ∈ Λ. Prove that there exists an
F ⊗A measurable function X : Ω× Λ→ R for which Xn(·, λ) −→

P
X(·, λ) for any λ ∈ Λ. [Hint: here

the difficulty is the measurability of the limit X, consider the sequence nk(λ) defined by n0(λ) = 1
and

nk+1(λ) = inf{m > nk(λ) : sup
p,q>m

P[|Xp(·, λ)−Xq(·, λ)| > 2−k] 6 2−k}

and prove that limkXnk(λ)(·, λ) exists a.s. and conclude]

b) Let H : Λ× R>0 × Ω → R be a bounded function which is measurable w.r.t. A⊗ P where P is the
predictable σ-field on R>0×Ω. Let M be a continuous martingale on (Ω,F ,F•,P). Prove that there
exists a function J : Λ× Ω → R measurable for A⊗ FT which is a version of the stochastic process
λ 7→ J(λ) :=

∫ T
0
H(λ, s)dMs and for which it holds∫

Λ

J(λ)m(dλ) =

∫ T

0

[∫
Λ

H(λ, s, ·)m(dλ)

]
dMs, a.s.

for any bounded measure m on (Λ,A). Hint: prove that

E

[(∫ T

0

[∫
Λ

H(λ, s, ·)m(dλ)

]
dMs −

∫
Λ

J(λ)m(dλ)

)2
]

= 0.

[Taken from Revuz-Yor, Chap. 4]
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