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Exercise 1 (Pts 4) Prove that if B is a Brownian motion, then we have the relation L
|B|,0
t = 2LB,0

t

where LX,a
t denotes the local time in a ∈ R of the semimartingale X.

Exercise 2 (Pts 2+4) Let y : R+ → R be a continuous function and let

a(t) = sup
s∈[0,t]

(y(s))− = sup
s∈[0,t]

(−y(s) ∨ 0), z(t) = y(t) + a(t).

a) Prove that a, z are continuous functions and a is non-decreasing.

b) Prove that a is of bounded variation and that
∫∞
0

1zs>0das = 0. (Hint: use the fact that das is a
Borel measure).

Exercise 3 [Pts 2+2+2] Prove (the upper bound of) Burkholder–Davis–Gundy inequality. Let M be
a continuous local martingale (with M0 = 0). For any p > 2 we have

E[sup
t6T
|Mt|p] 6 CpE[([M ]

p/2
T )]

where Cp is a universal constant depending only on p.

a) Assume that the martingale M is bounded. Use Itô formula on t 7→ (ε+ |Mt|2)p/2 to prove that

E[sup
t6T
|Mt|p] 6

∫ T

0

E[|Mt|p−2d[M ]t].

(why we need ε > 0?)

b) Use Hölder’s and Doob’s inequality to conclude.

c) Remove the assumption of boundedness.

Exercise 4 (Pts 2+2+2) Let us continue with the setting of Exercise 3 and prove now a complemen-
tary lower bound when p > 4, that is

E[([M ]
p/2
T )] 6 CpE[sup

t6T
|Mt|p].

where again Cp is a universal constant depending only on p (not the same as that of the upper bound).

a) Use the relation

[M ]T =M2
T − 2

∫ T

0

MsdMs

to estimate E[([M ]
p/2
T )] and then use the BDG upper bound for the stochastic integral.

b) Prove that if we let NT =
∫ T

0
MsdMs then for any ε > 0 there exists λε > 0 such that

[N ]
1/2
T 6 λε sup

t6T
|Mt|+ ε[M ]T

c) Conclude by choosing ε small enough.
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