Institute for Applied Mathematics – SS2020 Massimiliano Gubinelli

V4F1 Stochastic Analysis – Problem Sheet 9

Version 1, 2020.06.19. Tutorial classes: Mon June 29th 16–18 (Zoom) Min Liu |Wed July 1st 16–18 (Zoom) Daria Frolova.

Solutions in groups of 2 (at most). To be handled in IAT_EX or T_EX_{MACS} format via eCampus not later than 8pm Friday
June 26th. Use this sheet for your solutions and write them under the corresponding exercise. Fill ou

Names: XXXXXXXXXXXX/YYYYYYYYYYYYYY

Exercise 1 (Pts 4) Prove that if B is a Brownian motion, then we have the relation $L_t^{|B|,0} = 2L_t^{B,0}$ where $L_t^{X,a}$ denotes the local time in $a \in \mathbb{R}$ of the semimartingale X.

Exercise 2 (Pts 2+4) Let $y : \mathbb{R}_+ \to \mathbb{R}$ be a continuous function and let

$$
a(t) = \sup_{s \in [0,t]} (y(s))_{-} = \sup_{s \in [0,t]} (-y(s) \vee 0), \qquad z(t) = y(t) + a(t).
$$

- a) Prove that a, z are continuous functions and a is non-decreasing.
- b) Prove that a is of bounded variation and that $\int_0^\infty \mathbb{1}_{z_s>0} da_s = 0$. (Hint: use the fact that da_s is a Borel measure).

Exercise 3 [Pts $2+2+2$] Prove (the upper bound of) Burkholder–Davis–Gundy inequality. Let M be a continuous local martingale (with $M_0 = 0$). For any $p \geq 2$ we have

$$
\mathbb{E}[\sup_{t\leq T}|M_t|^p]\leqslant C_p\mathbb{E}[([M]_T^{p/2})]
$$

where C_p is a universal constant depending only on p .

a) Assume that the martingale M is bounded. Use Itô formula on $t \mapsto (\varepsilon + |M_t|^2)^{p/2}$ to prove that

$$
\mathbb{E}[\sup_{t\leq T}|M_t|^p]\leqslant \int_0^T \mathbb{E}[|M_t|^{p-2}\mathrm{d}[M]_t].
$$

(why we need $\varepsilon > 0$?)

- b) Use Hölder's and Doob's inequality to conclude.
- c) Remove the assumption of boundedness.

Exercise 4 (Pts 2+2+2) Let us continue with the setting of Exercise 3 and prove now a complementary lower bound when $p \geq 4$, that is

$$
\mathbb{E}[([M]_T^{p/2})] \leqslant C_p \mathbb{E}[\sup_{t \leqslant T} |M_t|^p].
$$

where again C_p is a universal constant depending only on p (not the same as that of the upper bound). a) Use the relation

$$
[M]_T = M_T^2 - 2 \int_0^T M_s \mathrm{d}M_s
$$

to estimate $\mathbb{E}[(M_T^{p/2})]$ and then use the BDG upper bound for the stochastic integral.

b) Prove that if we let $N_T = \int_0^T M_s dM_s$ then for any $\varepsilon > 0$ there exists $\lambda_{\varepsilon} > 0$ such that

$$
[N]_T^{1/2} \leq \lambda_{\varepsilon} \sup_{t \leq T} |M_t| + \varepsilon [M]_T
$$

c) Conclude by choosing ε small enough.