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Exercise 1 (Pts 2+2+2+2) Assume that Ω = C(R>0;Rd), P is the d–dimensional Wiener measure
and that X is the canonical process on Ω and that the filtration F• is generated by X. Consider a
predictable Rd-valued drift b given by a function b : R>0×Ω→ Rd. By tilting P via Z = E

(∫ ·
0
b(X)dX

)
we obtain that, under the tilted measure Pb the process X is a solution of the SDE

dXt = bt(X) + dWt, t > 0

where W is a Pb–Brownian motion.

a) Prove that if
|bt(x)| 6 C(1 + |xt|), t > 0, x ∈ Ω,

then Novikov’s condition holds conditionally on Fs for intervals [s, t] such that |t−s| is small enough,
i.e.

E
[
exp

(
1

2

∫ t

s

|bu(X)|2du

)
|Fs
]
< +∞.

b) Deduce that Z is a martingale. [Hint: prove that E[Zt|Fs] = Zs for small time intervals [s, t] and the
conclude].

c) Prove that

P(‖X‖[0,t] > r) 6 2de−r
2/2dt t > 0, r > 0.

where ‖X‖[0,t] denotes the supremum wrt. the Euclidean norm of (Xs)s∈[0,t].

[Hint: use Doob’s inequality for the submartingale eλX
i
t and optimize over λ > 0]

d) Prove the same result as in (a) under the more general assumption that b is a previsible drift such
that

|bt(x)| 6 C(1 + ‖x‖∞,[0,t]), t > 0, x ∈ Ω

where C < +∞.

Exercise 2 (Pts 2+2+2) Consider the one dimensional SDE

dXt = −X3
t dt+ dBt, X0 = x,

where B is a standard Brownian motion.

a) Let f(t, x) = (1 + |x|2) and TL = inf{t > 0 : |Xt| > L}. Use Ito formula to show that there exists a
constant λ such that the process Zt := e−λ(t∧TL)f(Xt∧TL) is a supermartingale.

b) Deduce that P(TL 6 t)→ 0 as L→∞.

c) Conclude that solutions of the SDE cannot explode (that is ζ := supL TL =∞ a.s.).

Exercise 3 (Pts 2+2+2) If c(t) = (x(t), y(t)) is a smooth curve in R2 with c(0) = 0,

At =

∫ t

0

(x(s)y′(s)− y(s)x′(s))ds

describes the area that is covered by the secant from the origin to c(s) in the interval [0, t]. Analogously,
for a two-dimensional Brownian motion Bt = (Xt, Yt) with B0 = 0, one defines the Lévy Area

At =

∫ t

0

(XsdYs − YsdXs).
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a) Let α(t), β(t) be C1-functions, p ∈ R, and

Vt = ipAt −
α(t)

2
(X2

t + Y 2
t ) + β(t).

Use Itô formula to show that eVt is a local martingale provided α′(t) = α(t)2 − p2 and β′(t) = α(t)

b) Let t0 > 0. Solutions to the equations for α, β with α(t0) = β(t0) = 0 are

α(t) = p tanh(p(t0 − t)), β(t) = − log cosh(p(t0 − t)).

Conclude that
E
[
eipAt0

]
= (cosh(pt0))−1.

c) Show that the distribution of At is absolutely continuous with respect to the Lebesgue measure with
density

fAt(x) = (2t cosh(πx/2t))−1, x ∈ R.
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