Foundations in Stochastic Analysis

WS 2021/22
31.01.2022
Francesco De Vecchi












Table of contents

1 Brownian motion, Poisson process and Levy processes . ................. 7
1.1 Definition and equivalent characterizations of Brownian motion . ... ............ 7
1.1.1 Brownian motion as a Markov process . . ... ... ... ... ... .. ... .. ... 7
1.1.2 Brownian motion as a Gaussian process . . . . . . ... ... 8
1.2 Lévy construction of Brownian motion . .. ... ... ... . ... ... . .. ... 8
1.2.1 Haar and Schauder functions . . ... ... ... ... . ... . 8
1.2.2 Lévy construction of Brownian motion . . ... ... . ... ... . ... . ... ... 9
1.3 Definition Poisson process . . .. ... ... . 11
1.4 Poisson processes and Poisson point processes . . . . ... .. ... oL 11
1.5 Existence of Poisson process and its properties . .. ... ..... .. ... . ... ... 12
1.6 Simplicity of the Poisson process . .. ... . ... .. . .. ... 13
1.7 Levy PrOCesSes . . . . . vt i i i e 15
2 Filtrations, martingales and stopping times . ... ... ... ... ... ... .. 17
2.1 Some definitions . . . . . . . . . .. 17
2.2 Some theorems on filtrations . . . ... ... L 18
2.3 Stopping times . . . . . L 20
2.4 Doob’s optional sampling theorem . . . ... ... .. ... o 22
2.5 Martingale inequalities . . .. ... .. L 23
3 Continuous (local) martingales . ... .. ...... .. ... ... ... . ... .. ... .. 27
3.1 The space of continuous L% martingales . . ... .......... .. ... ... .. .. ... 27
3.2 Bounded variation processes . . . ... ... 29
3.3 Quadratic variation of local martingales . ... ... .. ... . ... . L. 32
3.3.1 A special version of the theorem . . ... ... ... ... ... .. ... ... .. ... .. 32
3.3.2 Quadratic variation of continuous local martingale . . ... ... ... .. ..... .. 35
3.3.3 The case of Brownian motion . .. ... .. ... .. ... ... . 35
3.3.4 Quadratic covariation . . . . . .. ... 36
4 Tto Integral and Ito formula ... ... ... .. ... ... ... .. ... .. .. ... ... 37
4.1 Integration with respect to continuous martingales . .. ... ... ... ... ... . ... 37
4.1.1 Integration of bounded simple processes and L? martingales . ............. 37
4.1.2 Integration of progressive processes and L? martingales . ................ 40
4.1.3 The Brownian motion case . . .. ... .. ... 43
4.1.4 Integration with respect to local martingale . . ... ... ... ... .. ... .. 43
4.2 Tto Formula continuous semimartingales . ... ... ... .. ... .. ... .. ... . ... 44
4.2.1 One dimensional Ito formula . .. ... ... ... ... ... L 44
4.2.2 Multidimensional Ito formula . . .. ... ... ... L 47
4.2.3 Tto processes and Ito formula . ... ... ... . ... L L o 47
4.3 Other stochastic integrations and their Ito formulas . . ... ... ... ... ......... 49
4.3.1 Backward stochastic integration . ... ... ... . ... . L o 49
4.3.2 Stratonovich and midpoint integral . . .. ... .. ... . o o 50
5 Consequences of Ito formula and Girsanov theorem ... ...... ... ..... ... 55
5.1 Applications of Ito formula to Brownian motion . .. ... .. ... ... . ... ....... 55
5.1.1 Martingale representation theorem . .. ... ... ... ... .. ... .. ... .. 59
5.1.2 Lévy characterization of Brownian motion . . . . . ... ... ... ... ......... 59



6 TABLE OF CONTENTS

5.2 Girsanov theorem and applications . . . ... ... ... .. .. ... . 60
5.2.1 Preliminaries . .. ... . .. 61
5.2.2 Girsanov theorem in the Brownian motion case ... ... ... ... ......... 63
5.2.3 The Novikov condition . .. ... ... . ... . .. .. 66
5.2.4 Some applications . . . . .. ... 68

5.2.4.1 Cameron-Martin theorem . ... ... ... ... ... ... .. .. . ... 68
5.2.4.2 Law of hitting times for Brownian motion with drift . . ... ... ... ... .. 69

6 Stochastic differential equations . .. ... ... ... ... .. L . 71

6.1 Definition . . . . . . . . . 71
6.1.1 Some examples . . . ... 71

6.1.1.1 The geometric Brownian motion .. ... ... ... .. ... . ... . . ... .. 71
6.1.1.2 Ornstein—Uhlenbeck process . . ... .. ... ... . ... ... ... .. 72

6.2 Uniform Lipschitz case . . .. ... .. 73
6.2.1 Existence . . . . .. . . 73
6.2.2 Uniqueness . . . . . . . .. .. e 76

6.3 Weak solutions and Girsanov theorem . . ... ... ... ... . ... . ... . ... . ... 7
6.3.1 Tanaka counterexample . . . .. ... ... . ... L 7
6.3.2 Building weak solutions with Girsanov theorem .. ... ... ... ........... 79
6.3.3 About uniqueness in law . . ... .. ... 81

7 Local (in time) solutions of SDEs, Markov property, and relation with PDEs . 85

7.1 Local (in time) solution to SDEs and explosion . . ... ..................... 85
7.1.1 Local existence and uniqueness . . . ... ... .. ... ... 85
7.1.2 Explosion time and Lyapunov function . ... ... ... ... ... ... .. ... ..., 87

7.2 Markov property of the solutions to autonomous SDEs . . ... ..... .. ......... 91
7.2.1 Continuous dependence of solutions on (deterministic) initial condition . ... ... 91
7.2.2 Markov property of strong solutions . . . ... ... ... . L L o 94

7.3 SDEs and evolution PDEs . . .. ... ... . 99
7.3.1 Kolmogorov (backward) equation . ............ .. ... . ... . ... .. 99
7.3.2 Feynman-Kac formula . ... ... ... ... 102
7.3.3 Existence of solution to Kolmogorov PDE: Ornstein-Uhlenbeck case ... ... ... 102
7.3.4 Regularity of SDEs with additive noise . . .. ... ... .. ... .. ... . ... .. 103
7.3.5 Existence of solutions to Kolmogorov equation: additive noise case . ... ... ... 106

Bibliography . . . . .. . 109



Chapter 1

Brownian motion, Poisson process and Levy
processes

1.1 Definition and equivalent characterizations of Brownian
motion
Definition 1.1. A stochastic process B.: R4 x Q0 — R is a Brownian motion if
1. By=0,

2. for any 0<t;<t2< ... <t, €R; we have that By, — By, By, — By,,..., By
independent random variables and By, — By, _,~N(0,t; —t;_1),

. — B, | are

3. for almost every w € Q the function t — By(w) is continuous (i.e., in CO(R,,R)).

1.1.1 Brownian motion as a Markov process

We consider the following completed natural filtration of By given by

Fi=0(Bs,s€[0,t]).

Theorem 1.2. A Brownian motion By is a F, Markov process with transition kernel given by

Pz, tiy,s)= 27réﬁs)“Xp( _Q(é_f))g), (1.1)

where 0 <s<t.

Proof. We have to prove that for any 0 < s <t and any Borel set A CR there exists a version of
P(B; € A|Fs) which is o(B;) measurable.
By Definition 1.1 we have that B; — By is independent of Bs— By= B, and By — Bs~ N(0,t —s)

P(B;e A|Fs) = P((B:— Bs)+ Bs€ A|Fy)
/ 1 cxp<_(x_Bs)2>.
a2t —s) 2(t — 5)

O

Corollary 1.3. For any 0<t1<ty<--- <t we have that the law of (By,,...,By,) is given by

1 expl — M 1.9
\/(QW)TLH?:l(ti*tifl) p( ; 2ti—ti-1) >’ -

where tg=0 and xo=0.

Proof. We prove the theorem for n=2. The general case can be proved by induction.
Let A1, A be two Borel subsets of R, then we have

2
IP(BtIEAl,BtQEAQ) = %)P(Bt2€A2|Bt1:I1)d$1

1
- __ex —
Al\/277t1 p< 2
St

B /Mﬁem{?_tl)( A, \/27r(t12 —t1) CXp( 72(&2 j:11))2 )dx2>dx1
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where to obtain the last equality we use Theorem 1.2. O

Corollary 1.4. Let B; be a Markov process with transition kernel (1.1), Bo=0 and such that for
almost every w € Q the function t — By(w) is in C°(R4, R), then By is a Brownian motion.

Proof. We have only to prove that B; satisfies the second property of Definition 1.1. Using
the same reasoning of Corollary 1.3, we obtain that, if B; is a Markov process with transition
kernel (1.1), then it has finite dimensional marginals given by (1.2). This implies that for any
0<t; <t <... <t, € R4 we have that B, — By, By,— By,,..., By, — By, , are independent random
variables and By, — By, _, ~ N(0,t; —t;_1). O

1.1.2 Brownian motion as a Gaussian process

Theorem 1.5. Brownian motion is a Gaussian process such that Bo=0 and

E[B] = 0 (1.3)
cov (B¢, By) min (, s). (1.4)

Proof. The fact that Brownian motion is a Gaussian process follows by the explicit expression of
finite dimensional marginals given in Corollary 1.3.
Using the definition of Brownian motion we have E[By] = E[B; — Bg] =0 and, if s <t,

cov(B¢, Bs) = cov(B; — Bs, Bs) + cov(Bs, Bs) = s. O

Corollary 1.6. Let B, be a Gaussian process with mean (1.3) and co-variance (1.4), and suppose
that Bo=0 and for almost every w € Q the function t — By(w) is in C°(Ry,R), then By is a
Brownian motion.

Proof. We have only to prove that B, satisfies the second property of Definition 1.1. Since
B, — By, Bt,— By,,..., By, — B, _, are Gaussian random variables (being linear combinations of
jointly Gaussian random variables) we have to prove that cov(By, — By, ,, By, — By, ) =0 if i #j.
Suppose that ¢; <t; then

i—17

cov(By, — By, _,, By; — By, _,) = cov(By,, By;) —cov(By, _,, By;) —cov(By,, By, ) +cov(By,_,, By))
= tj—tj—t;_1+t;_1=0,

which concludes the proof. O

1.2 Lévy construction of Brownian motion

1.2.1 Haar and Schauder functions

We define Haar functions h%(t) for n=0,1,... €N and k=0,...,2" "' —1 in the following way:
for n =0 we put h(t) =1 and for n#0 we write
n—1
hﬁ(t) = QT(H{% 2k+1)(t) — ]I{2k+l 2k+2)(t))-

on’ T an on T on

We define also Schauder functions as

ek ()= sss s.
0= [ hie)a

Lemma 1.7. The set of Haar functions forms an orthonormal basis of L*([0,1]).

Proof. The orthonormality is a consequence of the fact that h¥(¢) and h,,kll(t) are supported in

different sets when k # k', and that h%(t) has integral 0 on the dyadic set of the form {25—;, %}
(for any k'€ IN).
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In order to prove that the Haar functions form a complete basis of L?([0,1]) we have only to
prove that for any function f € L?(]0,1]) such that folf(t)hﬁ(t) =0 we have f=0.

Consider the probability space ([0, 1], B, dz) (where B is the complete o-algebra generated
k k+1]

on Ton
k=0,...,2"— 1}, with n € N. It is clear that o(B,|n € N)=B. If folf(t)hﬁ(t) =0 for n <N then
f(t)=0 for n < N. This implies that

by Borel sets and dz is the Lebesgue measure) and consider the filtration B, = {

f{ k k41

On the other hand fol f2(t)dt=0 and so f, is a B,, martingale bounded in L?([0,1]). Thus, by Doob
Convergence Theorem for martingales, we have that f, — E[f|B] = f in L'([0, 1]). This implies
that f=Ilim f,=0. O

—1

Lemma 1.8. We have that supicjo.1]|en(t)| <2 2 and the series

Sl DD ek)en(s) | =min(t,s) (1.5)
n=0

is absolutely convergent and it is equal to min (¢, s).

Proof. The bound on |ek(t)| follows by a direct computation. In order to prove equality (1.5) we
note that fol]l[w] (7)hE(T)dT =€k (t) (and a similar relation holds for e¥(s)). Using Parseval identity
for orthonormal bases in an Hilbert space we obtain

1
min (¢,s8) = /H[o,t](T)H[o,s](T)dT
0

00 on—1_1

1 1
=D DI R FCTONIE WETCTY
n=0 \ k=0 ‘0 0
e’} oan—1_1
= > | X ent)ens)
n=0 k=0
and the previous series is absolutely convergent. O

1.2.2 Lévy construction of Brownian motion

Let Z,, 1(w) be a sequence of independent random variables such that Z,, ,~ N(0,1). Consider the
following sequence of stochastic processes

From now on we restrict Definition 1.1, to processes of the form B:[0,1] x 2 — R, i.e., defined only
on the set [0,1] and not on the whole positive real line R.

If we have a sequence of independent Brownian motions B}, ..., B;" defined on [0, 1], we can
easily build a Brownian motion B; defined on the whole real positive line R in the following way:
if n—1<t<n (where n € N) we define B,=3p_| B¥ + B ;1.

Theorem 1.9. The sequence of stochastic processes By is almost surely convergent on [0,1]. Let
By be the limit of By, then By is a Brownian motion on [0, 1].

Proof. First we prove that the sequence of functions t — B}Y (w) is uniformly convergent in
C°([0,1],R) for almost every w € Q. In order to prove this, we use Weierstrass criterion for uniform
convergence in C°([0,1],R), proving that, writing K,(w) =sup¢co,1 |Zi:0171 Zy w(w)en(t)|, we
have Y~ K, <-+oo almost surely.
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Using the fact that for ﬁxed n the functions ef(t) have disjoint support, and exploiting the
bound sup;eo, 1 |en(t)] <2 T we have that

n—1
Kp(w)< Z_Tsup|Zn7k(w)|.
k

We want to prove that there exists a positive random variable C: Q2 — IR, almost surely finite, such
that

sup | Zy, k(w)| <nC(w).
k

Define B,, = {w|supk |Zn k(w)| >n} then C(w) < 400 whenever w ¢ limsup,, B,,. If we are able to
prove that IP(limsup,, B,,) =0 then C(w) < 400 almost surely. In order to prove that IP(limsup,,B,) =
0, we use Borel-Cantelli Lemma and the fact that > P(B,) < +oo.

Indeed

on—1_71 on 2

where we used the fact that Zn_,kw N(O, 1). This implies that

on 2
5 pm < ()<

n

which means that C < 400 almost surely. On the other hand we have that K,(w) <
2" 72 supg|Zn,k(w)| and so

n—

; K,(w) g; 2fngp|Zn p(w)] <Clw Z n2 z <+oo

Thus the sequence B;(w) is almost surely convergent in C°([0, 1], R).

Let B; denote the limit of B{¥ when B} is convergent and 0 otherwise. We have that B, satisfies
the condition 1 and 3 of Definition 1.1. In order to prove that By satisfies property 2 of Definition
1.1 we prove that By is a Gaussian process such that E[B;] =0 and cov(By, Bs) =min (s, t). Using
Corollary 1.6, this is equivalent to prove that B; is a Brownian motion.

First we prove that for any ¢ € [0, 1] the sequence of random variables BY converges to B, in
L?(Q). Since BY converges to B, almost surely it is sufficient to prove that B;¥ forms a Cauchy
sequence in L?(£2). We have that

N 2n—1_1 2

Ell Y D Zuxlwek(t)

n=M k=0

= Y (ea®)

E[(B} - Bi')?]

when M <N and using the fact that Z,, j are i.i.d. normal random variables with variance 1. On

the other hand, by Lemma 1.8, the series Zn > (ex(t))? =t < 400 is absolutely convergent, this

means that
N

lim > (eh(t)2 =0,

M
e n=M

which implies that B} is a Cauchy sequence in L(Q).

The fact that (BjY,..., B{Y) converges to (By,,..., By,) in L*(Q) implies that B, is a normal
stochastic process (being the L? limit of a normal stochastic process), with E[B;] =limyE[B}] and
cov(By, Bs) =limy cov(B{, BY). On the other hand we have that limyE[B{¥] =limy 0=0 and, by
Lemma 1.8,

N f[2n-1_1
hm cov(BY,BN) = hm E[BNBY] = Z Z ek (t)ek (s) | =min (¢, 5). a
n=0 \ k=0
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1.3 Definition Poisson process

Definition 1.10. Let {N,g}te]R+ be a stochastic process, we say that Ny is a Poisson process of
parameter A >0 if
1. Nyo=0,
2. for any t1 < <ty we have that Ny, — Ny, ..., Ni, — N, _, are independent and distributed as
Nti - Nti—l ~ PO()‘(ti - ti—l));

3. the paths of Ny (namely for any w € Q the function t— Niy(w) ) are cadlag.

1.4 Poisson processes and Poisson point processes

We say that a measure p on Ry is a counting measure if for any B € B(R4) (i.e. B(R4) is the
Borel o-algebra) we have p(B) € No. This is equivalent to say that there is a set S C R4 and for
any x € S there is a point number n, € N such that

p(dt) =" nyd,(dt)
z€eS

where d,(dt) is the Dirac delta with unitary mass in € Ry, namely

_J1 ifzxeB
596(3){0 ifegB "’

We denote by N(R) the set of counting measure on R.
Definition 1.11. A random measure n: Q@ — N(IR4) is called point process.

We can build a point process from a Poisson process in the following way
™ ((a,b]) = No— Na

(this is due to the fact that N; is an increasing cadlag function). We call the random measure 7"
the Poisson point process of parameter A (or also the Poisson point process related to the Poisson
process N).

Theorem 1.12. Suppose that 1) is a point process such that
1. for any B € B(Ry) bounded, n(B) ~Po(A|B]);
2. for any By,...,B, € B(Ry) the random variables n(B1),...,n(B,) are independent.
Then the stochastic process Ny=1([0,t]) is a Poisson process. Conversely suppose that n™ is the

Poisson point process related to the Poisson process Ny then it satisfies the condition 1 and 2 above.

Remark 1.13. If G is an open set, there are some (at most countable) disjoint intervals {Ij = (ay,
bk)}ke]N such that Ul =G.
Furthermore if F'is a closed set there are closed intervals Jy = [ak, b] such that F'=NgJ.

Remark 1.14. Suppose that {X,,}nen and {Y,,}nen are sequences of random variables such that
X,— X, Y,—Y almost surely and X,, is independent of Y, then X is independent of Y.

Lemma 1.15. Suppose that 0~ is a Poisson point process then the properties 1, 2 of Theorem
1.12 hold when B, By,..., B, are open or closed sets.

Proof. Consider first the case where By,..., B, are disjoint intervals By = I = (ak, br). Then, by
continuity of (locally bounded) measure from below, we have that

. by, — by — .
0(By) = lim n((ak—i— L2k by - kn‘”@]): lim (N, e =N, _suo.)

n— oo n— -+oo

~P0<A<(”—;”(bk—ak))).
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This implies that 7(By) is a Poisson random variable of parameter Po(A(bx — ax)). Furthermore
since N, _vp—a, =N, _b—a, is independent of ka,_bk/—ak/ - Nak,_bk/—ak/ (for k+ k') then n(By)

n Tk n n
is independent of 7(By) for k' # k being the limit of independent random variables.
We can generalize the previous reasoning to general open sets B =Gy, ..., B, =G, thanks to

Remark 1.13. The proof for closed sets follows similar lines. O

Remark 1.16. Lebesgue measure is outer regular: for any (bounded) Borel set B and for any
€ >0 there is a open set G D B such that |G\ B| <e.

Furthermore if B is Borel set such that |B| < +o0, for any € > 0 there is a closed set ' C B
such that |B\ F|<e.

Lemma 1.17. Suppose that 0 is a Poisson point process then if |B|=0 then n™(B)=0 almost
surely.

Proof. If |B|=0, by Remark 1.16, there is a sequence BC ... CG"C ... C G! of open sets such
that |G™\ B|=|G"| :%. If K=0N,enG™ then G C K and so "V (B) <n™(K). On the other hand,
by the continuity for above of (locally bounded) measure, we have n™V(K) = lim,_, ;-0 (G™).
Since n™V(G,,) ~ Po(%) we have 7" (K) ~Po(0) and so n™V(K) =0 almost surely. Since n~(B) <
7N (K) =0 almost surely the thesis follows. O

Lemma 1.18. Suppose that n” is a Poisson point process then 1, 2 of Theorem 1.12 hold.

Proof. By Remark 1.16, for any bounded Borel set B there is a sequence of closed sets F1 C ... C
F™C...C B such that |B\ F"| g%. If K=U,enF", we have that nV(K) ~lim,,_ ; xPo(A|F"|) ~
Po(A|K|). On the other hand |B\ K| =lim,, . 1o |B\F" =0, and so n™(B) =n"(K) +n"N(B\
K)~Po(A|K|)=Po(\|B|), since |K|=|B| and since ¥ (B\ K) =0 almost surely, for Lemma 1.17.

Using that if Fy,..., F, are closed and disjoint, by Lemma 1.15, p™V(Fy), ..., nV(F,) are
independent and Remark 1.16. g

Proof of Theorem 1.12. By Lemma 1.18, what remains to prove is that if 7 is point process
satisfying 1 and 2 in the statement of the theorem then the process N;=n([0,¢]) is a Poisson process.

Since, by the outer continuity of measures, for any ¢y we have lim,_,,+n([0,¢]) = n([0, to]) the
process IV is right continuous. Furthermore the process V; is increasing, since 1(A4) < n(B) when-
ever AC B, limtﬂtoiNt exists, which implies that IV, is a process with cadlag paths.

Furthermore for any t; < ... <t, € Ry, since Ny — Ny =n((s,t]) (for s<t), we have that, by
the properties 1 and 2, Ny, — N, _, ~Po(\(¢t; —t;—1)) and they are independent, NV; is a Poisson
process. 0

1.5 Existence of Poisson process and its properties
In this section we build the Poisson process building the Poisson point process associated.

Remark 1.19. In order to build a Poisson point process on R it is sufficient to construct a
Poisson point process on [0, 1]. Indeed suppose that 7',...,7",..., are a sequence of Poisson point
process on [0, 1] with parameter A >0 and independent. Then we can defined a point process 7 on
R in the following way: if B is a Borel set of R we have

+oo
n(B):=Y_ i"(B~[n—1])n(0,1])
where B—k={b—k,be B}. n=t
Consider P ~Po()) (i.e. a Poisson random variable of parameter A) and let Xy,..., X,,...

be a sequence of i.i.d random variables uniformly distributed on [0, 1] (i.e. Xy~ U([0,1])) and
independent of P. We defined the random measure 7 on [0, 1] in the following way

P(w)
i(w,dt) =" Ox,(w)(dt)
n=1
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where w € 2 and the sum is equal to zero when P(w)=0.

Theorem 1.20. Using the previous notations, the random measure 1 is a Poisson point process
(i.e., by Theorem 1.12 the process Ny=1([0,t]) is a Poisson process).

In order to prove Theorem 1.20 we introduce the following sequence of random variables: let

By, ..., By, be Borel subsets of [0,1] forming a partition of [0, 1], for any r € N and k€ {1,...,n}
we defined the random variables

Vi)=Y Iixeny ().
=1

Lemma 1.21. For any r €N the random vector (Y1",....Y,]) is distributed as a multinomial random

vector of parameter (p1=|B1l,...,pn=|Bnl), i.e. for any ri,...,ry, such that ri+---+r,=r we have
T T T.! 1 Tn
P =r,....Y, :Tn):mlh ©Pn -
Proof. The variable Y} counts the number of points in the set By considering a set (X1, ..., X;)
of i.i.d. random variables. This means that the vector (Y7",...,Y}]) is distributed as a multinomial
random variable with parameter (py =P(X; € By),p2=P(X1 € Bs),...,p,=P(X; € B,,)). Since
X}, are uniform random variables P(Xj € By) = | By|. O

Proof of Theorem 1.20. Fix a Borel partition By, ..., B, of [0,1] we want to compute the
joint probability of the random variables (7(Bi1),..., 7(By)) and prove that it is given by the
law of n independents random variables distributed as Poisson random variables with parameter
7(B) ~Po(A|Byg|). Since any list of Borel disjoint subsets of [0, 1] can be completed to form a
partition of [0, 1] by adding the complement of the union the theorem is proved.

Consider rq,...,r, € No and r=71+ - -- +r,, we have that

P(p(B1)=r1,...,7(Bn)=mn) = P(P=r,Y{"=m,...,Y, =r,) =
= P(P=r)P(Y{ =r,..., Y =r
e M\ 7l -

ol It

. .p""n

Since the law of P(7}(B1) =71, ..., 7(Byn) =ry) is a product of functions depending only on rj the
random variables 7(B1),..., 7(By) are independent. Furthermore we have that

e~ APk

P(A(B) = (pid)™

which implies that 7(By) ~ Po(Apx) =Po(A|Bg|). O

1.6 Simplicity of the Poisson process

We want now to prove a fundamental property of the Poisson process, namely that it is a simple
process. If X; is a cadlag stochastic process we define the following process

AXt:Xt — lim Xt:Xt — th.

s—t—

Definition 1.22. Let My:Q)—NoCR, te Ry, be a stochastic process taking values in the integer
number. We say that M, is simple if sup;er, |AM;| <1 almost surely, i.e. the process My has
jump of at most size 1.
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Theorem 1.23. Fvery Poisson process is simple.

In order to prove Theorem 1.23, we introduce the factorial of a discrete measure: suppose that
1 is a discrete measure on R, taking values in Ny, i.e. there is an at most countable set S C Ry
and a map n.: S — N such that

w(dt) = Z N0, (dt).

TES

A measure of the previous for is simple if n, <2, namely
p({z}) <1, zeR4. (1.6)

Remark 1.24. Let 7V be the Poisson point process associated with the Poisson process Ny, then
N, is a simple process is simple if and only if the measure 1V is simple (in the sense of equation
(1.6)) almost surely.

We define the second factorial of p, denoted by p(?), as the measure on R? for which

pPdty,dtg) = Y Moy sy, ) (b1, db2) + Y (1 — 1)8(0 2 (dlt, dto)

1,22€S,x1#T2 zeS

Remark 1.25. If D) ={(z,z),z € R;} C R% is the diagonal of R we have that

M(Q)(D@)): Z n¢( .L_l) Z ]I{”y 2}( )

zeS TES

This means that p is simple if and only if
M(Q)( D(Q)) -

Exercise 1.1. Prove that if a By, B2 are Borel sets we have

13 (B1 x By) = u(B1)p(Bz) — (B1N Ba).

Lemma 1.26. For any Borel sets By, Bs € B(R+) we have

E[n™- (B x By)] = ?|Bi||Ba|.

Proof. By Exercise 1.1 we have that
nN"@(By x By) =n"N(B1)n™(Ba) — 1N (BN By).
Thus we have
E[n™"®(B1x By)] = E[n™(B
= E[7N(B
+E[nN

)™ (Bz)] = E[n"(B1N By)]

1\ (B1N B2))n™(B2\ (B1N By))] +
(B:\(B1N B2))n™(B1N Ba)] +
+E[nN(B1N B2)n™(B2\ (B1N Ba))] + E[(nY (B1 N Bz))?]

E[nN(B1N By)]

= >\2|Bl\(31ﬂ32)||B2\(BmBz)|+>\2|31\(31ﬂ32)| |B1N Ba| +
+/\2|BlﬂBQ||BQ\(BlﬂBQ)|+)\2|BlﬂBQ|2+/\|BlﬂBQ|—)\|Bl—BQ|

= N|Bi||B|,

where we used that (L) is independent of n™V(Ls) when L1 N Ly =0, and E[n™(L1)] = \|L1| and
E[(n¥ (L1))?] = N|L1[* + A| L. O

Proof of Theorem 1.23. By Remark 1.24 and Remark 1.25, the process NV, is simple if and only
if '@ (D®)=0 almost surely. Since n™>@(D?) >0 is enough to prove that E[n™ (D) =0
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Then, by Lemma 1.26, we have that

—+oo
Bl 2(D%) = 3 Bl G0k, k+ 1))
k=0
_ +o00 i iEnN,(Q) DN k+T—1k+i
n—+00 n ’ n
k=0 r=1
+oo n 1 2
- ( im ZA?[H” ,k+i> )
n— -+oo
k=0 r=1
+oo 2
= Z( lim —)0
o n—-+oo N

1.7 Levy processes

Definition 1.27. Let X; be a stochastic process, we say that X is a Levy process if
1. Xp=0,

2. the process Xy has independent and homogeneous increments, i.e. for any t1 < --- <t, we
have Xy, — Xy,,..., Xt — X4, _, are independent and Xy, — Xy, ~Xp,—t,_, (1.e. X, — Xy,
has the same law of Xi,—¢,_, ),

3. the process X; has cadlag paths, for each w € Q) the function t+— X¢(w) is cadlag.

Two important examples of Levy processes are Brownian motion and Poisson process.
From the definition we can deduce that the law of the process X; to a fixed time ¢ >0 cannot
be a generic law but it must be infinite divisible.

Definition 1.28. We say that a probability measure p on R is infinite divisible if for any n € N

1
there is a probability measure pu~ such that

1 1 1
‘u:un*un*...*‘un‘
n  times

Exercise 1.2. Suppose that Y] and Y2 are two independent random variables with probability law p1 and po
respectively. Prove that the of Y7 + Y5 is given by u1* po (i.e. for any Borel set B € B(IR) we have u1 * ua(B) =
St (B = 2)pa(d).

Theorem 1.29. Let X, be a Levy process, then, for any t € Ry, the law of Xy is infinite divisible.

Proof. Obviously since Xy=0, the law of X is infinite divisible. Then, consider ¢t > 0. For any
n € N we have that
n—1
X, = Z Xitrn — Xk
k:O n n

By definition of Levy process X:(+1) — X are i.i.d random variables. Then, by Exercise 1.2, if
n n 1

1 1
X~ pand Xegerny — Xew~ Xt ~ ™ we have p=pm - % pun. O

n

There is a converse of Theorem 1.29 that we state without proof.

Theorem 1.30. Let p be an infinite divisible probability measure, then there is a Levy process
such that X1~ p.

We want to give an important class of exmples of Levy processes other than Brownian motion
and Poisson process.
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Definition 1.31. Consider a Poisson process Ny with a paramter A >0 and let Y1,...,Y,, ... be
a sequence of i.i.d. random variables indepedent of the process N. We call X; a compound Poisson
process with paramter \ and jump Law(Y;) the process

Ni¢(w)

X(w)= Y Yilw)
k=1

where the sum is equal to zero when Ny(w)=0.
Theorem 1.32. Compound Poisson processes are Levy process.

Proof. Since Ng=0, Xo=0.
In order to prove the theorem it is useful to introduce the process

Lt]

Zi=) Y
k=1

where Z; =0 for t < 1. The process Z; is a cadlag process (i.e. it is a process with cadlag paths),
furthermore we have that

Xi(w) = Zn,(w)(w),

i.e. for any w € the map ¢+— X,(w) is the composition of the cadlag function ¢+— Z;(w) and the
cadlag increasing function ¢ — N;(w). Since the composition of a cadlag function with a increasing
cadlag function is cadlag, the function ¢t — X;(w) is cadlag.

What reamian to prove is that X; has independent and homogeneous increments. We prove
the statement for ¢ <to <3, since the general case can be proven in a similar way. We write

Ki=Xy,— X¢,, Ko=Xi,—Xt,, Ki=Xt,—4,, Ki=Xy 4,
and we want to prove that
Ky, Ko (U, v) = Elexp(iu Ky + ivKs)] = o (u) oy (v) = Elexp(iu K{)|Elexp(ivK3)] (1.7)

where ¢k, k.), Pk}, PK;are the characteristic functions of (K1, K3), K1, K} respectively. Equation
(1.7) will imply that X, — X, is independent of X;, — Xy, (since two random variables are indepen-
dent if and only if their joint characteristic function is the product of their marginal charateristic
functions) and their are distributed as X;, — X, ~ Xy, 1, and Xy, — Xy, ~ Xpy 4.

By definition of Poisson process we have that Ny, — Vi,, Ny, — Ny, and V;, are independent we
have

@(Klsz)(U, 'U) = E[E[eiuKl+ivK2|Ntla th - Ntl? NtB - Ntz“
- Z IP(NtsttQZklﬂNb*Nt1:k27Nt1:k3>
k1,ko,ks€N
Eleivkitivke N, — N, =k, Ny, — Ny, = ko, Ny, = kg
= Z IP(NtS7Nt2:k1)IP(Nt27Nt3:k2>IP(Nt1:k3)
k1,ko,ks€N

. ki+kotk . ki+k
B[ () T ()

= Z IP(NtS7Nt2:k1)IP(Nt27Nt3:k2>IP(Nt1:k3)
ki,ko,kseN

p kitkotks v . ki+ky v
E{etu(zjikﬁkﬁly})]E[ew(zjiksil’é)} —

iU k1 e
= Z IP(Nt3_t2:]€1)IP(Nt2_t1:]CQ)]E|:€ (Z]:1Y):|
k1,ko€N

E{ew@film}

= E[e™ME[e"™™] = prei(u) oy (v).

1 2



Chapter 2

Filtrations, martingales and stopping times

2.1 Some definitions
We fix a probability space (2, F,P).

Definition 2.1. We say that {F;}ier, is a filtration if F; C F are o-algebras such that for any
s <t we have Fs C Fy.

We write
.Fooza(ft,tER_A,_).

Definition 2.2. A stochastic process My is called adapted to the filtration Fy if for any s € Ry M,
is F; measurable.
A stochastic process My is called a cadlag process if for any w € Q the map t+— My(w) is cadlag.

Definition 2.3. Let X be a stochastic process we call
F¥=0(X,,s<t)
the natural filtration of (or the natural filtration generated by) X.

Remark 2.4. A stochastic process is obviously adapted with respect to its natural filtration.

Definition 2.5. Let M, be an adapted stochastic process we say that E[|M|] < +oo we say that:
o M, is a (Fi)-martingale if E[M|F,)= Ms;
o M, is a (Ft)-supermartingale if TE[M|F,] < My;
o M, is a (Fi)-submartingale if E[My|Fs] > M.

We say that My is a cadlag (super/sub)martingale if My is cadlag and it is also a (super/sub)mar-

tingale.

We denote by
N={AeF,P(A)=0},
N=c{AeF,P(A)=0}.
Definition 2.6. Let {Fi}icr, be a filtration we define the completion {Gi}ier, of filtration

{Fitier, as
Gi=0(F, N)={A€ F,3IB € F;suchthat P(AAB) =0}

where AAB = (A\B)U (B\A). If a filtration {Fi}ier, coincide with its completion we say that

Fi is complete.

If {Fi}ier, is a filtration we define
Fir=[) Fu

s>t

17
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Remark 2.7. In general F;+ F; . Indeed let 7 be the natural filtration of a Brownian motion
and define

A ={w e Q, By(w) isright differentiableat ¢} = {w €, lim n(BHi(w) — Bt(w)) exists}.

n— 400

Obviously A; € ]—‘,ﬂ but A, ¢ FE since it is not possible to know if a function is right differentiable
if we have only information of a function from the left.

Definition 2.8. Let {Fi}ier, be a filtration the right-continuous completion of F; the filtration
{Hi}ier, the filtration defined as

Ht:U(]:tJ,_,N).

If {Fi}ier, coincides with its right-continuous completion we say that it is complete and right-
continuous.
If for any t € R4 we have Fy= Fi4 we say that F; is right continuous.

Definition 2.9. We say that the filtration {Fi}icr, satisfies the usual condition if it is complete
and it is right-continuous.

2.2 Some theorems on filtrations

Theorem 2.10. Let M; be a (super/sub)martingale with respect to the filtration {Fi}ier, , then
it is also a (super/sub)martingale with respect to {Gi}ier, (where {Gi}ier, is the completion of
{]:t}tE]R+)'

Proof. Exercise. g
Theorem 2.11. Let M; be a right-continuous (super/sub)martingale with respect to the filtration
{Fi}ter,, then it is also a (super/sub)martingale with respect to {H;}icr, (where {Hi}icr, is
the right-continuous completion of {Fi}icr,)-

Proof. The proof can be found in [7] Chapter 1 Section 1 (the proof not required at the exam) O

Theorem 2.12. Let B, be a Brownian motion and let GP its complete natural filtration then GF
is right continuous (i.e. with the previous notations HP = GFP).

Lemma 2.13. Let B; be a Brownian motion and o € C then

2
Fa(Bt,t) exp(aBt %t)

is a martingale with respect to its natural filtration FP (and so with respect to the completed natural
filtration GP).

Proof. For any s <t we have that

B Oé2t
E[F (B, 1)|Fs’] = E|exp OéBt*T

7

= exp(aBs — — |E[exp(aB; — aBy)|F]

)
_ exp<a35ﬁ)E[exp<aBtaBs>]
Joso (244

= ol s~ (UL ) o

where we use that B; — B, is independent of FZ. O
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Proof of Theorem 2.12. For simplicity we write G; = GZ. The statement is equivalent to prove

that
gt: ﬂ gt+i

neN

for each ¢t >0, so all the limits s|¢ with countable limits t+%% t for n — +o0.
Fix t,s1,...,5» =20 and uq,...,u, € R we want to prove that

m m
E exp(i(Z ukBsk_>> G |=FE exp(i(Z ukBSk)) Gey |. (2.1)
k=1 k=1
The equality is obviously true when si,..., s, <t, so we have to prove only the case where

min (sg) > t.

We prove explicitly only the case m =2 and s2 > s1 > ¢, the general case can be proved in a similar
way. We have, by Doob martingale convergence (using the fact ]E[exp(i (u1Bs, + mBSz))‘QHi] is
a uniformly integrable martingale (since it is bounded)) "

Elexp(i (u1Bs, + u2Bs,))|Ge4] = lim ]E[exp(i (u1Bs, + ugBSQ))‘gH_i}

n— 400

G.v]

n— 400

2
= lim exp(— %)E[E[exp(i (ulle))Fiuz(Bs2, 82)|gs1]

2 j—
= lim exp(—M>E[exp(i (w1 +u2)Bs,) gt+i}
n—-+o0o 2 n
200 2
= lim exp| — ua(s2—s1) _ (w1 +us) 51
n— +oo 2 2
]E|:Fi(,u1+u2)(le,31), gt+i:|
200 2
= lim exp( — ua(sz —s1) (w1 +us) 51
n— +oo 2 2

. ; 1
i) (g el
20 2 ,
_ exp( uQ(322 s1)  (w J;uz) 81)F"(“1+“2)(Bt,t)
= E[exp(i (u1Bs, +u2Bs,))|Gil,

where in the last step we used that B; is continuous. Since the measure is uniquely determined by
the characteristic function, a consequence of the equality (2.1) for any Borel set A C R™ we have
that the conditional probability

IP((BSU RRE) Bsm) € Algt-‘r) = ]P((le, s >Bsm) € A|gt)
almost surely. Furthermore since the sets of the form

{(Bs,,...,Bs, )€ A}

Y Sm

where m, si, A vary in m €N, sq,..., s, € Ry and A € B(R™), generates the o-algebra G, we have
that for any C' € G4

]P(C|gt+) = P(C|gt)
almost surely. In particular if C' € G, we have
Ie=P(C|Ge+) =P(C|G:) =E[lc|G]
almost surely. Since G; is complete the previous equality proves that C'€ G;, and so G+ C G;. O

We conclude this section with a definition and a theorem (whose prove is not required for the
exam).

Definition 2.14. Let X; and Y; be two stochastic process we say that
e the process Y is a modification of X if for any t >0 we have P(X;=Y;)=1;
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e the processes Y and X are indistinguishable if P(X;=Y,teR4)=1.

Remark 2.15. Suppose that X, Y are two right-continuous processes, then the definition of
indistiguishability and modification coincide.

Theorem 2.16. Let {H:}icr, be a filtration and M; be a (sub)martingale with respect to H;.
Suppose also that {H}ier, is complete and right-continuous (i.e. {Hi}icr, satisfies the usual
condition), that Ho contains all the null-sets, and the map t — E[My] is right-continuous then there
is a modification M, of M, which is a cadlag (sub)martingale with respect to {H;}ier, -

2.3 Stopping times

We fix a general filtration {F;};cr, (i.e. here we do not require that {F;};cr. is complete or right-
continuous if not state otherwise).

Definition 2.17. Let T:Q— R4 be a F measurable random variable. We say that T is a stopping
time with respect to the filtration {Fi}ier, if for any t € Ry we have

{T<t} eF.

Remark 2.18. We say that 7:Q — R is a F; stopping time if for any ¢ € Ry we have
{T <t} e Fiq

Since
{T<t}= U]N {Tgt—%}ea(]:(ti)+,neﬂ\l)cft
ne

we have that T is a F;1 stopping time if and only if for any t € R4
{T'<t}eF.

We want to do some examples of stopping times which will be useful in the following. Let
B e B(R) be a Borel set we define

TB:inf{t>0,Xt€B},
g =inf{t>0, X, € B}.

The random variable 75 is called first entrance time of the set B, and 7y is called first hitting time
of the set B.
If X has left limit we define

op=inf{t>0,X,€ B or X,_€ B},
op=inf{t >0,X,€ B or X;_€ B},
Obviously if X; is continuous we have g =75 and g =0p.
Proposition 2.19. Suppose that X; is a cadlag or a left continuous process and B=G is an open

set then 7q and Tg are Fi4 stopping times. In particular if F; is right continuous then 7¢ and Tg
are (Fy)stopping times.

Proof. Since the paths ¢t — X;(w) are right-continuous we have that 7¢(w), 7¢(w) <t if and only if
there is s €[0,t) (or s € (0,t) in the case of 7¢) such that X;(w) € G. Since X is right continuous
and G is open this is equivalent to say that there is a ¢ €[0,¢) N Q (or (0,t) NQ for 7¢) such that
X,(w) € G. This means that

{re<t}= |J {X,eGleo(X,,s€(0,t)CF
g€e0,t)NQ

{fa<tt= |J {X,€Gleo(X,s€(0,t))CFu
g€ (0,t)NQ
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By Remark 2.18 the thesis is proved. O

Proposition 2.20. Suppose that B=Fis a closed subset of R and that X, is cadlag, then oF are
(Fi)stopping times.

Proof. We start by proving that

{or <t} ={Xoe F}U{X;€F and X,_€ F, forsomes € (0,t}
It is clear that the event on the left is contained in the event on the right. To prove the opposite
inclusion suppose that op <t. If the event on the right does not happen for any k& € N there is
t<up<t —|—% such that or X, or X,,, _ arein F. Since uy—t, as k— +o0, both X,,,, X, — converge

Uk
to Xy as up, —t and since F' is closed X; € F'. This proves the equality.
Let

F,= {yEIR,thereisxGFsuchthat|:ry| <%},

i.e. F, is the % neighborhood of F'. We now want to prove that

{Xoe FYU{X,€F and X, €F forsomese(0,f]}= () |J {X,eFu}
neN ¢€[0,{]NQ
Indeed, suppose that X, € F for some s € [0,¢] then we can find a sequence ¢; €[0,t]NQ (or (0,t]|NQ)
such that X (g;) € H, for j big enough. This prove that the left hand side of the previous equality
is contained in the right hand side.

Conversely suppose that there is a sequence ¢, € [0,¢] N Q such that X, € F,, for each n € N.
Since [0,] is closed there is a increasing or decreasing subsequence g, converging to some s € [0, ].
This means that X, converges to X; (if ¢; is decreasing) or to X (if the sequence is decreasing).
This means that or Xg or X;_ must belong to F'= ﬂneNFn. O

Proposition 2.21. Suppose that B=F is a closed subset of R and that X; is cadlag, then &r are
(Ft)stopping times.
Proof. We note that

{or<t}=({or<t})*U({7r-=0} N{or<t})
Indeed the only possibility that &z is bigger then ¢ but op <t is that Xo € F but X ¢ F for
each s € (0,¢] (this is true because F' is closed and X is right-continuous and so if X € F' in a
neighborhood of ¢+ then X; € F) which is equivalent to say that {7p. =0} and op <¢. By the

previous propositions we have that {op <t} € F; C Fiy and {7pe =0} € Fo4. Since Fyy is a o-
algebra this implies that {6 <t}¢€ F;4, which means that {6p <t} € Fyy. O

Corollary 2.22. If the process X is continuous and F is closed 7p is a (Fi)stopping time and Tp
a Fi4 stopping time.

We want to study the composition of a process X; and a stopping time. First we introduce the
following definition.

Definition 2.23. If T is a stopping time we defined the o-algebra Fr as A € Fr if and only if for
any t >0 we have

An{T <t} e F:.

Proposition 2.24. Let T', S two stopping times then
1. if ST then Fs C Fr;
2. Fras=FrNFs;
3. if F€Fpys then FN{S<KT} € Fr;
4. Fryvs=o(Fr,Fs).

Proof. Exercise. O
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Even if X; is a process adapted with respect to the filtration F; is not true (in general) that
X7 is a Fr measurable random variable. We need then the following definition.

Definition 2.25. A process X, is said to be progressive with respect to the filtration {F;}ier, if
for any t € Ry the map X.(+):]0,t] x Q=R is B([0,t]) ® F; measurable.

Theorem 2.26. Suppose that X is progressive and T is a stopping time then Xt is Fr measurable
on the event {T <+4o0}.

Proof. We claim that for any ¢t € R4 the map
W= XT(w)/\t(W)

is F; measurable. Obviously T'At is a stopping time and T At is F; measurable. This means (by
definition of stopping time as measurable map taking values in R.) that the map

w (T(w)At,w) €]0,8] x Q

is a measurable map form measure space (£2, F;) to the measure space ([0,t] x Q, B([0,t]) ® F3).
By definition of progressive the map

(s,w)€[0,t] x Q- X (w) €R

is measurable from the measure space ([0,¢] x Q, B([0,t]) ® F%) into (R, B(R)). This implies that
the composition of the two maps w— (T'(w) A t,w) with (s,w) — X (w) (which is w— Xp)ae(w))
is a measurable map from (2, F;) into R. The previous statement means that

{XTat€B}YEF
for any Borel set B € B(R), and so

{XreB, T <+oo}N{T'<t}={Xrre € B}N{T <t} € F:.
This show that {Xr € B, T < 400} € Fr proving the claim. O

Proposition 2.27. Let X; be an adapted cadlag process with respect to the filtration {Fi}ier,
then it is also progressive.

Proof. Fix 7> 0 define on [0, 7] x © the function

2m on omn

2" —1
Xn(t,w) = Xo(@)oy(H) + Y X(le(w)ﬂ(m M](t)-
k=0

The function X,, is a sum of products of B([0, 7]) ® F, measurable functions and thus it is 5(]0,
7]) ® Fr. By right-continuity of X; we have that, for any (t,w) € [0, 7] X Q, X,,(t,w) — X¢(w) as
n— 400, thus X is also B([0, 7]) ® F» when restricted to [0, 7]. O

2.4 Doob’s optional sampling theorem
The aim of this section is to prove the following results.

Lemma 2.28. Let T, S be F; stopping times taking values in a finite set t1 <to < -+ <ty < +00.
If X; is a submartingale then

E[XT|.7:5] > Xg

almost surely.
Proof. The proof can be found in Chapter 1 Lemma 1.45 of [1]. O

Theorem 2.29. Let M be a cadlag submartingale with respect to Fy and let T, S be Fy-stopping
times then for any 7>0

E[X7ra-|Fs] 2 Xrasar,



2.5 MARTINGALE INEQUALITIES 23

almost surely. If, in addition,
1. T is almost surely finite,
2. E[|Xr]|] <400,
3. lim, o E[| X, [Irs ] =0
then
E[X7|Fs]| > Xras,

almost surely. Finally an analogous theorem holds for cadlag supermartingales and martingales.

Proof. The proof uses Lemma 2.28 and it can be found in Chpater 1 Theorem 1.43 of [1]. O

2.5 Martingale inequalities

Lemma 2.30. Let M be a submartingale, fix a 0<7 <400 and let H C[0,7] be a finite set. Then
for any r >0 we have

+

IP(maxMt>r) gw

teH r
and

) < B~ 0

]P(rnin M, < —r
teH
where M;" =max (M;,0).

Proof. Let S=min{t€ H: M, >r} with S =400 if My <r for each ¢t € H, then Theorem 2.29,
with T'=7, gives

E[M:] > E[Msnr| = E[Msl{s<too}] + E[M:I{s=to0}]
Since M, >r we get

TIP(I?G% M, > r) =7TP(S < 4+00) S E[Msls< ooy] SE[M L5 toy] SE[M (s o)) <E[M].

Let T be T =min {t € H, My < —r} taking S =0 in Theorem 2.29 we get
E[Mo] < E[Mr -] =E[Mrlip« ooy + BIMIip— o0y
Thus we get
frIP(min M, < —7") = —rP(T < +00) 2 E[Mrl (1 o)) = E[Mo) = E[M:T(7— | o0y

teH

T

>E[Mo] — E[M,]. O
Theorem 2.31. Let M be a cadlag submartingale and fix 0 <1 <4o00. Then for any r >0 we have

+
]P( max Mt>r) SM
te[0,7] r

]P( min M;>r

) < B B0
te0,7] =

r

Proof. Let H be a countable dense subset of [0, 7] that contains 0 and 7, and let H; C HyC --- C
H, C--- CH be finite sets such that | J H,=H. From Lemma 2.30 we have for any b <r, since
M, is cadlag,

neN

]P( max Mt>b>:]P(maxMt>b): lim ]P(maxMt>b)
te0,7] teH n—-+oo teH,

+
<El]

Taking b— r, the first inequality is proved. The second inequality can be proved in a similar way. O
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Theorem 2.32. Let M; be a cadlag nonnegative submartingale and fix 0 <7 < +o0o. Then for any
p>1 we have

p
E| sup MP|< (L) E[M?].
t€[0,7] p—1

Proof. Hereafter we write M =sup,c(o,+1Ms. The first step of the proof is to establish the following
inequality, for any r > 0, we have

P<M:>T><w' (2.2)

Let T;: Q@ — Ry be the function defined as
T.=inf{t>0,M;>r}.

Since T, = 7¢ (i.e. T is the hitting time of the set G) of the open set G = (r,+00) C Ry, then, by
Proposition 2.19, T, is a F;-stopping time, and so a H;-stopping time (where {H;};cr, is the
right-continuous and completed enlargement of {7 };cr., ). Since M, is cadlag we have that Mg, >r,
furthermore if M} >r then T,. <7, and thus

rP(M7 > 1) <E[Mn Iy S E[Mr T,

Since M, is a cadlag Fi-submartingale, by Theorem 2.11, it is also a cadlag H-submartingale, thus
Theorem 2.29 gives

EMrlir.<ry] = E[Mar] - E[M Iz, 5]
E[M;] — E[M i1, 5] = E[M i1, <))

<
< E[MInzryl,

and this verifies inequality (2.2).
Consider 0 <b < +o0c and let uy be the probability law of M7

+o0
BIOEAD] = [ @nb)s(da)

b
= [ tis(de) + P > )
0

+o0 x=b b +oo
- (mp / MM;:(dy)) +p / xpl( / uM;(dy>>dx+bP1P<M: >b)
x x=0 0 x

b
— —bPP(M;>b) +p/ 2P~ IP(M: > z)da + bPP (M7 > b)
0

b
_ p/ 2P P(M? > z)de.
0
So, by Holder inequality, we get

E[(M2 A b))

b
/ paPIP(M? > z)dx
0

N

b
/ pIEp_QE[M‘,—H{M;j?I}]dZL'
0

bAME
= E{Mr/ p:rde:E] :LlIE[MT(MT*/\b)P*]
0

< SEIEIMIPE[(MAD T
—1 p-1

Since 0 <E[(M; Ab)P] » <b, we can divide the previous inequality by E[(M; Ab)P] » obtaining
that

I A0 < (2 e
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Rising both sides to the power p and taking b — +o0o0, by Monotone convergence theorem, we get
the thesis. O

We want to provide an important application of the Theorem 2.32.

Theorem 2.33. (Fernique’s theorem for Brownian motion) Fiz T € Ry, then there for any
C,< % we have
2
exp| Cr( sup |By
te(0,7]
Proof. We have that

C B, io )
exp| C-[ sup = =T
<t6[0771 t) = ™

2n
(s 12:])
te0,7]
+oo

orlo2n \*" on
> (52 )

n=0

2 " 1+ L n%e n— 400
2n—1) 2n —1 ’ '

which implies that there is K > 0 for which

sup <2_n> <K.
neN 2n—1
Furthermore we have that

1
w? +oo 2n—1 n—5_n
E[|B7—|2n]:;/ eiTrx2ndx:L/ e—nydy: 2 T F<2n+1):
R 0

V(@2m)T V(@2m)T

_on 2n)!  (2n)lrm
T 22npl T 2npl

X onon)!
exp(CT< sup |Bt|)2>] gKZO %T”.

te[0,7]

E = Elexp(C,B:?)] < +oc.

E

N

We have that

This implies that

E

Using Stirling approximation we have that

(2n)!  (2n)*e~2"\/dgn 22"

~

(n)2 " (n)Zre 2727 m/n’

as n— +oo, which implies that there exists a constant K’ >0 for which

(2n)!
(n!)?

2 =
exp(C’T< sup |Bt|) )] <KZ A Ol
] n=0

< K'92n,

Thus we obtain

E
telo,r

L 1
which is convergent whenever C; < 7= O






Chapter 3

Continuous (local) martingales

3.1 The space of continuous L? martingales
In this section we want to consider continuous L?(2) martingales.

Definition 3.1. Let M; be a martingale with respect to the filtration {F;}icr,, we say that M,
is a continuous martingales (bounded) in L? if for any w € Q the map t— M(w) is continuous
and if for any t € Ry, B[M?] < 4+o00. We denote by ME({]-‘t}tem) (or simply M?) the set of L?

continuous martingales.

On M? we define the function

dpp(M,N)=>" 2~ E[|M,, — N,|2)'/?).
nelN

The function M? is not a distance on M?2. Indeed, although it is positive, symmetric and satisfies
triangular inequality it is not true that d2(M, N) =0 if and only if N =M. In any case a positive,
weak, result holds.

Proposition 3.2. Consider M, N € M? then dpyz(M, N)=0 if and only if M and N are indis-
tinguishable.

Proof. If dy(M, N)=0 then for any n € N we have E[(M,, — N,,)?|=0. Since M, N are martin-
gales then (M; — N;)? is a submartingale (since is the composition of the martingale M — N with
a convex function), which implies that

E[(M: — N’ SE[(M{t) 41— Nj¢j+1)°] =0.

This implies that for any ¢t € R4 then P(My=N;)=1, and so N is a modification of M. Since both N
and M are continuous, and thus they are cadlag and for cadlag martingales the a process is a mod-
ification of another if and only if they are indistinguishable then M and N are indistinguishable. [J

Proposition 3.2 suggests to consider the space
Mg = Mg/ ~ind

where ~j,q is the equivalence relation for which NV ~j,q M if the process N is indistinguishable from
M. By Proposition 3.2 the function dy42 is compatible with respect the the equivalence relation
~ind and so it pass to the quotient. With an abuse of notation we denote again by d,,2 the function
dpqz on the set M2,

Remark 3.3. It is important to note that by Theorem 2.32 an equivalent metric on Mz2is given by

1/2
dpp(M,N)=Y" 2° ( { sup |Mt—Nt|2] / /\1>.
]

neN teln—1,n

Theorem 3.4. The set MS({gt}tem) of L* continuous martingales with respect to the continuous
filtration {Gi}ier, is a complete metric space with respect to dpgz-

27
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Proof. The function dy,z is positive, symmetric and satisfies the triangular inequality and for
Proposition 3.2 dy2({V },{M }) if and only if M ~inq N (and so they are the same object in M?2).

What remains to prove is that M2 is complete with respect to dpgz. Let {M"} be a Cauchy
sequence in M? (where M™ is some sequence in M2 of on of their repfesentative), then we have
that for any for any t € Ry

(LAE[MF = MEPDY2 < (UAE[M 11— M{y DY <2M 5 dye (0%, M7,

It follows that for each t € R, the sequence { M} },en is a Cauchy sequence in L(€2). This means
that for each ¢ € R, there is an adapted process Y; such that MF —Y; in L?(Q). Furthermore if Y,
is any adapted modification of Y; (which is equivalent to any modification since the set of measure
0 are inside G; being {G;}icr, a complete filtration) we have also MF—Y,in L?(Q). Furthermore
the process Y; (and so any modification of it) are G; martingale. Indeed for any A € G, we have that

ElLWY)]= lim B[] = lim B[] =ELY]

from which we can conclude that Y; is a martingale.

In general Y; ¢ M2 since it can happen that ¢+ Y;(w) is not continuous. We want now to
prove that there is a modification of Y; which is continuous. By Remark 3.3 we can choose M"* a
subsequence of M} for which

P( sup |M — MM+ >2% ) <2k
0<t<k

Indeed consider an increasing sequence ny T + oo such that
({ME(MH, Mm) < 9—3k
for any n, m > ng. Then we have that

1/2 ~
<1/\1E[ sup |M?M;’”|2D/ <2 (M", M) < 22K

1<t<k

for n,m > ng. Thus, by Markov inequality we have

IP( sup |Mko?k+1|>2k><22kE[ sup |Mngn|2]<22k4k<22k.

S o<t<k 1<t<k
mce
+oo +o0
S OP( osup M- M >27R )<Y 2 R < oo
k=1 0tk k=1

for Borel-Cantelli lemma

c
Q1= (limsup! sup |M/*— M, | >27k = liminf J sup |M["*— M <27F
k—+oo |0<t<k k—+oo | 0<t<k
has measure 1. This means that for any for any 7 >0 and w € ; the sequence of function ¢ —
M]"*(w) is a Cauchy sequence in C°([0,7],R), and so for any w € §); there is a unique continuous
function ¢t — My(w) such that M;"*(w) — M;(w) uniformly on compact subsets of R. Consider the
process
limyg oo M (w) we
My(w) = t
t(w) { 0 w % Ql

then My(w) is a continuous process, it is adapted (since 2 € Gy C G; being a set of full measure)

and M/ — M, almost surely. This implies that M; is a modification of Y;, thus M, € M2 and
E[[ My — M =0

as n— oo and for any k € N. This implies that dy(M,M")— 0 as n— +oc which proves the

thesis. g

Remark 3.5. It is possible to generalize the previous theorem considering Mgadlag, i.e. the set
of L?(Q2) cadlag martingales, instead of M2. Theorem 3.4 implies that M? is a closed subspace of
Mgadlag-
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If X is a (progressive) process and T is a stopping time, then we denote by
XtT =Xinr
the process X stopped at the stopping time 7'

Definition 3.6. Let M be an adapted continuous process. We say that M is a local martingale
if there is a sequence of stopping time Ty <To < --- < T, < -+ such that T, — 400 almost surely
as n— +oo and MtT" s a continuous martingale. Hereafter, we call a sequence of stopping times
{T.}nen with the previous properties localization stopping times.

Remark 3.7. If My is L?(€2) and since we only consider continuous local martingale, we can always
consider the localization sequence {T},},en such that MT» is a M2 martingale. Indeed, consider

Sp=inf{t>0,| M| >n},
then
|ME N < | Mo| Ve L2(Q).

In the same way if M€ L>(Q2) we can suppose that M 7" is a bounded martingale.

3.2 Bounded variation processes

Let f:R4 — R be a continuous function. For any ¢ € R4 we denote by II([0,¢]) the set of (finite)
partitions of the interval [0,¢]. It is important to note that II([0,¢]) has a partial order given by the
inclusion 7 C 7’. Furthermore, for any two partition 7, 7', the union 7 U’ is the smallest partition
containing both 7,7’ and the intersection 7 N7’ is the biggest partition which is contained in both
m and /. We can defined also the diameter of a partition as

|’/T| :HlaX{|ti7ti,1|,tiE?T\{O}}.

Finally, we denote by II(]0, c0)) the set of partitions of [0, +0c0) which are locally finite, i.e. if
meTII(]0,00)) then 7' = (7N [0,¢]) U{t} is a finite partition of [0, ¢].

Definition 3.8. Let F:TI([0,¢]) — R be a function we say that the limit
lim F(n)

|| —0

exists if, for any sequence my C e C -+ Cw, C - -+ €II([0,¢]) of increasing partitions of [0,t] such
that |mp| — 0, as n— 400, the limit lim,_, y F () exists and it does not depend on the sequence.
In this case, we write

Let f be a measurable function, we denote by

V)= sw ( ) If(tz-)—f(ti_l)I):: wwp Vi (f)
meII([0,t]) tiem\{0} m€II([0,¢])

the variation of the function f in the interval [0, ¢].

Remark 3.9. By triangular inequality, if 7 C 7’ € I1([0, t]) then
VI () <V ()

Definition 3.10. A function f is said to have bounded variation on Ry if, for any t € R4, we
have Vi( f) < +o0.

Definition 3.11. Consider two Borel functions f, g: Ry — R we define the Riemann-Stieltjes
integral fotg(t)df(t), as the following limit

[ aoarm=tm S g€t~ i)

m1=0, oy
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where & is any point t; 1 < & <t;.

Herafter if m€II([0,¢]) and £ = {&t,}t,ex\foy such that ¢; 1 <&, <t;, g, f are two Borel function
we define

F(ﬂ-aéagaf): Z g(&tz)(f(tt)_f(tl—l))

t;em\{0}

Theorem 3.12. Let g be a continuous function and let f be a right-continuous function with
bounded variation, then the Riemann-Stieltjes integral is well defined.

Proof. Let 7 Cn' be two partitions, then there is a map
I ™' >

associating with any ¢}, € 7’ the ¢; € m which is the biggest t; € 7 that is less or equal then ¢; <t}
Using this notation, we have

|F(’/T,§,g,f)*F(’/T/,g/,g,f”:

> @)t~ flti-)) = > (&) - f(t1)

t;em\{0} t]fIEﬂ"\{O}

= > (9(&m) 906 )W) — FE )| <
ti,em’\{0}
<( sy o6 ot )(Z (F(t5) - f(tjf_l))>

<[ max su t)—g(s Vi(f)-
<ti€7"\{0} (t,SE[tiplyti] |g( ) g( )|>> t(f)

Iftmc.---C---Cm,C--- €II([0,¢]) is any increasing sequence such that |7,| — 0, since

max sup  |g(t) —g(s)| | =0, n—+oo,
ti€mn\{O} \ ¢, s€[t; _1,t:]

being ¢ uniformly continuous on [0, ¢], the sequence {I'(m,, &, g, f)}nen is a Cauchy sequence
on R which has a unique limit. If now {7}, },eN is another increasing sequence by the previous
computation we have

|F(7T,,L,g,g,f)—r(ﬂ'7/“ glagaf)| <

d Y we U@ - - Y e - 6o+
tiemp,\{0} tJ(ETK‘;?,Uﬂ"n\{O}
S se aGw -t - e - £ <

tiem, \{0} t:;e#.;LUT(n\{O}

< max sup g(t)—g(s)| |+ max sup g(t)—g(s Vi(f)-
(tieﬂn\{O} <t,s€[ti1,ti]| ®) ( )|> t;em,\{0} <t,s€[ti1,ti]| ®) ( )|>> )

This means that {I'(7,, £, g, f)nen and {T(7), £, g, f)}nen have the same limit which is the
Riemmann-Stieltjes integral fgg(t)df(t). 0O
For the following it is useful the following lemma.

Proposition 3.13. Suppose that f is a cadlag bounded variation function, then the map t— Vi(f)
s a cadlag function and

Vi(f) = Vi () =1{t) = fF(E ).

Proof. We give here only a sketch of the proof for a detailed treatment of the topic see Chapter
2 and Chapter 10 of [8].
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For any a,be€ R4 we denote by II([a, b]) the partitions of [a,b] and we write
V(flat)= sup > |f(t) = f(tia)l
ﬂeH([a"b])tiEﬂ'\{a}

It is possible to prove that for any ¢ € (a,b) we have

V(f:la,0) =V (f,la,c]) +V(f,[e,0])
and obviously Vi(f)=V(f,[0,¢]), thus

Villf) =Vio(f) =V ([, [t, t0])
and so lim, ¢, Vi(f) =Vi,(f) —lims— . V (f,[s,t0]), and so Vi( f) is right continuous if lim,_,, 4 V'( f,
[s,to]) =V (f,[t,to]). If weII([t,to]) is any partition of [¢, tg] let tx min the first element in 7 after
t then
VT(f5 [t to) = 1 (#) = f(tmin)| = VN E, Tbmin, t0]) SV (f, [tmins to])
From which we get
Vﬂ(fa [tatO]) - V(fa [tminﬂto]) < |f(t) - f(tmin)|~
Taking the limit |7| — 0 we get

0< V(fa [tatO]) - SEril+v(f7 [SatO]) < lim |f(t) - f(S)| =0

s—ty

since f is cadlag. In a similar way if 7 €II(]0,¢]) and being ¢, max the first element in 7 before ¢
we have

V;ﬂ—(f) - |f(t) - f(tﬂ',max)l < V;f,r,max(f)
to which we get Vi(f) = Vi—(f) <|f(t)— f(t—)|. In a similar way

Vﬂ\{t}(f) +[f(t) = f(tr max)| < Vi(f)

tr, max

taking w\{t} =7 € II([0, tr max]) We get
|£(8) = F(trma)| < Vi(F) = VM (F) = Vil f) = Vi ()

tﬂ',max
and so taking tr max —t we get | f(¢) — f(t — )| <Vi(f) = Vi_(f). O

Remark 3.14. An important consequence of Proposition 3.13 is that if f is a continuous function
with bounded variation then the function ¢t — Vi(f) is an increasing continuous function.

Definition 3.15. A continuous adapted process X on R4 has bounded variation if Vi(X.(w)) <400
almost surely.

Theorem 3.16. Let M; be a continuous local martingale with bounded variation, then M;= M,
almost surely.

Proof. Without loss of generality, we can suppose that M; € M? and that V(M) < C for some
C > 0. Indeed, if T, is the localization sequence making for which M’ is a martingale and we
denote by

Sp=inf{t >0, My =Zn} ANinf{t >0, V;,(M.) =2 n},

then also 7, A S), is a localization sequence and MT"/\S"]I{Mogn} is a M? (more precisely, bounded)
martingale and Vi(M.) <n (we recall that by Proposition 3.13 and Remark 3.14 the function
V(M) is continuous and so inf{¢t >0, Vi(M.) > n} is a F; stopping time). If the theorem holds for
MT"/\S"]I{|MO|<”}, ie. MtT"AS" = My on |Mpy| < n almost surely, then
My= lim M/ =M,
n— —4oo

almost surely. Thus, it is enough to prove the theorem for M with the previous conditions.
Since M; is a martingale, for any 7 € I1([0, t]), we have that

E[(M, - Mo)?| =E[M7] - E[Mg]=E| > Mi-M;_,
LEm {0}

=E (Mtithi—l)Q )

tiem\{0}
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where we used the fact that E[My,M,, ,]=E[E[M;|F,]M;, ,]=E[M?_|]. Thus we have that

(M- Mo = E| T <Mtth“>2]
| tem o)

N

E sup |Mti_Mti1|< Z |Mti_Mti1|>‘|

_tiew\{o} tiem\{0}

< E Sup |Mt¢_Mt11|V2(M):| <0E|: Sup |Mti_Mti1|]'
L ti€m\{0} ti€m\{0}

By Doob’s martingale inequality we have that supy,en\ oy |[M¢, — My, | <supseo,i | Ms| which is an
L?(Q) (and thus L'(Q2)) random variable. Furthermore, since Mj is continuous, and thus uniformly
continuous on [0, t], im ;| osups,ex\foy [M¢, — My, _,| =0. By Lebesgue dominated convergence
theorem, this implies that

E[(M;— M) < lim CE| sup |M;,— M, _,||=0. 0
|v|—0 tiem\{0}

3.3 Quadratic variation of local martingales

Definition 3.17. Let M; be a continuous local martingale we say that the continuous adapted
increasing process [M]; is the quadratic variation of My if [M]o=0 and M} — [M]; is a local
martingale.

We first we establish that if quadratic variation of a local martingale is unique.

Proposition 3.18. Suppose that My is a local martingale then if the quadratic variation [M] exists
18 unique up to indistiguishability.

Proof. Let K and K’ two processes which are continuous, adapted and increasing and such that
M? — K and M?— K’ are local martingales. Then we have that

K'-K=M?-K—-M?+K'
is a local martingale, being the sum of local martingales. Furthermore, since increasing continuous
processes have bounded variation, K’ — K has also bounded variation. This means that K’ — K is

a continuous local martingale with bounded variation, which implies that K; — K{= Kq— Kj=0
almost surely. This means that K is indistinguishable from K. O

Theorem 3.19. Let M be a continuous local martingale, then there is one (up to indistiguisha-
bility) continuous increasing process [M, M] such that {M¢ —[M,M];}icr, is a local martingale.
Furthermore, if 7t C --- C w1 C .- we have that
M,M);= lim My pp— My, ap)? 3.1
[ e i > (Myne— My, int) (3.1)

in probability. ti€nn

3.3.1 A special version of the theorem

We will prove first a special version of the previous theorem (with a stronger kind of convergence).

Proposition 3.20. Let M be a continuous martingale such that E[|M|* < +oo for any t € R,
then there is a unique increasing continuous process [M, M]; such that My — [M, M]; € M? and

for any increasing if m1 C -+ Cpq1 C -+ - we have that
(M, M];= lilf Z (Myne— My, ne)?
T e\ {0
in L2(Q). MO

Lemma 3.21. Let My be a martingale and consider t1 <ty and t3<t4 then E[(M, — My, ) (M, —
M,))] is nonzero if and only if [t1,t2] N [ts,t4] # 0, in that case we have

E[(Mb*Mh)(MM*Mts”ft :E[Mgﬁnth%n ‘thin]a

min]
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where [tl, tQ] N [tg, t4] = [tﬁn, tin] and tyin = min (tl, to, 13, t4).
Proof. Suppose that [t1,¢3] N [t3,t4) =0 and we can suppose, without loss of generality, that to < 3.
Then

E[(Mtz - Mtl)(Mt4 - Mts)] = E[(Mt2 - Mtl)E[(MM - Mt3)|ft2“ =

:E[(Mt2 - Mtl)(Mtz - Mt2)] =0.

Suppose then that [t1,te] N [t3,t4] # 0 and we can assume without loss of generality that ¢, <min (¢,
to, 13, t4). Then we have two possibilities: either [tl, tQ] N [tg, t4] = [tg, tQ] or [tl, tQ] n [tg, t4] = [tg, t4]
(i.e. either to <t4 or t4 <t3). In the first case we get

E[(Mh* Mtl)(MM*Mtz”fh] :E[Mtth4|ft1] 7E[Mt2Mt3|ft1] 7E[Mt1Mt4|ft1] +E[Mt1Mt3|ft1]

=E[M}, |Ft,] — EIMZ | Fe.] — B[ME|Fy ]+ E[ME|F)

min] min]

The other case can be treated in a similar way. O

Let us fix a sequence of partitions {0} C 7! C--- C 7™ C ---Ry which have a finite number of
points when intersected with any bounded subset of R;. We write

akt={rkN[0,¢]} U {t}.
If M, is a process, then we denote by Qi\/j ™ and K;M "™ the following continuous processes

iVIJn: Z (Mti_thJQa
trLETrn’t\{O}
Kt]vlm = Z Mti—l(Mti_Mti—l)'
tiem™\{0}
Remark 3.22. It is important to note that
M?— Mg -2k ™ =@M

Lemma 3.23. Suppose that M is a martingale such that M, € L*(Q2), then there is a constant
C >0 (not depending on of ©") such that

E[(QM™)2) < (%)QC (E[ sup |Ms|4D3<O<E[M;*]>?

s€[0,t]

Proof. We have that

M, 7™
]E[( t )2] = E Z (Mtj_Mtj—1)4 +
t]'ET(n’t
F2E Y (M =My, )2 Y (M — My )?
tyjemmt tj<tjemmt
S E sup (Mtj_Mtj—1)2Z (Mtj_Mtj,1)2 +
. n,t
t;em tyenn
F2E| Y (M =M, Bl (M- M,y )? ]-‘th

tyemmt ty<tjemmt
< ny g L
< E[ sup <Mtthjl>12<E[< M) 4
tjETl'n’t
+2E| Y (M, — My, )?E[M? — M} |Fy)
t]‘Eﬂ'n’t
1 1 1
< [ Bl sup M2 |2 +4E| sup M2 |2 [(E[(QM™")2))z.
s€[0,t] s€(0,]
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|
Lemma 3.24. The sequence of processes {wa’wn}teR+ is a Cauchy sequence in M?2.

Proof. Since K™ is a finite sums of products of L4(€2) random variables K}"™" € L2(2). We
want to prove that KtM ™ is a martingale. Consider s <t e Ry
M,x™ _
E[Kt |‘7:S] - Z Mtkfl(Mtk*Mtk71)+
tkgs,thﬂ'”'\{O}

JFE[Mt;;fl(Mt;; - Mt;;71>|‘7:5] + Z E[Mtk—l(Mtk - Mtk—1)|f5]ﬂ
s<trpa1
where tf is such that ¢z _; < s <t;. We can use now the Lemma 3.21, obtaining

E[MtE—I(MtIE - MtE—1)|f5] =My, E[Mt;; - Mt;;71|‘7:5] = MtE—I(MS - MtE—l)

—1

E[E[Mtk—l(Mtk - Mtk—l)"?:tk—l]lj:s] = E[Mtzk—l - MtQk—1|]:$] =0.

We want that for any m >n — +oo and £ € N we have E[(K;"™ — KM"™)? - 0. Fix e N,
then if m > n there is a map I™™: 7™ ! — 7™ associating to any ¢; € 7™ the maximum point
I™mt(¢;) € ™t such that I™™(¢;) <t;. We have that

2
M, 7" M, 7™
EI(KY ™ — KM — B ( ) <M1n,m,f<tj1>—Mtj1><Mtj—Mt“>> _

t]'ETI'm’t

= Z E[(an"m’t(tjfl)_Mtjfl)(Mtj_Mtjfl)(MIn’m’t(tj/,l)_Mtjffl)(Mtj/_Mtjlfl)]:

tj,tj/ETrm

=2 Z E[E[(MI”"m*t(tj/,l)7Mtj/,1)(Mtj7Mtj71)(Mtj/7Mtj/71)|ftj71] X]

t; <tj/€7'rm

X (Mpnomoq, = My, )4 > B[(Mypnomeaq, ) — My, )2(My; — My, )2, (3.2)

tyemm™

If t; 1<ty St;,l, then
E[(Mynomoqe;,_ = M, ) (My; = My ) (M, — My, )| Fry ] =
=E[E[(Mrmoe,,_ ) — My, )(Me, — My, ) (M, — My, )| Fe; NI Fe, ] =
=E[E[(M,, — My, _ ) Fr;,_ J(Mpnmore,, oy — My, ) (My; — My, )| Fy,]=0.
Thus, only the second term in the sum (3.2) is nonzero, and we get

M, ™ M, 7™
E[(K,"" - K, )2]:

=E Z (MI”’m’t(tj,l)*Mtj,l)z(Mtj*Mtj,l)z <
tjen™
2 M,7™ 4 1/2
<E|:< sup t(MIn"m’t(tjfl)_Mtj—l) ) + ’ :|<E|: sup t(MIn’m’t(tjfl)_Mtj—l) :| X
tjem™ t;em™

M,m™ 012 4 1/2 4
<E[(QM >12<0E[ supt<Mmt<tjl>—Mt“>} E[M].
t]‘Gﬂ'm’

We have that
E[ sup  (Mpnmigy, ) — Mtjlﬂ —0 (33)
tyexmt
as m>=n— +o00. Indeed, SUPy; gt (Mln,m,t(tjil) — Mtj71)4 converges pointwise to 0 since Mj is a
continuous process, and thus, for any w € Q, s— M,(w) is a uniformly continuous function when
s €10,t]. Furthermore,

sup (Mpnomoeq, ) — My, _)*< sup M
tyem™t s€0,t]
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which, by Doob martingale inequality for p =4, and the fact that M, € L*(Q) for every s €
Ry, is supse[oyt]Mf € LY(Q). Thus, if we apply the Lebesgue dominated convergence theorem
to E[supy, e pm.t (Mpnomat(y, ) — My, _,)* we get the limit. O

Proof of Proposition 3.20. We have that
M?E — My— QM-™" =2k M™",

For Lemma 3.24 the sequence K 5\/1 " converges to some process M € M?. In particular means that
for any ¢ >0, wa’”n — My in L?(2) and so lim,L_,+ooQ?/I’”n exists in L?(Q2) and we have
lim QM™" =2M — M7+ Mg
n— 400

to some process QM. It is easy to prove (exercise) that Q2 is increasing (more precisely non-
decreasing) in ¢, and also Q3! =0. Furthermore M7 — M3 — QM = M is a M2. By the uniqueness
of quadratic variation (proved in Proposition 3.18) we have QM =[M],. |

3.3.2 Quadratic variation of continuous local martingale

Proof of Theorem 3.19. We can consider a local martingale such that My=0. Indeed in the
general case we have [M],=[M — M|

(My)? — [M — M)y = (M — Mo+ Mg)? — [M — My, = (M — Mo)? — [M — Mo} + 2MoM,.

Since (M; — My)? — [M — M); is a local martingales (by definition of quadratic variation) and
2MyMy is a local martingale (being the product of a local martingale and a Fy measurable random
variable) we have that (M;)? —[M — My, is a local martingale and so [M]; = [M — M.

Let M; be a local martingale with My=0. Then we can define the sequence of increasing
stopping times

T, =inf{t > 0,| M| >n}.

We have that M;™ is a bounded (and so MZ) martingale and so there is the quadratic variation
[MT#]; and it is such that

[MTn]t:|h|r£o Z (M — M )2 = lifilo Z (M, nenT, — Mi,_ nenT,)?
70 em o) =0 e o)

in L2(€). So in particular the sequence lim |0 ZtEﬂ'\{O} (My,nt — My, nt)? converges in proba-

bility to some process continuous process ([MT"];) on the set T,, < t. Since T,, — +oc almost surely,
the set P(Upen{Tn <t})=1. Thus the [M];:=lim,_ oo [MT]¢ = lim)r—o e oy Mene —
My, at)? < +oo exists almost surely for any ¢ € Ry. Finally M? —[M]; is a local martingale since
(M} —[M])T = (Z\LET")2 — [MT"], are martingales. O

3.3.3 The case of Brownian motion

In this subsection we compute the quadratic variation of Brownian motion.

Theorem 3.25. Let B; be an F; Brownian motion then

(B, =t.

Proof. The Brownian motion is a L*(2) martingale (more generally, it is a LP(Q) martingale for
any 1< p<+o0). This means that for any sequence of increasing partitions |7,| — 0 we have

Bl;= 1 B:. — B, )2 O
(Bl ’T”l'lniot-e;{o}( t; t%l)
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3.3.4 Quadratic covariation

Let M and N be two (local) martingale, then the product M N is in general not a local martingale.
For this reason we introduce the following

Definition 3.26. Let M and N be two continuous local martingales we say that the continuous
bounded variation process [M, N] is the (quadratic) covariation of M and N if

MtNt*[MaN]t

18 a local martingale.
Remark 3.27. For the quadratic covariation the following formula holds

(M, N}y = £(IM + N], ~ [M ~ N],).
Indeed,

MyNy— (M + N = [M = NJ) = 5(My+Np* =3

2
= S{(Mut Ny = [M 4 NJ) = 5 (M = Ny = [M = N1,).

(M; — Nt)Q—%([M-FN]t —[M — NJy)

We have the following convergence result for the covariation of local continuous martingales.

Theorem 3.28. Let M, N be two continuous local martingale. If {m,} is a sequence of increasing
partitions such that |m,| — 0, then

[M,N];= 11111 Z (Mine — My, nt)(Nesar — Ni, o at) (3.4)
n— Ootieﬂ'n\{O}

in probability (or in L? if M, N € M2).
Proof. The result follows from Proposition 3.20 and Theorem 3.19 and from the observation that

1 . 1
[M, N]y=5([M + NJ; — [M = NJ;) = lim 52 (M, + Ne;— My, — Ny, _)* +

1 .. .
7§|h‘m0 (MtiiNtithi—l+Nti—l)2:‘hlmo (Mtithi—l)(NtiiNti—l)'

We have the following useful results.

Proposition 3.29. Let M, My, My and N be some local martingales then
1. [M, M}y = [M]y;
2. for a, B€R [aM;+ fMa, Nt =«a[My, N]:+ B[Ma, N+;
3. [M,N];=[N,M];
4. [M, NJF <[M]y[N;.

Proof. Exercise (Hint: use the characterization (3.4)). O



Chapter 4

Ito Integral and Ito formula

4.1 Integration with respect to continuous martingales

4.1.1 Integration of bounded simple processes and L? martingales

Definition 4.1. Let X; be an adapted with respect to the filtration {F;}. We say that X; is a
simple (bounded) process if there is a o € II((0,00)) and a sequence Py, of Fy, (bounded) random
vartables, such that

Xi=> " Pi T, 1,40

tn€o
Hereafter we denote by &, the set of bounded simple processes.

Definition 4.2. Let M be an L? martingale and X be a simple process define the process Ito integral
X - M as the process

t
(XM)t:/ XthtZ: Z Ptn(Mt'anl/\tthn/\t)'
0

tpEot

Hereafter we identify the integral with respect to the increasing process [M]; as the Lebesgue
integral with respect to the abstract measure pp(dt) on Ry such that

puaa)((a; b)) = My = [M]a, - pan({0}) =0,
If Y; is an adapted process such that, for almost every w € Q, the Y;(w) € LIIOC(M[M](M)(dt)) we define
t t
/ Y.d[M], ::/ Yopuary(ds). (4.1)
0 0
It is important to note that when Y; is continuous, since the process [M] is increasing and so it

has bounded variation, the integral (4.1) can be interpreted as the Riemann-Stieltjes integral of
the function Yi(w) with respect to the function [M];(w) namely

t
Y.d[M],= lim Y, (M, — M, ),
A[] S Vi (M- My, )

m1=0, oy

almost surely. When instead Y; is some bounded simple process Y;=3", P/ Ij, +,,,)(w) we have
t
[ Y= PO M)
0 tn

The previous formula implies that if Y; is a bounded simple process with respect to Definition 4.1
then fé Y.d[M]; is an adapted (continuous) process.

37
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Proposition 4.3. The process X-M is in M? and we have

xan= [ X2apMl,

and so

E[(X - M),)? =E[ / txfd[M]t]. (42)

Remark 4.4. Equality (4.2) is called Ito isometry.
Before proving Proposition 4.3 we prove the following general theorem.

Theorem 4.5. Let M € M? be a continuous L*(Q) martingale then M} — [M]; is a martingale
(and, thus, not only a local martingale).

Proof. Without loss of generality we can suppose My=0 (in the other case we take M= M, — My).
Since both M, and [M]; are continuous and being, by definition, M7 — [M]; a local martingale,
writing
T,=1inf{t >0, | My, [M]: =n},
we have that (M{N)2 — [M]¢7, is a bounded martingale. In particular this means that for any s <t
E[(M{™)? = [M]en,|Fo) = (M{Y)? = [M]saT, (4.3)
Since M, € M2, M? is a submartingale and so, by Doob stopping time theorem,
Minr, SE[ME|Fr,nd

which implies that the family of random variable {M2,7, },en is uniformly integrable, since the
family of random variable {IE[M¢|FirT,] }nen is uniformly integrable.

Since Ty, is increasing with respect to n, and [M]; is an increasing process (with respect to t)
then [M]¢aT, is increasing with respect to n. Thus by monotone convergence theorem, we have that

E[[M]]= lm E[[M]ing)= lm E[M)?<E[ lim (M")?] <E[M?]<+oc
n—-+oo n—-+o0o n——+oo
where we used the fact that (M;")? is uniformly integrable and thus we can exchange the limit with
the expectation E[-]. This means that [M]; € L*(Q). Furthermore, again by monotone convergence
theorem we get
lim E[[M]t/\Tn|f5]:E lim [M]t/\Tn

n— 400 |:n~> 400

Fs | =B(M]7).
Finally since (M;™)? — M? almost surely and {(M}")?},en is uniformly integrable we get

lim ]E[(M,?n)2|fs]=JE[ lim (MtT")Q‘}'S}:E[Mﬂ]-'S].

n— —+00 n——+oo
Thus, taking the limit n — 400 in equality (4.3), we obtain
E[M? — [M|Fy] = M2 — [M];
and, so, that M7 — [M]; is a martingale. O
Proof of Proposition 4.3. Since M is continuous X - M is continuous. Furthermore since both
X and M are adapted and X - M is piecewise the product of adapted processes it is also adapted.
Finally, since, for any t € Ry, X - M, is the finite sum of products of a bounded random variable

and a L?(2) random variable X - M, is in L%(Q).
We now prove that X - M is a martingale. Consider ¢t >s € R then
g]

E[(X-M)|F)= > P (M, ,— M) +E[Py (M, — My)|FJ+E| Y P (M,

tht1<8 tn2s

M)

nt1 n
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where tr <$<try1. Then P, and M,, are F;, C F, measurable thus

E[Ptk(Mtk+l - Mtk)|]:8] = Ptk(E[Mtk+1|‘7:s] - Mtk) = Ptk(MS - Mtk) = Ptk(MS/\tk+1 - Mtk)'

7]
7]

Furthermore we get

|
=

E| Y P (M, — M)

tn=>s

fs] S EIRL(M,,- M)F

= [E Z Ptn(E[Mtn+l|ftn]*Mtn)

= E| Y P (M, — M)

g] ~0.

Thus we get that
E[(X M) F)= > Pi(M,, — M)+ Po(Mont,., — M) = (X - M),

tn+1<3

We finally prove that [X - M];= ngfd[M]s using the characterization (3.1), consider ¢ € R, we

can consider a sequence {m,}nen such that o C 7, where o is the partition of (0, +o0) in the
definition of the simple process (i.e. X is constant on intervals of the partitions 7, and so

Xy = Preno(ty)

where 1™ 7: 1, — o is the usal map associating with #; € 7, the maximum element ¢;, € o such
that t3 < ty) this means that

lim Z ((X : M)tii (X'M)tifl)QZ lim Z Xfifl(Mtii Mti—l)2:

|75 —0 |mn]|—0

t;emi\{0} ti€mi\{0}
= lirn Z Pt27. Z (]\45';C - Msk—l)Q =
Il =0 £7=5 spEmt N[t tra1]\{tr}
:tze Pme\vrlj\IEOs . Z (MSk - Msk71)2 =
r€o RETEN[tr,tr 1)\ {tr}
t
=Y PR(M]t, o= Mlipd) =Y X2 (M)t ine = [M]i,n0) :/ Xsd[M]s.
tr€o tr€o 0

Finally, since X - M € M2, by Theorem 4.5, (X - M)? — [(X - M)]; = (X - M)} — fOtXSQd[M]S is a
martingale with (X - M)3 — [(X - M)]o=0. This means that

E{(X~M)§/(:X§d[M]S} IE[(X'M)%/OOde[M]S} =0. O

The Ito integral has also the following properties.

Proposition 4.6. Consider c€ R, My, My € M2, X1, Xo€ &, and T a stopping time then we have
1. (¢Xy) My=c(Xy- M),

(Xi+Xo) Mi=X1- My + Xo- Mo,

(X1 My, Xo M)y = [, X1, X0, «d[ My, M),

Xi-M{ = (X, - M),

(X1 - M= [y X2 d[MT) = [ X2 d[M],

S v e

Xo- (X1 M) =(X1X5) - M.
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Proof. Exercise. O

4.1.2 Integration of progressive processes and L? martingales

Thanks to Ito isometry (4.2) it is possible to extend to more general processes X;. We introduce
the space L%ro’loc(ﬂ x R4, dIPd[M]) that is the space of progressive processes Z; such that for any
t >0 we have

t
|Z|if,[o,t]E[ /0 Zfd[M]s] < oo

Hereafter we use the notation
Ly (M) := L3o(Q2 % [0,¢], dPA[M]), £ >0
L2(M) := Lo 10o(2 X Ry, dPA[M]) = (] L3o(2 x [0, ], dP[M]).
t>0

Exercise 4.1. Let (Q, F,P) be a probability space with filtration {F;};cRr,, and consider the subset P of
P CF®B(Ry4) defined as

AeP<=Vt=20(AN (2 x0,t])) € F:®B([0,t]).

Prove that P is a o-algebra, and that the process X.(-): Ry x @ — R is progressive if and only if X is P
measurable.

Remark 4.7. The space L?(M) is a complete metric space with distance given by (for example by)

d(H, K) = {( [/ H, — K| ]D /\1} K, H e L2(M).
ZE]N

For any t >0 L%O,t](M ) is a Hilbert space with scalar product given by

(K, H),

[0, t]

(M) {/KHd } K,HGL[QOJ](M).

Finally a sequence K™ — K in L?(M) with respect the metric above, if and only if, for any ¢ >0,
K™— K converges to K in L[QOﬂ(M).

Exercise 4.2. Using Exercise 4.1, prove the assertions in Remark 4.7.

Indeed, the following proposition holds.

Proposition 4.8. Consider Z € Lpro 1oe(2 X Ry, dPd[M]). Then there is a sequence {X™},en of
simple processes such that, for any t€ R,

t
IE[/ (Zs— XM2d[M]s | =0, n— +oo.
0

Proof. By Remark 4.7, the thesis of Proposition 4.8 is equivalent to prove that, for any ¢t >0, &
is dense in L2,,(92 x [0,],dPd[M]). Since L2,,(2 x [0,¢],dPd[M]) is a Hilbert space, the density
of the subspace & C L%,,(Q2 x [0,t], dPd[M]) is equivalent to the fact that & = {0}, where the
& Lgm(Q x [0,t], dIPd[M]) is the orthogonal subspace of &, namely K, € & if and only if for

any X € &, we have
t
IE[/ XSKSd[M]S} =0.
0

So consider K € & and define the process

Y, :/ K, d[M
0
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The process Y; is an adapted L'(f2) process (it is adapted since K, is progressive and [M], is
continuous and adapted and thus it is progressive). Since [M]; is continuous Y; is continuous and
since [M]; is of bounded variation and K € L?([0,t],d[M]) C L'([0,],d[M]) almost surely Y is of
bounded variation almost surely. Consider s; < sz <t and F € F, then X, =1Ip(w)l, 4,(s) € &.
This means that

0:]E[ /O thst[M]s} :]E{]IF :st[Ms]] =E[lp(Ys, - Y5,)],

and thus
E[LAY,,] = E[L:Y, .

Since the last equality holds for a generic F' € F;,, by definition of conditional probability we get
E[Y;1|f52] - Y;‘2'

This means that Y; is a continuous bounded variation martingale, and thus, by Theorem 3.16,
Y, =Y, =0 almost surely. Since [M], is an increasing continuous process, this means that K
must be zero with respect to a set of measure 0 of the measure dPd[M], and by definition of
L2,,(92x[0,t],dPd[M]), K =0 as an element of L2,,(2 x [0,t],dPd[M]). This means that &= {0}
and so &, is dense in L2,,(22 x [0,¢],dPd[M]) and so on L2, 1oc(Q x Ry, dPd[M]). O

Definition 4.9. Consider Z € Lgro,loc(Q x Ry, dPd[M]) and M € M? we define the Tto integral
Z - M as the limit

Z-M=IlimX" M

n—0

where X™ € &y 1s some sequence of bounded simple processes such that for any t >0 E[IS(ZS —
X™M2A[M]s) —0 as n— +oo.

Theorem 4.10. If Z € L2, 1,.( x Ry, dPd[M]) the Ito integral Z - M is well defined (i.e. it exists
and it is unique up to indistiguishability), furthermore Z- M € M?

2 M), = /0 ‘2,

and

El(z- M7 =E| [ tZ§d[M]s]

Proof. By Proposition 4.8, there is a sequence X™ € &, such that E[fot (X"~ Z,)2d[M]s] — 0. In

particular this means that the sequence X™- M is a Cauchy sequence in M2 indeed

dpp(X™- M, X™-M) = 3 274E[(X™ M)— (X™ M)} A1)

leR
_ EEZR 24<1E[/OZ(X;,”X;”)2d[M]S} /\1)
_ KZR 2e<<E[/(f(X:Z)2d[M]S] +1E{/06(X;n2)2d[M]SDA1>

which converges to 0 when n,m — +o0. This implies that X™-M converges to some Z- M € M?2.
Suppose that X™ is such that E[fot | X — Z,2d[M]s] — 0 then X™- M — X™ . M converges to 0
in M2. This implies that Z- M is uniquely defined up to indistiguishability.

Since X" M converges to Z - M in M?2, it means that for any t € R, the random variable
(X™-M)? converges to (Z - M)? in L'(). Furthermore we have that

gl| [orann. - [‘zzaon] | < 8 [0y zzapn,

0
< (E{/Ot(X?JrZs)Qd[M]SD

1

(] [ e - zpapa.] )
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and so fot (X)2d[M]s converges to fOthd[M]s in L(2). Furthermore, by what we say before,
(X™- M), converges to (Z-M); in L*(Q) and so (X™- M)? converges to (Z- M), in L'(Q). So let
t > s we have that

[ (z- a0t~ [z,

fé,} —  lim E{(X".M)t_/ot(x;%)%[M]T

n——4oo

= ((oevean. - [y, )
(2 M)? - /) “z2a[m), (1.4)

7]

where we used that, by Theorem 4.5, E[(X”'M)tffg(Xf)2d[M]T|fs] :(X”'M)Sffg(Xf)Qd[M]T.

Equality (4.10) proves that (Z - M), — fot Z%d[M], is a martingale and by uniqueness of qua-
dratic variation

z-0= [ 2,

Finally since Z- M € M2, again by Theorem 4.5,
t
E[(Z - M)3 IE{/ Zfd[M]s]. O
0

The Ito integral Z - M satisfies some useful properties.

Proposition 4.11. Consider c€ R, My, My € M2, Zl,Zg,Zl, Z~2 progressive processes such that
VAWALS L%OC(Q X R+, d]Pd[Ml]), Z1€ LQ(Q X R+, d]Pd[Mg]) and Z1,Z5 € L4(Q X R+, d]Pd[Ml]) and
T a stopping time then we have

1. (¢Zy)-My=c(Zy- My);

(Z1+ Zs) - My=2Z1- M1+ Zs- My;
Zy-(My+M3)=2Z1- M1+ Zy - Ms;
[Zl'M1,ZQ'M2]tngZ1,3Z2,sd[M1,M2]37

Zy-MT = (Zy-M)T,

S S e

(21 MT)= [, 23 A[MT), = [} "' 23 (d[M],,
7. Zo- (Zl -My) = (2221) - M.
Proof. Exercise. O

We want to conclude this section with an important approximation theorem when the process
Zy is a continuous adapted process.

Theorem 4.12. Let Z; be a continuous bounded adapted process such that, for any t € Ry,

fo Z2d[M]y) < 400 then if {m,}nen is a sequence of increasing partitions such that |m,| — 0 we
have
(Z- M) = lim S Zy (M- My, ) (4.5)
in L*(Q). e

Proof. We write

Zir= 3 Ze T ().
t;€m,\{0}



4.1 INTEGRATION WITH RESPECT TO CONTINUOUS MARTINGALES 43

If we prove that
t
E{/ |Zf"Zt|2d[M]s] —0
0

the theorem is proved. We have that
t
Bl [z - zpapa). | <[ mox (w2 -2 )on]
0 tiEﬂ':l\{O} se[ti,l,ti]

On the other hand, since |Z| < K for some constant K,

max (sup |Ze_,— 2| (M), <2K[M],
ti€mn\{O} \ te[t; _1,t]

which is an L}(2) random variable (since M € M2). Furthermore
max sup  |Zy,_,—Zs | —0, n—+o0
tiEﬂ'n\{O} Se[tifl,ti]
since t+— Z; is continuous on R4 and so uniformly continuous on [0,¢]. By Lebesgue dominated
convergence theorem we get the thesis. O
Remark 4.13. The boundedness of Z can be replaced with the condition that, for any ¢t € R,
SUpse0.4] | Zs| € LP(Q) and [M], € LI(Q) for % + ll <1.

More generally, if M is a local martingale and Z is a continuous process, then the convergence
in (4.5) holds in probability.

4.1.3 The Brownian motion case

The integration with respect Brownian motion is a special case of integration with respect M2
martingales introduced above. In this case the space of progressive processes Z; that can be

integrated must satisfy the condition
t
E{/ Zfds} < +0o0;
0

in other words they must be progressive function in the space
LE (2 xRy, P®dt).

The Ito integral (Z- B). = [, Z;dBs is an M?Z martingale and we have

[ zan) - | 224, | ( tzsst)Q} = thds]

the second equality is usually called Ito isometry.

4.1.4 Integration with respect to local martingale

In this section let M; be a continuous local martingale such that My=0. Consider a progressive
process such that for any ¢t € Ry
t
0

almost surely.

Theorem 4.14. Let M; a local martingale and X; a progressive process such that f(;fod[M]5 <
~+00, then there is a unique (up to indistiguishability) process X - M such that there is a sequence
of increasing stopping times T, — 400 such that M™ € M2 and X™ € L} (Q x R, dPd[M]™)
such that

(X - M)Tr = (XTn. M),



44 ITo INTEGRAL AND ITO FORMULA

Proof. We can choose the sequence of stopping times 7,, in the following way

7

inf{t>0,|M¢ >=n}
t
T = inf{t > o,/ X2d[M], > n}
0
and so T, = T,gl) A Tf). Since M™ is a bounded martingale it is in MZ2. Furthermore, by Propo-

sition 4.11, we have
t tATy
JEU XST"d[MTn]S} :]EU XST"d[M]S] <n
0 0

this means that there is a unique M2 martingale defined as X - M ™. Since T}, — 400 as n— 400
the process X - M is well defined. Finally by Proposition 4.11 and the uniqueness of Ito integral
for L? martingales the process X -M is unique. O

4.2 Ito Formula continuous semimartingales

4.2.1 One dimensional Ito formula

Definition 4.15. Let X; be a continuous adapted process. We say that X, is an LP-continuous
semimartingale if there are a bounded variation process A; such that, for anyt Ry, Vi(A.) € LP(Q)
(i.e. the variation of the process A, is an LP random variable), and an martingale M in LP(£2)
such that

X, = A+ M, (4.6)

An adapted process Xy is called a semimartingale if the decomposition (4.6) holds, where A is a
continuous bounded variation process and M is a local martingale.

Remark 4.16. Thanks to Theorem 3.16, the decomposition (4.6) of a semimartingale is unique;
ie. if X,=A}+ M} and X, = A? + M} for some continuous bounded variation processes A', A2 and
some continuous local martingales M*, M? then A' = A2 almost surely and M= M?> almost surely.

Hereafter if Zt is a predictable process such that the Riemann-Stieltjes integral f 0Zs dA; exists
and such that f 0 Z2d[M]s < 400 almost surely we define

t t t
/ Z,dX, = / ZdA, + / Z,dM,
0 0 0

where the first is a Riemann-Stieltjes integral and the second is the Ito integral with respect to the
local martingale M. Furthermore we defined the quadratic variation of the seminartingale X; as

Finally if X'=A'4 M, X?= A%+ M? are two continuous semimartingales we define the quadratic
covariation as

[X17X2]tI: [M17M2]t.

Theorem 4.17. Let f € C*(R,R) be a bounded function with bounded first and second derivatives,
then if X; is an L* semimartingale then f(X;) is an L? semimartingale and we have

F(X0) = F(Xo)+ /f dX+/f”
— (X)) 4+ /f dA+/f DM, + & /f” M. (4.7)
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Lemma 4.18. Let M; be a M martingale then for any partition m € I1([0,t]) we have

, 1172 X
E[( Z ((Mtth11>2[M]t1+[M]t11)> ] <3<|: sup |MS|4] /2+EHM]%]1/2> X

tiem\{0} s€(0,4]
L2 ,11/2
x E[ sup <Mti—MtH>} +E{ sup ([M]ti—[MhH)} .
t;en\{0} t;em\{0}

Proof. We have that

2
E[( Z ((Mtthil)Q[M]ti+[M]til)> ]
t;emw\{0}

= > El(My,— My, )* = [M]e,+ [M]e, ) (My, = My,,_)* = Mg, + [M],,_))-
ti,t;r€m\{0}
If t; #t;/, we can assume that t; >t;/ then
E[(M:, — My, _,)* = [M]s,+ [M]s,_ ) ((Me,, — My, )* = [M]s,+ [M]s,, )] =
=E[E[(My, — My, ,)* = [M]e, + [M]s, | Fe, J(My,, — My, )? = [M]s,, +[M]s,,_,)] =
=E[(E[M7, — [M],|Fr) = ME _ + M), ) (M, — My, )* = [M]s,+ [M]s,, )] =

=E[(M7,_, = [M]s, ., = Mi_ + [M]e, ) (Me, = My, )* = [M]e, + [M]e, )] =0.

This implies that

E( ) <<Mti—Mtil>2—[M1ti+[M1t“>> -
tiem\{0}

=E
tiET(\{O}

{ sup (Mti_Mti1)2} Z (Mti_Mti—1)2
ti€m\{0} tiem\{0}

+2EH sup <Mti—MtH>2}[M1t}+EH sup <[M1ti—[M]tH>}[M1t].

tiET(\{O} tiET(\{O}

((My, — My,_)2— (M, + [Mhil)?]

<E +

The thesis follows applying Holder inequality and Lemma 3.23. g

Proof. Let {m,}nen CJ] ([0,t]) be a increasing sequence of partition such that |m,| — 0 then, by
Lagrange theorem, we have

f(X) = fXo)+ D (f(Xe) = F(Xe,0)

tieﬂ'n\{o}
1
= f(XO) + Z f/(Xti—l)(Xti - Xti—l) +§ Z f//(gXti,Xtifl)(Xti - Xti—l)2
tiemn,\{0} t;€mn\{0}
where thi_,Xtiil is some point between X;, and X, ,.
On the other hand

fl(Xti—l)(Xti - Xti—l) = Z fl(Xti—l)(Ati - Ati—l) +

tiemn\{0} t;em,\{0}

+ Z fl(Xti—l)(Mti_Mti—l)'
tieﬂ'n\{o}

On the other hand, by Theorem 3.12,

t
P ) (A~ A ) — / F(X)dA,
ti€mn\{0} 0
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almost surely, since ¢t — f/(X}) is a continuous map and ¢ +— A; has bounded variation. Furthermore
since Vi(A) € L*(2), the previous convergence is also in L*(Q) and so

([ 7x0aa) <1 mviea)
0
which is in L4(Q) C L*(Q). Furthermore by Theorem 4.12
¢
PO (M= M) = [P,
ti€mn\{0} 0

in L?(Q) (actually as a martingale in M?2).
For the remaining term Zt-ew\{o} (€, x0,
verges to %fotf”(Xt)d[M]s in L?(€2). Indeed we have

)(Xi, — Xy, )% we want to prove that it con-

S P x ) (X X )P /0 X d[M],

t;em\{0}
1
=5 Z f//(gXti,Xtifl)((Mti - Mti—1)2 - [M]tl + [M]ti—l) +
tiET(\{O}
1 b
+ Z |f”(£Xti7Xti71)||Mti7Mti—1||Ati7Ati—1| +§ Z / |f”(§Xti7Xti,1) - f//(Xs)|d[M]s
ts€m\{0} tiem\{0} /i
By Lemma 4.18, we have
2
E Z f”(gxtiyxti,1>((Mti7Mti—l)zi[M]ti+[M]ti—l> <
ti€mn\{0}
1/2
<3|f”|L°°3<[ sup |Ms|4] +]E[[M]?]1/2> x
s€[0,t]

L1172 ,11/2
x E[ sup <Mti—MtH>} +E{ sup <[M]ti—[M1t“>]
tiemn,\{0} t;em,\{0}

The last factor converges to 0, as |m,| — 0, since supy, e, \ fo} (Me, — My, _,)*—0, sups,en,\ {03 ([M]e, —
[M];, ,)?— 0 almost surely, by the uniform continuity of M, and [M]; on [0,], and by Lebesgue dom-
inated convergence theorem, which can be used because supy, e\ (o} (M, — My, _,)* <supse(o,gMs €
LY(Q) and supy,en,\ (o} ([M]e, — [M]y,_,)>< [M]7 € L*(Q). Furthermore we get

i

2

E <

Z |f”(§Xti7Xti,1)||Mti_Mti—1||Ati_Ati—1|
t;em\{0}

1/2 1
<|f”|Loo1E[ sup |Mti—Mti1|2vz<A>j<||f"|LooE[ sup |Mti—MtH|4} E[Vi(A)"]2
t;€m,\{0} t;€m,\{0}

which converges to 0 since E[supy, e\ {0} | M, — M;,_|]"/?—0 as |m,| — 0 as shown above. Finally

/ ( 2 'f”<€Xa-7Xn1>—f”<Xs>|>d[M]s

2

E <

tiET(\{O}

<E|[M]7! max  sup [|f"(Ex,.x,,_,)— [(X)NL] <
€ \{O} s [ts,¢; 1] vt

<E{[M]%{ (X0 + k(X +X0) - f”(Xs)I]H

max sup
t€mn\{0}se[t;,t; _1],k€[0,1]
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The last term goes to 0, since by uniform continuity of X, on [0,¢] and the continuity of f” (and
thus the uniform continuity of f” on compact subsets of R) we have

max sup [ 7( X+ R(Xy o+ X)) = (X9 =0
tieﬂ—n\{o}se[ti,tifl],ke[o,l]

almost surely. Furthermore since

[M]?!  max sup (L7 (Xe, +h(Xe,_y + X)) = f(X) b <207 le=[M]7 € LY(Q),
ti€mn\{O0}tse[t;,t; _1],k€[0,1]
we can apply Lebesgue dominated convergence theorem, obtaining the thesis. O

Theorem 4.17 can be generalize to the case of “generic” semimartingale.

Theorem 4.19. Let X; be a continuous semimartingale and let f € C*(R,R). Then f(X;) is a
semimartingale and we have

F(X0) = £(Xo) /f dX+/f”

Proof. As usual there is a sequence of stopping time T}, — 400 such that [A7"], |M["], | X" <n
on the set {|Xo| <n} (recall that since {|Xo| <n} € Fy the process M; ™ remains a martingale on
the set {|Xo| <n}). We can also replace the function f with some bounded function f; ,, € C*(R)
which is equal to f on [—n,n]|. This permits to apply Theorem 4.17, on {|Xo| <n}, obtaining

FX) = fon(X{™) =
fanO /fb n XT dXTn+ /fb n [XTn]

tAT,

= g+ [ e g [ .

0
Taking the limit n — 400, we get the thesis. g

4.2.2 Multidimensional Ito formula

Ito formula can be generalize to the case of n continuous semimartingales (X1,..., X™).

Theorem 4.20. Let X',..., X" be n semimartingales and let f: R" — R be a C*(R™,R) function

then
8f J a2f 7 J
f(%i Z/ath +22/WW )X, X7,
where Xy = (X, ..., X[") € R™. Furthermore if f € C*(R") is bounded and X € M2 then f(X) is

Proof. The proof is similar to the one of Theorem 4.17 and Theorem 4.19 where Theorem 3.28
equation (3.4) is used instead of Theorem 3.19 equation (3.1). O

4.2.3 Tto processes and Ito formula

Definition 4.21. Consider (B',..., B") be r independent Brownian motions, and consider {G;}icr,
be their completed natural filtration, we say that the process X; is an Ito process if there is some
random variable Xy whic is Gg measurable, and there are some progressive processes ut(w),atl(w),...,
ot (w) such that, for any t >0,

t t t
[ s, [ohPas..... [ons <o
0 0 0
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almost surely, for which

t t t
Xt:XO—i—/ usds—i—/ agdBi—i—---—i—/ oldB;.
0 0 0

Theorem 4.22. (Ito formula for Ito processes) Consider f € C?(R) and let X be an Ito
process, then f(X;) is also an Ito process and we have

r t
FX0) = f(Xo) =) /O f'(X,)okdBE + / (usf QZ DX, )
k=1
Proof. The proof follows form the fact that

[X]t=[X,X]t=L§_;1 / kdBE, z / kdBk'

>0 > | [otant, [ otany] -
k=1 k=1 L/0 0 t
T T t ,
=Sy /0505 d[B*, B¥,.
Since k=1 k=1
[Bka Bk/]s*ak k'S
(the proof is left as an exercise) the theorem is proved. O

More generally if af"j:IR+><QHIR and p/: Ry xQ—R (k=1,...,nand j=1,...,m) are

progressive processsuch that
t . t
[ ehyas, [ udlas <+
0 0

almost surely for every k=1,...,n and j=1,...,m we defined m € N Ito processes as

. . t . n t .
XtJ:Xg—l—/ugds—i—Z/af’JdBf.
0 = Jo

Then we have the following theorem.

Theorem 4.23. Let X;=(X},..., X}") be an Ito process on R™ then for any function f € C*(R",R)
we have

m

f(Xe Z / 8351 X))ok |dBE +

¢ f o0 f p
+/o Za_ QZ Zaaaxz oy o) |ds.

7,i=1 k=

Proof. The theorem follows from the fact that

m . m
(X XJ]tlZ/af’idBf,Z /ak’ IdBF' | =
k=10 k=170 ¢
-y [ / Fak / f”dBf'} SN [kt n) -
k=1 k'=1 L/0 0 t g=1k'=1"0
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4.3 Other stochastic integrations and their Ito formulas

4.3.1 Backward stochastic integration

Definition 4.24. Let X; be a semimartingale and let Z; be a continuous (adapted) process. We say
that Z; is backward stochastic integrable with respect to Xy if for any 7> 0 the following limit exists

Zed"X,=___ lim 0 O
/o wen([o,r]),wﬁotke;{o} (Xt — X y)

in probability (and it does not depend on the partition |w|—0). When it exists we call fOTZSd_XS
the backward integral of Z with respect (or driven by) X;.

Theorem 4.25. Let Z and X be two semimartingales, then Z is backward integrable with respect
to X and we have

/st—Xs:/ 20X, +[Z, X]s.
0 0

Proof. Let Z=A+ N and X = B+ M (where A, B are continuous bounded variation processes
and N, M are local martingales) be the canonical decomposition of Z; and X, respectively, and
consider a partition 7 € II((0, +00)). Then we have

Z Ztk(th*thfl): Z Ztk(Btk*Btkfl)Jr Z Ztk(Mtk*Mtkfl)'
temt\{0} trem\{0} trem\{0}

Since Z; is continuous and By is of bounded variation and continuous, we have
t
lirno Z Z4,(Bi, — By, ) :/ ZdBs,
[m|— thentN{0} 0

where the last integral is in the Riemann-Stieltjes sense. We now want to compute

Z Zy(Myy, — My, ) — Z Zy(Myy, — My, )=

trent\{0} tremt\{0}
= Z (Zb, = Zye ) (My, — My, ) =
tremt\{0}
= Z (Atk_Atk—l)(Mtk_Mtk—l)+ Z (Ntk_Ntk—l)(Mtk_Mtk—l)'
tremt\{0} tremt\{0}

We have that

(Atk - Atk—l)(Mtk - Mtk—l) —0

7t
almost surely. Indeed, frem {0}

(Atk_Atk—l)(Mtk_Mtk—l) < Z |Atk_Atk—1||Mtk_Mtk—1|

tpemt\{0} tpemt\{0}
<( sup |Mtk.Mt“|) S A Ay << sup |Mtk.Mt“|)vt<A.>.
trem\{0} tremt\ {0} trem\{0}

Since supy, e\ {0} | Mt, — My, _ | — 0 almost surely as || — 0, and V;(A) <4-o0 since A; has bounded
Variation, ZtkET(t\{O} (Atk — Atk—l)(Mtk - Mtk—l) — 0.
Since both M, N are both continuous local martingales, we have
(Ntk - Ntk—l)(Mtk - Mtk—l) - [NaM]t
tremt\{0}

in probability. Since, by definition of quadratic variation of continuous semimartingales, [Z, X];=
[N, M], the theorem is proved. O
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Theorem 4.26. (Ito formula for backward integral) Suppose that X; is a continuous semi-
martingale and let f € C3(R). Then

150 = 100 = [ 06— [ o

Proof. We first prove that the integral fgf’(XT)d_XT is well defined. By Ito formula, since
f€C3R) and so f’'€ C?*(R), we have that f/(X;) is a semimartingale such that

t t
F(X0) = F/(Xo) + / FrAx 4 [

By Theorem 4.25, the integral f 0 )d™ X, is well defined and we have

/f DdX, /f DX, +[f1(X), X =

/f dX+Uf” DX+ [ )[s],XF
/f dX+|:/f” dXé,/dX:| /f dX-i-/f”

By Ito formula (for standard Ito integral) we have that

F(X0) — F(Xo) /f dX+/f”
F(X0) — F(Xo) /f dX——/f” O

4.3.2 Stratonovich and midpoint integral

and so

Definition 4.27. Let Z; be a continuous process and X; be a continuous semimartingale. We say
that Z; is Stratonovich integrable with respect to Xy if, for any 7 >0, the following limit

’ 1
ZoodX.=  lim Ytz 1}X_—X_1
/0 weH([O,T]),hHotkeﬂZ\{o} {2( et Zu_y) (X — Xip o)

exists in probability, and it does not depend on w € II([0,7]). When it exists, we call foTZsodXS the
Stratonovich integral of Z with respect (or driven by) X;.

Furthermore, we say that Z; is mid-point integrable with respect to Xy if, for any 7 >0, the
following limit

ZsadXs: lim L+t 1 X, — X .,
/O well([0,7]) lﬂ_)otkEwZ\{O} %( tr tr )

exists in probability, and it does not depend on w € 11([0,7]). When it exists, we call foTZs6dXs the
mid-point integral of Z with respect (or driven by) X;.

It is simple to deduce, from Theorem 4.25 and Theorem 4.26, an existence and Ito formula
theorem for Stratonovich integral.

Theorem 4.28. Let Z; and X; be two continuous semimartingale. Then the Stratonovich integral
ezists and we have

t t
/ZsodXS:/ 24X, - 117, x]..
0 0 2

Furthermore, if f € C3(R) then we have

F(X0) — F(Xo) /f JodX,.
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Proof. By Theorem 4.12 (or, better, a generalization of Theorem 4.12 for semimartingales) and
Theorem 4.25, we have that

1
li —(Zy+ Zy, ) ¢ (X, — Xy ) =
7T€H([O’ITI]I;M'_’Ot;cewz\{O} {2( i e )}( tk te-1)
1

1
== lim Zy (X — Xy, )+ = lim
2wen<[07r1>,\w|ﬂotk€ﬂz\{o} (X = X ) 2w e11([0,7]), 7| —0

;/Zd X+2/ZdX /ZdX+ Lz, x).

Applying the previous formula in a way similar as the one of the proof of Theorem 4.26, we get that

/f )odX, /f dX+/f”
F(X,) — f(Xo) /f dX+/f” Sf/f )odX,. O

Remark 4.29. It is important to note that for the Stratonovich integral the fundamental theorem
of calculus holds.

Ztk—l(th - th—l) =
trem\{0}

and so

Unfortunately for the existence of the mid-point integral it is not enough that the process Z;
is a semimartingale. In what follows, we provide a stronger condition for the existence of the mid-
point integral.

Theorem 4.30. Let X; and Z; be two semimartingale such that the process [ X, Z]: is (almost
surely) absolutely continuous with respect to the Lebesque measure. Then Z is mid-point integrable
with respect to X and we have

/ZsadXS:/ ZsodXS:/ 24X, +S[X, 7).
0 0 0 2

Remark 4.31. We say that a function g: Ry — R is absolutely continuous, if there is a function
g' € Ll (R4, R) such that

The function ¢’(t) coincides (Lebesgue)-almost everywhere with the derivative of g.

Remark 4.32. The request that the quadratic variation [Z, X]; is absolutely continuous with
respect to Lebesgue is satisfied by any Ito processes. Indeed suppose that X and Z are Ito processes,
i.e. there are some progressive processes fi1,1(w), 01 (W), ..., 07 (w) and p2 1(w), 03 (W), ..., 0% 1(w)
such that, for any ¢ >0,

t t t
/ |uj,5|ds,/ (0;78)2ds,...,/ (07, s)2ds < +o0
0 0 0

almost surely, for j € {1,2}, for which

t T t
X:XO+/M1, ds+ /adeB;?,
0 s ];1 0 1,
t r t
Zt:Z0+/u275ds+Z / ok Bk
0 =1 /0

Then, by the properties of Ito integral with respect to quadratic variation we have that

[Z Xt— (Z g1 ‘50'26>d8
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The function
I
(Z O—]f,sag,s> € LlloC(R+7 dS)
k=1

almost surely since afs € L{ (R, ds) almost surely.

We now state a generalization of the continuity theorem for L!(R4, dt) functions. Consider
a sequence of functions 7,,: R4 — R such that there is m, € II((0, +00)) such that |r,| — 0 and a
constant C' € N for which

n(t) = Z Pl ey (t) (4.8)
them,\{0}
where
|hken| S iy o — te- (4.9)

Lemma 4.33. Let a € LY(R,dt) and consider a sequence of measurable (bounded) functions 7,:
Ry — Ry satisfying the conditions (4.8) and (4.9). Then

/ la(t) — a(t + mn()[dE— 0, 17— +oo.
R

Proof. Let a= g where g€ C°(R4,R) with compact support contained in [0, K] C R (for some
K >0). If sup, (supier, |7n(t)|) = C we have that

19(t) = gt + ()| <Ljo, K +c1 (D9l Loo (w)-
Furthermore, by the continuity of g, we have that
9(t) + g(t + 7a(t))| — 0.

Thus, by Lebesgue dominated convergence theorem,
[ 190 =gt +m@)lat—0. n—tox.
R+

Let a € LY(R, dt) be a generic integrable function, then, by the density of continuous functions
with compact support in L'(IR,dt), for any £ >0 there is g. € C°(IR,) with compact support such
that

[ lat0) - gutola <e.
Then we have i
[t =ate+r@)iar= [ jao) - g+ [ lafe) = ate +m0)idt-+
+
+/ lg(t+Tn(t)) — a(t + o (t))|dt.
Ry
Since 7,,(t) is piecewise constant there is a partition 7 € II((0, 400)) such that

Tn(t> — Z hkﬂ[tkfl,tk)(t)

for some hyx € Ry. Then we have teem\{0}

[ lote o) —att-+ m(0)iae = / " g0+ hion) — alt+ )|t =
R, ¢

tp€mn\{0} © PR -1
tethi,n th
= > [T e S Y [ e —atolat
te—1th,n te€m\{0} [tn—tr_1|<hp,n ¥ th=1

trem,\{0}

By the hypotheses on 7, we have that there is C'€ N such that hy, , < |tx+c — tg|, in other words

the sums Z‘th_tkilth ::4 lg(t) —a(t)|dt contains at most C' different terms. This means that

/ gt + 1)) — alt + 7 (8) At < C / l9(t) — alt)]dt < Ce.
R, R,
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This implies that

n— —4oo

limsup ‘/Rja(t) - a(t+Tn(t))|dt‘ <

<limsup ‘(C +1)e +/ lg(t) — g(t+ m(t))|dt‘ <(CH+1)e.
n— 400 Ry
Since € >0 is arbitrary we proved the theorem. O

Proof. If Z=A+ N and X = B+ M are the canonical decomposition of Z and X, repeating the
proof of Theorem 4.25 we have that,

Ztprtn (X, — Xt ) =

2

tremt\{0}
- Z Ztk*”c—l(Btk_Btk,l)—’— Z Atk+tk*1(Mtk_Mtk—l)+
trent\{0} 2 trent\{0} 2
+ Z Ntk+tk—1(Mtk — Mtk-—l)'
trem\{0} :

Since Z; is continuous and B is bounded variation we have

t
lim Z thk,l(Btk—Btkfl)H/ ZdBs.
0

|| —0 7 2
We have also ter\ {0}

ySRPUPIITAITARED SEPNNITASYAN B
tremt\{0} ’ trer\ {0}
g{ sup |MtkMtk1|} Z ‘AM?AM?I
tremt\{0} trem\{0} ’
<{ sup |Mtk_Mtk1|} Z |A6k_Aék1|<{ sup |Mtk_Mtk1|}‘/;(A)—)0
tremt\{0} trert\ {0} tpemt\{0}

almost surely, where 7 € II((0, +00)) is defined as @ =7 Uy, e\ {0} {%}

What remains to prove is that, for any increasing sequence m,, € II((0,+00)) such that |m,| — 0,
then
¢
1
Newron s (M, —Mtkfl)—>/ N, dM, + =[N, M].
temt\{0} : 0 2
First we note that
Nuropo (Mo =My )= > Nuvowos { (Mo = Moo )+ (Moo = My, )}
tk€mt\{0} ’ tk€mt\{0} ’ ’ ’
= Z Ntk+tk,1(Mtk—Mtk+tk+1)+ Z Ntk,l(Mtk+tk+1_Mtk,1>+
tremt\{0} 2 : tremt\{0} :

+ Y (N =No ) (Musons = My _,) =

tremt\{0} 2 2
= > Ny -My )+ > (Nusnos = No ) (Mooss = My, )
sk€R\{0} tremt\{0} 2 2

te+tk—1
2

where 7' = (7' U, e 0 { })N10,#]. The sequence

t
NSk—l(MSk - Msk—1> - / Ndes
srERN\{0} 0

in probability. The only thing that we have to prove is that

1
(Ntk+tk—1 - Ntk,l)(Mtthl - Mtk,l) H§[N7 M]t
trem\{0} : ?
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in probability. We prove this convergence in the case where N, M € M2, since the general case can
be reduced to this one by localization. First we prove that

(Newsres = Now ) (M = My )= Y (I, M]esoes = [N, M)y, _,)
2 2

tremt\{0} 2 tent\{0}

converges to 0 in L?(9). Indeed, repeating the proof of Lemma 4.18 we get

2
E < 3 (Ntw,c,l—Ntkfl)(MWW—Mtkfl)— 3 ([N,M]twt,cl—[N,M]tkl))
2 2

tremt\{0} 2 tremt\{0}

<3([ sup (ot )| B+ [N]%]l/?) x

1/2
X<E|: sup ((Mtthil)4+(Ntithi)):| +
ti€m*\{0}

E[ sup <[M1ti—[M]ti1+[N1ti—[N1tif]m)
tiemt\{0}

which goes to 0 when |7| — 0. What remains to prove is that
1

SN M- Y ([N,M]W%— [N, M), _, ) 0.

tr€mt\ {0}
Since [N, M|; is absolutely continuous with respect to Lebesgue, there is a;(w) € Lio(IR4, dt) such
that [N, M];= fgasds. Thus we have

%[N,M]t_ Z [N7M]tk+;k71_[N’M]tk—l>:

trem\{0}

trent\{0}
tette—1

SPVN JNRRERY
= asds — ads | =
thewzt\{o} ( L th—1 >

ettt —1 tette—1
1 — = —s
=3 Z as+tk7;k,1d5* asds | =

tpent\{0} tk—1 te—1

1 tettp—1
2
:5 Z (ﬂ (as+tk7;k,1 —as)ds>.
tremt\{0} k-1

1
SV ME= S (1N Mo~ IV, My, )
teemh\ {0} ’

In other words we have

<

1
< A L0, (5 + 7a(5))ter ) — Tjo.1(8)ats|ds.
+
where the functions 7,(t) are defined as

4 —1
wm)= Y @),
tr€T,k even
Obviously 7, satisfies the conditions (4.8) and (4.9), and thus, by Lemma 4.33 we have
1
5 Mo+ mu(s)ar 0~ Tna(s)asfds. 0
+

as n— +00, since I 4(s)as € L'(R.,dt). This concludes the proof of the theorem. O



Chapter 5

Consequences of Ito formula and Girsanov
theorem

5.1 Applications of Ito formula to Brownian motion

5.1.1 Martingale representation theorem

Consider a Brownian motion B; and let F£ be its natural (in general not completed) filtration.
We want to prove that any L?(Q) (cadlag) martingale M; with respect to the filtration 77 is an
Ito process.

We start with the following proposition.

Proposition 5.1. Let K € L*(FP), then there is a progressive function h(s) € L*(Q x [0, ], dPdt)
(which is unique up to set of measures 0 with respect the measure dIPdt) such that

K = E[K] +/ h(s)dB,. (5.1)

First we prove the following lemma.
Lemma 5.2. Consider the family of functions
u7t = Span{ei/\l(BmiBtl)jL. . .+i)\n71(Btn7Btnil)|A1a ceey )‘n S Ra tl g Tt < tn < t} C LQ(gt)

Then J; is dense in L*(FP).

Proof. Since L?(FP) is an Hilbert space it is enough to prove that J;- = {0}, namely that if
K € L*(FP) such that

E[Kei/h(Bf,Qthl)‘F- . '+7;/\n,—1(Btn,7Btn,1)} -0 (52)

for any A1,..., A\p€ R, t1 < -+ <t, <t then K =0 almost surely.
Consider the (bounded) measure pu: R" ! — R defined as if F € B(R" 1) we have

p(F) =E[KLiB,,~B.,,....Bi,~Be)er}(W)]-
The measure p is bounded, indeed |u(F)| < E[|K|] < +o0o, and the function

ﬂ(Ala sy )\n—l) =

:E[Kei)\l(BQ—Btl)_A,_. . .+M,L71(Btn—3%71)] :/ B T ey dz,)
ey
]Rnfl

is its characteristic function (or equivalently its Fourier transform). Condition (5.2) implies that
fi(A1, ..., Ap—1) = 0. Since the characteristic function of bounded measure on R™ characterizes
completely the measure, this implies that p(F)=0 for any F € B(R""!). Since n€N and F €
B(R" 1) are generic, and the sets of the form

{(Btz_BtU"'aBtg_Btl)EF}eftB

55
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generates the o-algebra FP (since by definition F£ = o(B,|s <t)), this means that
E[K|FP]=0

almost surely. Since K is FP-measurable we have that K = E[K |F£] =0 almost surely and then
the thesis. 0

Lemma 5.3. Suppose that K € J;, then the thesis of Proposition 5.1 holds.

Proof. Let t; <to<--- <t, <t and consider the martingales

. ti41nt
Bi— / dB,
t

At
and the bounded variation processes ’
) ti+1Nt
TI(t)= / ds
tj
for j=1,...,n—1. Consider the (complex) processes

n—1
Fx,, o, (TYs),. .. ,T™(s), B, ..., B :exp(Z <i/\TB§+%)\%TT(S)>>.

r=1

Applying Ito formula to the function F' (or better to the real and imaginary part of the function F'),
we get

t n
:/ > OyrFay o W (TH), -, T (), BY, ..., BR)dt+
0 r=1
t n
+/ > OyrenFayan W(TH), ..., T™(E), BY, ..., BY)dBI +
0 r=1
1 & 1 n 1 n r 7’
+5 ; > 0 einyrenFaoa (T, T™(E), BE, ..., BY)A[BT, B, (5.3)

r,r'=1
By noting that

Bg:/ ]I[tj,tj+1](T)dBT
0
and so
[BY, le]s = /0 it 041 (T)]I[tj’»tj’+1](7-)d7- = 5j»j'/0 Lit; 4, 0d(T) = 65./T7(s)
and finally that
X

ayT'FAh A O 7

_ 2
ayr+n,y7‘/+nF)\17 A1 T _67-,7-’/\ra

we obtain that the first and last term in the sum (5.3) cancel out, and so

Py oo, (TYR),..., T(t),BE,...,Bf) — 1=

t n
:/0 Z Oyr+nFry,. . an_1(TH(s),...,T™(s), BS, ..., BMdBL =

t
:/ (Z ayr+nF,\1,__.7,\n71(T1(S), o T(s), BL ..., Bg)]l[tr,tr+1](3) )dBS =
0

- [ hsan.
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for the (bounded and continuous) process

W)= OyrinFr, g o (THE), -, T7(), B, BI g, 1, (s).
r=1

Since
FAl,--~7An71(T1(t)7 R 7Tn(t)a Btla sy B;fn) =
:exp(i)\l(Bt2 - Btl) +--+ iAnfl(Btn - Btn,l))c(t)
where C'(t) > 0 is a suitable constant, the lemma is proved. O

Proof. First we prove uniqueness of the representation (5.1). Suppose that there are h, h' €

L[Qo_rt] (B) such that

t t

h(s)dB, = E[K] + / W(s)dB,,
0

K =E[K] +/
0
then we have that

t

0= B{(K ~ BK) - K+ EIK) =B ([ (hts)-wspas. ) | -

| [ () - w(s)2as |

and so h="h' up to a set of measure zero with respect to dIPdt¢.
We want to prove the existence. Let £ C L?(FP) be the following space

t
L= {k+/ h(s)dBs, k€ R,h e L[Qo_rt](B)}.
0

We want to prove that £ is a closed subspace of L?(F£). Indeed let P, € £ be a Cauchy sequence
in L2(FP), this means that there are some k, € R and hy,(s) € L[207t](B) such that

t
P =k, + / hin(5)dBs.
0

We have that
t

E[(P, — Pn)?] = JE[ ( Fon = o+ /O (nls) — h,n<s))d3s>2] _

t

(b= )+ 20 = ) [ 1at5) = (610, |+ B[ [ () = mntopas. ) | -

~(n =+ 8]

Since P, is a Cauchy sequence in L*(FP), then also &, is a Cauchy sequence in R and h,, is a Cauchy
sequence in L[Qo_rt](B), i.e. thereisk€R and a h € L?Oyt](IR) such that k, — k in R and h, — h in
Lfy,4(B). If we write P=Fk + foth(s)st, the previous observations imply that P, — P in L%(G;).
On the other hand, P € £ and, since P, is a generic Cauchy sequence in L, it follows that L is closed.

Furthermore, by Lemma 5.3, J; C £, and thus, J; C £L= L. Finally, by Lemma 5.2, J; = L*(FP)
and so £ =L*(FP). O

t

(halt) hmof))dt}

Theorem 5.4. Let M, be a L*(Q) martingale with respect to the filtration F2. Then there is a
process h € L?(B) and Mo € R such that

t

M, =M, +/ h(s)dB,
0

(where we identify indistinguishable processes).
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Proof. We can consider the sequence of martingales
Mtn = Minn— Mt/\(nfl)'

We have that M€ L*(G,) and M; — M= Zn 1 M3 (the previous sums is always convergent since
for any ¢ >0 only a finite number of its elements are nonzero). This means that, by Proposition 5.1,
there is a sequence h,, € L[Qo_rn](B) such that

_ / h(s)dBs
0

Since M} is a martingale we have that, for any 0 <t < n

fﬁ} - 5B

almost surely. Furthermore, since M{* = M,} for t >n, if we extend h,(s) =0 when s > n, we have
that

MP = E[M?|G] = ]E[ / " hn(s)dB,
0

Mt”/nhn(s)st/thn(s)st.

0 0

Finally, since M{*=0 for t <n — 1, by the uniqueness part of Proposition 5.1, we have that
hn(t) =0

for t <n —1 and dIPd¢ almost everywhere. So, if we write

+o0
t) = Z h'n(t)

n=1

we have that h € L2(M) (since, for any finite ¢ >0, only a finite number of terms, in the previous
sum, are nonzero) and also

t+<>0
M, — Moszt Z/ n(s)dBs / s)dB, = /
n=1

Since M, is adapted, My must be F measurable and so My is a constant almost surely. In
conclusion, for any ¢t >0 we have M; = My+ f 0 s)dBs almost surely. This means that the process

My + fo s)dBs is a modification of M;. Since My + fo s)dB; is continuous the theorem is
proved. O

Corollary 5.5. If M; is a L*(2) martingale with respect to the filtration FB, then it admits a
continuous modification.

Proof. By the previous theorem, M, is indistinguishable from M+ f 0 s)dBs which is a contin-
uous martingale since is the Ito integral with respect to a continuous martlngale. O

Corollary 5.6. Let M, be a continuous local martingale with respect to FP then there is h(s) €
L (R, dt) such that

t
M, =M, +/ h(s)dB,.
0

Proof. By localization, we can reduce to the case where M7 € L2(Q), then we apply Theorem 5.4,
and then we take T,, — +o00. O

Corollary 5.7. Let M, be a continuous local martingale with respect to F£ then it is an Ito process.

Remark 5.8. It is possible to extend all the previous result replacing FZ with G2 (i.e. the
completed natural filtration of the Brownian motion B).
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Remark 5.9. It is possible to prove (see, e.g., Chapter 5 Section 4 of [10]) a generalization of
Corollary 5.6 and Corollary 5.7 in the following sense: suppose that M; is a local martingale
(without supposing the continuity) with respect to the natural filtration FZ (or the completed
natural filtration GP) of a Brownian motion By, then there is a progressive process h € L .(R, dt)

such that
t

M, =M, +/ h(s)dB,.
0

This means that any local martingale, with respect to the natural filtration F£ (or the completed
natural filtration GZ) of a Brownian motion, admits a continuous version.

Remark 5.10. It is possible to generalize Proposition 5.1 and Theorem 5.4 to the case where ftB

is natural filtration of a set B = (Bj},..., Bf') of n independent Brownian motions. In this case,
the thesis of Proposition 5.1 becomes: there are some processes hl(s),...,h"(s) € L[Qo_rt](Bl, ...,B™)
such that

K =FE[K] + i /Oth’”(s)dB;'.

The martingale representation theorem takes a similar form.

5.1.2 Lévy characterization of Brownian motion

In this section, we want to prove a charaterization of n-dimensional Brownian motion which will
be very useful in the following.

Theorem 5.11. Let (M*,..., M"™) be n local martingales such that (Mg,..., M) =0 and
(M M), =t.
Then (M*,...,M™) are n independent Brownian motions.

Proof. Let Ay,..., A\, €R and define the functions

We have that, for any Ai,..., A\ € R, F),
applying Ito formula, we have

Fkl,...,kn(Mtla"'aMtn’t)_1:

1 k T T
+§/0 > Oy (Fay a )M M s)A M7, M) =

t n
:/ E Oyr(Fy, . oa) (Mg, ..., M2, s)dMY +
0

We have that

,,,,,

and
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and thus
1 B
55 : ayTyT'(F)\l,...,An,)(Msla DR 7Ms 75) +atF)\1,... A

)

(MY M s)=0.

r=1

Thus, we have that
t n
Fay. o (M2 MP ) —1 :/ S OBy, o) (M2, M2, 5)AM]
0

is a local martingale. Furthermore, since Fy, . ., (M{,..., M t) is bounded, it is a real
martingale.
We prove that for any t; <--- <ty (M}, — M{,..., M

are independent. Let A€ F;, , then

exp< Z )\2 —tr—1 )E[HAexp(iZ AT(M&*Mt?;fJ)]

r=1

,,,,,

— M), o (ME =M}, M= M)

1 n
E HAF)\lw--An(Mtltzv'"7Miiat€) _
F)‘lv o An(Mt[? ceey Mt[? té)

Ia . ,

=k E[Fx,... (ML, ..., M2 t)|F) | =
P, 0 g e Moy Mt P
Ia )
=E F)\7,,_ATLM 71,...,Mn71’té_1 :EHA =P(A).

B, o (ML M) ™ (M, tr ) [La] =P(A)

In other words,

E[Taexp(iy | A(Mf,— M, ) exp< ZA? —tr 4 )]P(A).

Since, by the proof of Lemma 5.2, span{exp(i)_ A.(M{, — M{,_,)), A1,..., A\r € R} is dense in
LYo ((M{,— M}, ,...,M{"— M}, )))) we have that for any F € o((M{,— M}, ..., M~ M}, )
we have

P(ANF)=E[I41r]| =E[P(A)lr| =P(A)P(F).
This proves that (M}, — M}, _,..., M~ M}, ) is independent of F;, ,, and since MtJ are adapted,
is independent of (M{, — M{,,..., M — M}, ..., (M}, — M}, ,,....M  — M ). Repeating the

argument for each time we obtain that (M7, — MZ,,..., M — M), ..., (M} — M}, ..., M{*— M )
are independent. Finally by the previous computation we get

E[exp(iz Ar(M{, — M{, ) exp( Z N(te—to1 )

and so (M}, — M}, ..., M= M )~ N(0,(tg—te—1)Ir=). Since MtJ are continuous this prove
that M; are Brownian motions. O

5.2 Girsanov theorem and applications

Remark 5.12. From now on we use the following notation: if A, C are two semimartingales and
B is a progressive process we write

dA;= BdC,
if and only if

t
At—AO:/ BsdC.
0
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Remark 5.13. With the previous notation if : R” — R is a C? function and X is a semimartingale
on R™ the Ito formula reads

. = _ 1 < . i,
dF(X),= ]; 0,-F(Xy)dXF +§k21 OyreyrF(Xp)d[XF, XT];.

Remark 5.14. If A;, C; and By are as in Remark 5.12, if dA; = B;dC}; and C} is a local martingale
also A; is a local martingale.

5.2.1 Preliminaries

Definition 5.15. A martingale L; is uniformly integrable if the family of random wvariables
{Li¢}ter, is uniformly integrable.

Theorem 5.16. Let L; be a uniformly integrable martingale then the there is a Foo-measurable
random variable Lo, € L*(Q) such that

L;=TFE[L|F

almost surely.
Proof. See Theorem 3.19 and Theorem 3.21 in [4] (see also Section 4 of [2]). O

Remark 5.17. It is important to note that if L is an uniform integrable cadlag martingale we can
extend the Doob optional stopping time in the following way: let T' be a (generic) stopping time
(i.e. we assume that 7'=+o00 in a set with possibly positive probability) then we have

L1t =FE[Ls|Fr].

Definition 5.18. Consider a measure space (2, F) and let P and Q be two probability measures
on (Q,F), we say that Q is absolutely continuous with respect to P (and we write Q K P) if
for any A€ F such that P(A) =0 also Q(A) =0. We say that the measure Q is equivalent to
the measure P (and we write Q ~IP ) if Q is absolutely continuous with respect to P, and P is
absolutely continuous with respect to Q (i.e., Q<P and Pk Q).

Theorem 5.19. (Radon-Nikodym theorem) Let (2, F) be a measure space and consider two
probability measure P and Q, then Q is absolutely continuous with respect to P if and only if
there is f € LY(Q2, F,P) such that

QA) = [4 f(@)dP(w).

Proof. See Chapter 14, Section 14.13 of [9]. O

Remark 5.20. The function f in the thesis of Radon-Nikodym theorem is called the density (or
derivatives) of the measure Q with respect to P, and it is unique up to IP-zero-measure sets. In
the following we use the notation

dQ _

Fiath

Consider two probability measures P and Q on (2, F) and let {F;};cr, be a filtration. We
can consider the measures Pz, = P|z, and Qr, = Q|#, (i.e., the probability measures P and QQ
respectively restricted (as set functions) to the o-algebra F; C F). If @ is absolutely continuous
with respect to IP, then, for every t € Ry, Q, is absolutely continuous with respect to Px, which
implies that, for every t € Ry, there is a L!(£2, 7, P) random variable such that

dRr, _ Ho
TP, = DR,
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Here write also
dQr. o
dPr_ D

Definition 5.21. We say that the probability measure Q is locally absolutely continuous with
respect to the measure IP and the filtration {Fi}ier,, if, for any t € Ry, the measure Qr, (i.e.
the probability measure Q|z, restricted to the o-algebra Fy) is absolutely continuous Pr,.

If @ is locally absolutely continuous with respect to Q

Theorem 5.22. Let QQ be a probability measure locally absolutely continuous with respect to P
and the filtration {F;}ier,, then the process D? 15 a martingale with respect to the measure P
and the filtration {F;}icr, . Furthermore if Q is absolutely continuous with respect to IP, we have
that D? s uniformly integrable and we have

DR=Ep[DR|F) (5.4)

P-almost surely.

Proof. Let t>s€ R, and consider A € F; C Fy, we have
Q(A) = Ep[LaD}] = Ep[Ep[LaDP| 7] = Ep[LAE[DP| ).
On the other hand, since A € F, by definition of density of absolutely continuous measures, we have
Q(A) =Ep[laDJ,

i.e. Ep[IAE[DR|Fi]] = Ep[IaDX]. The second part of the theorem can be proved in a similar way
taking ¢t = 0o, obtaining that

Ep[D2|F] = Dy
P-almost surely. By Doob theorem this proves that D? is an uniformly integrable martingale. [J

Proposition 5.23. Suppose that D;Q admits a continuous modification (we denote this modifica-
tion again by D? then for any (bounded when @ is locally absolutely continuous and also unbounded

when Q is absolutely continuous) stopping time T we have

Q7 _ po (5.5)

dPz,

Furthermore if Q~1P we have

inf DR*>0
teR 4
P-almost surely.

Proof. We consider the case when Q) is absolutely continuous, the case where QQ is only absolutely
continuous can be proved in a similar way. If T is a stopping time, we have that for the (Doob)
optional stopping time theorem (extended to possibly infinite stopping time see Remark 5.17) we
get

E[Doo|Fr] = E[E[Ds|Fi)|Fr] = E[D¢| Fr] = Dr.

Equality (5.5) can, then, be proved in a way similar to the one of equality (5.4).
In order to prove the second assertion, consider

T.=inf{t>0,DR<e}.

The random variable T is a stopping time since it is the first hitting time of an closed for the
continuous process D?. By definition of o-algebra generated by a stopping time we have that,
{T. < +o0} € Fr.. This means, for the first part of the theorem,

Q{T: < +00}) = Ep[L1 < 400} Doc] = Bp[L7: < 4 oo} ElDool Fr]) = EplI{r, < 1oy D] <,
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where we used that Dz, <¢ since D, is cadlag. From the previous inequality follows that

Q(ﬂ {Ti<+oo}> lim Q{7 <+o0})< lim L

neN n——+o00 n—-4oo 1

Since IP is equivalent to @ we get that
P( {Ti<+oo} =0
neN "

and so inf;er +D? is strictly positive P-almost surely. O

5.2.2 Girsanov theorem in the Brownian motion case

Now we want to consider the case where the filtration F; is equal to the (in general not completed)
natural filtration of an n-dimensional Brownian motion (B,..., B") with respect the probability
measure P.

Under these assumptions, if @Q is a probability measure locally absolutely continuous with
respect to P, the process D;Q is a P-martingale and so, by Remark 5.9, there is a continuous version
of D?. For this reason from now on we suppose that D? is a continuous martingale.

Lemma 5.24. Under the assumptions of this section, suppose that Dy is a (strictly) positive local

continuous P-martingale, then there is a unique progressive process h=(hy,..., hn) € LE (R4, R™)
such that
- n t 1 1t &
_ .. B 1 2
Dy=E&(h)t:=Dyg exp(lg_1 /0 hi(s)dB; 2/0 ,;:1 |hi(s)]? |ds .

Proof. Since Dy is continuous and strictly positive Di € L (R4, d[D]) almost surely (since it is
t
bounded almost surely). Then consider
I — / *dDs
=) D,

Since Dy is a continuous local P-martingale also L, is a continuous local P-martingale. Thus, by
Corollary 5.6 and Remark 5.10, there is a (unique) progressive process h € Li,.(R.y, R) such that

n t
Li=>)" / hi(s)dBE.
k=10

{2kt [ (3 o oo

Then, by Ito formula applied to log(D;), we get

Thus we have that

'dDs 1 ['d[D]s 1
log(D;) =log(Dy) + \ . 75/0 D? :Ltfg[L]t:

Y t s R L I8y s)|? |ds
I;/Ohk( )dB; 2/0<;1|hk( ) )d.

The uniqueness follows from the uniqueness of canonical decomposition of continuous semimartin-
gales and the uniqueness of martingale representation theorem. O

Remark 5.25. It is important to note that if D;=&(h); then

n t
Dy—Do=Y / Dyhy(s)dBE.
k=10
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Theorem 5.26. Consider P, Q, D? as above (with the assumption of the beginning of this sub-

section), suppose also that D? is almost surely strictly positive, and let h® € LIQOC(IR+,R”) be the

progressive process such that
DR=E(hR),,

then if M is a continuous local martingale with respect to the measure P then

Mt:Mt—[M,Z /h}?(s)dBf
k=170

1 a continuous local martingale with respect to @Q.

n t
TS / h2(s)d[M, B,
t k=1 0

Lemma 5.27. Under the hypothesis of Theorem 5.26, if X; is a continuous stochastic process such
that X, D;Q is a continuous local martingale under P, then X; is a continuous local martingale

under Q.

Proof. We first prove that if 7' is a (bounded) stopping time such that (X DR)7 = XtTD;Q"T is a
continuous martingale under P, then X7 is a continuous martingale under Q.

If XtTDiQ’T is a martingale then X/ € LY(Q, F;, Q), indeed by definition of martingality
\XIDRT|e LY, F,,P) and so

+OO>1EJP[|XtTDtT|]:EJPHXtT|DtT]:EP[|X15T|E[D§?W|}—TMH:EJP[EHXﬂD? |[Frat] =

=Ep[| X7 D} | =Eq[| X7 ]

where tax > max (T'), we used that X7 = Xp.; is Fra; measurable, and that, by Proposition 5.23
we have Ep[DR | Frai = DR, =DRT.

max

Consider t > s € Ry, and let A€ F;. Since AN{T >s}=(A°U{T < s}) € Fs, we have

E]P[]IAH{T>S}XT/\tD$/\t] = ]E]P[]IAm{T»}XtTD?’T] =

=Ep[lunirs> XI D2 = Ep[lan (155} X1 s DFA )

Furthermore the set AN{T > s} € Fras C Fras and so Iynirssy is Fras (and thus Frag) mea-
surable. This means that

Ep[Lanirss} XratDFEn] =Ep[Lanirs s} XrmEp DR | Frad] =Ep[Lanirs s} XraiEp[DR | Frad]

tmax tmax

=Ep[Lan(r>s} XraeDE 1= Eqlan(rss1 XA,
and also
Ep[Ianirss} X1rsDPrg = Ep[Lan (1 s} X1 AsEp[DE | Frasl] =

=Ep[Lin(r>s}X1rsEr[D2_|Frasl] =Ep[lan(rss) XrasDe. 1 =Eqlanr>s} XTAs)-
Thus
EQ[HAm{T>s}XtT] = EQ[HAQ{T>S}XTM] = EQ[HAm{T>s}XTAs] :EQ[HAm{T>s}XsT]

Obviously Lun{r<s}Xrat =Lan{r<s}Xs = lan(r<s} X7rs and so we get

EqIunir<s}Xi | =Eqan(r<s1Xrad) = EQan{r<s}X1rs) = Eqlan{r<s X4 |-

Finally we can conclude that
Eq[laX{]=Eq[laX]

for any A € Fs, which means, since X! is F; measurable, that Eq[X{ |Fs] = X

Suppose that XthfQ is a IP-local martingale then there is a sequence of bounded stopping times
T,,— 00, for which (X DR®)7" is a P-martingale. For the first part of the proof of the lemma X7
is a Q-martingale. Since Q is equivalent to IP, T,, — +oo0 Q-almost surely, which implies that T, is
a localization sequence for X; (with respect to the measure Q) and so X} is a Q-local martingale. [J
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Proof of Theorem 5.26. Suppose that M is a local martingale (with respect to IP) and consider

M. By Ito formula we have that
~ ~ t t ~ t ~
M;DR — MyD@ = / M, dDR + / DRdM, + / d[M, DR, =
0 0 0

t o t n t
:/ MSdD?+/ DRAM, -y / DRRR(s)d[M, B¥]),+ [M, DR, =
0 0 =1 /0

t t nooat
_ / MLAD® + / DRAM, - / DR (s)d[M, B, +
0 0 = Jo

MY [ Densast
k=170

t

t t n t n t
:/ MsdD?—i-/ DRdM, -y / D3hd(s)d[M, B+ / DRnP(s)d[M, B¥], =
0 0 k=170 k=10

t t
= / M,dD® + / DRdM,.
0 0

Since, by Hypothesis, M; is a (continuous) P-local martingale and, by Theorem 5.22, D? is a
(continuous) P-martingale we have that MtD;Q is a continuous P-local martingale.
Thus by Lemma 5.27, M, is a Q-local martingale. O

Remark 5.28. An important consequence of Theorem 5.26 is that, under the assumption of this
section, if Q is absolutely continuous with respect to IP and X is a [P-semimartingale then X is
also a Q-semimartingale. Indeed if X = A+ M is the canonical decomposition of X (with respect
to Q) we have

X=A+M= <A+ i /th}?(s)d[M,Bk]s> + M.
k=10

Since M is a Q-martingale and (A + >hy gh;?(s)d[M, B¥,) is a sum of bounded variation

processes (P-almost surely and so also Q-almost surely being @ absolutely continuous with respect
to Q) X is a Q-semimartingale with canonical decomposition (A+ >, _, fgh?(s)d[M, B¥,) + M.

Theorem 5.29. Under the hypotheses of Theorem 5.26 we have that
~ t
Bf=BF - / hi(s)ds
0

s a Brownian motion with respect to the probability Q.

Lemma 5.30. Under the hypotheses and the notations of Theorem 5.26 we have that the quadratic
variation of M (with respect to P ) and of M (with respect to Q) coincide.

Proof. We want to prove that (M7 — [M]t)D;Q is a IP-local martingale since, by Lemma 5.27, this
implies that M7 — [M]; is a Q-local martingale. The thesis follows from the definition of quadratic
variation for local martingales.

By Ito formula we have that

. . - . 1 .
d((M? — [M]) D) = 2M, DAM, — DPd[M], + (M7 — [M]t)dD?-FgQD?d[M]t—i—

+2Md[M, D) =2M, DPAM,; — 2 " DRh2(t)d[M, BY, + (M — [M],)dD +
k=1

+2Mtd[M,Z / DRrP(s)dBE
k=10

t

n n
=2M,DPdM;— 2 " D@Ehi(t)d[M, B¥),+ (M7 — [M],)dD + > 2M; DP2hi(t)d[M, B, =
k=1 k=1

=2M, DM, + (M7 — [M],)dD}.
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This proves that (M7 — [M];)D® is a P-local martingale and so M7 — [M]; is a @Q-local martin-
gale. g

Remark 5.31. Lemma 5.30 easily generalize to the case of quadratic covariation of two martin-
gales.

Remark 5.32. By Remark 5.28, Lemma 5.30 and Remark 5.31, we have that if X and Y are two
semimartingales with respect to IP (and thus also with respect to Q) the quadratic covariation
[X,Y] with respect to P coincides with the quadratic covariation with respect to Q.

Proof. Since Bf is a P-martingale (and so a P-local martingale) and

B Z / s)dBY Z / B Bk,BT]Szi1 /O th,.(s)ék,,.ds: A th,(s)ds,

r=1
by Theorem 5.26, BF are Q—local martingale. Furthermore the quadratic covariation of BF with
respect to @ are equal to the quadratic covariation of B* with respect to IP and so

[B¥, B";=[B*, B"]; = 0y ,t.

The thesis follows from Levy characterization of Brownian motion. O

5.2.3 The Novikov condition

In general we have not a direct definition of the measure @ (since it is difficult to describe what
a measure on an infinite dimensional space) what it is usually done is to defined the measure @Q
through the process D? i.e. we defined

3%? =DR=¢(h texp(Z/hk dB’L—/ (Z |h(s |2>ds>

For a generic h(s) € L{ (R, R™) (P-almost surely) the process E(h); is only a local martingale.
On the other hand, by Theorem 5.22, the process £(h); can be the density of some a locally

absolutely continuous probability measure @ only when £(h); is a continuous martingale (or when
@ is absolutely continuous with respect to IP, £(h); must be also uniformly integrable). We present
here some sufficient criterion for having such a property.

Theorem 5.33. Suppose that h(s) € LE,.(R4, R™) almost surely, then E(h); is a martingale if for
any t >0 we have one of the following conditions hold:

1. E[exp(ifgxz_l (hi(s))?ds) ]| <400 (Novikouv’s criterion);

2. Zkfohk s)dBE is a (real) martingale and ]E[exp( SO 1f0hk dBk)] <400 (Kazamaki’s
criterion).

Furthermore if one of the two previous conditions hold for t=+o0c (when h(s) € L*(Ry,R™) almost
surely) E(h)t is a uniformly integrable martingale.

Lemma 5.34. Let X be a positive random variable on a probability space (2, F,P) and consider
CC LY, F,P) such that there is 3 € Ry and, for any Y there is a o-algebra o(Y) C Fy C F, for
which, for any A € F we have

E[|Y [Ls] < (E[LJE[X | Fy]))”
then the family C is uniform integrable.

Proof. We recall that if X is a random variable for any € > 0 there is §. > 0 for which for any
F € F such that P(F) < 4., we have E[| X |[If] <e.
Consider K >0 and let A={|Y|> K} then we have

E[4]Y]] _ (E[LE[X|Fv])? _ (E[laX])?
P(Y|>K) S == S -
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B
Fix € > 0, then there is K. such that % <d.1/5, and by the previous inequality we get

P(A)=P([Y|>K)<0d.1/s.
and thus

Elgy>x Y | < (Elgy s>k BX 7] < Ely s> x) X)) < (6/P)P =e. O

Proof. We prove the case with finite ¢. The case ¢ =+o00 can be proved in a similar way.
We prove that 1.=2. and that 2. implies that £(h) is a (real) martingale.

If 1 hold then
t n 2 t n
hk ds E|exp / hk < +00
B [ 2 o N

Z / IRE dBk <8
Since the quadratic variation of Y7, [ (s) s)dBY is in L?(Q), we get that > Johu(s) (s)dBEF is a M2
martingale, and so a real martingale (and not only a local one). We recall that £(h); is a positive

local martingale and thus (by Fatou lemma) it is a supermartingale. Since £(h)o=1 by the
supermartingale property

E[E(h)4] < 1.
Thus, by Cauchy-Schwarz inequality, we have

t n 1/2
E exp<§§ /0 hk<s>dB§> <(E[6(E>t]>1/2< exp< / > (it stﬂ)

n 1/2
<< exp( / Z (hi(s 2ds>]> < 400.
This prove that 1.=2. =t

Suppose that 2. holds. We recall that if £(h); is a positive local martingale, and so it is a (real)
martingale if and only if E[£(h);] =1. Writing L; = >hy 0 hi(s)dBE, Ly is a (real) martingale

and since exp(%x) is a convex function we have exp(QLt) is a submartingale and thus, for any

1 1
exp<§LT/\t) < E|:exp<§Lt>‘FT/\t:|-

Let 0 <a <1 and consider a localization sequence T/ for the local martingale £(ah);. For any
A € F; we have

stopping time T" we get

E[LAE (ah) s nd < (IE[S(E)T;At])‘IQ(]E{HAeXp( “aLil“ )] )1_“2 <

1 (1-a?) 2 1 2(1—a)a
<(elmee (gmen ) | ) < (| (5 o)

where we use that E[E(h)ran] <1 (since E(h); is a supermartingale and Jensen inequality applied
a-+1
to the function x 2« (being “2—-21 >1). By Lemma 5.34, this proves that the family of random

variables {€(ah)ranrt}nen is uniformly integrable and so €(ah)ran: — E(ah) in LH(S2). Thus for
any t > s we get
E[€(ah)¢|Fs)= lim E[E(ah)rand Fs)= lim E(ah)rans=E(ah)s.

n— oo n— -+oo

Thus for any a € (0, 1), the process €(ah); is a real martingale.
Finally we get

1= Ble(ah)) < i) B Lew( L2221 ) ) <

<(]E[5(h)t])“2<]E{exp<%Lt)} )2(1a)a < +o0,
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and so taking the limit a — 0 we obtain
1< E[E(h)]
and thus the thesis. O

5.2.4 Some applications

5.2.4.1 Cameron-Martin theorem

The Cameron-Martin theorem can be seen as a special case of Girsanov theorem when the process
h e L?*(R4,R) is deterministic.
In this case £(h); is a uniform integrable martingale. Indeed, for any t € [0, +00] we have

]E[exp(%/ot|h(s)|2ds>] gexp@/omm(s)ﬁds) < 400,

So by Novikov condition £(h); is a uniform integrable martingale. This means that the measure

Q" defined as
dQ% s (/t 1 [t
L :=exp hsst——/ h(s st)
T [ n(s)aB. 5 [ (h(s)

is absolutely continuous with respect to P.

Consider a function F: C?([0, 7], R) — R which is measurable (with respect the Borel o-algebra
of CY([0,7],R)) from the space of continuous functions from [0, 7] into R. We can compose the
function F' with a Brownian motion B; obtaining

F(B[O.,'r]) :F(B>7

(where we denote by By ;] the restriction of Brownian motion with respect to the time ¢ € [0, 7])
which is a random variable on defined on the space {2 (since the Brownian motion can be seen
as a measurable function from (2 into the space of continuous function C°(R4,R)). The random
variable F(By ,]) is measurable with respect to 72 = o (Bs|s < 7) (since we consider simply the
restriction of B on the times ¢ € [0, 7]).

Theorem 5.35. Let F, h are as above and suppose that F(Bjg ;) € L*(2) then

F((B. _ A'h(s)st>[O,T])exp(/oth(s)st %/Ot(h(s)ﬁds)].

Proof. By Theorem 5.29 the process B; = B; — foth(s)st is a Brownian motion with respect to
the measure Q" and so

Ep[F(Bp,-) =Ep

Ep[F(Bjo,n)] = Eq:[F(B,.)]-
The theorem follows from the definition of Q" and By. O

Thanks to Cameron-Martin theorem above it is possible to derive a integration by parts formula
which is quite important in the derivation of Malliavin calculus. We give here a special simple
version of it.

Corollary 5.36. Let G:R— R be a C' bounded function with bounded derivative, then, for any

t>0, we have
]E{G(BQ( /0 th(s)st)] :]E[G’(Bt)< /O th(s)ds)] (5.6)

Exercise 5.1. Fix h € L2(R4, R) and Ao > 0, prove that

t
exp(A()(sup/h(s)st
t>0lJo

>>€L1(Q).
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Proof of Corollary 5.36. The function Fg: C°([0,t], R) — R defined as vy~ F(7):=G(y(t)) is
a continuous and bounded function. We can apply Cameron-Martin theorem obtaining

]E[G(Bt)]:]E[G(Bt—)\/Oth(s)st)exp</\/Oth( JAB, —%2 (h(s))st)]. (5.7)

0

Consider Ao > 0 then, for any 0<|A|< Ao

‘G(Bt—/\/Oth(s)st>exp<)\/()th( JAB, — *22 0 (h(s))2d3>‘<

s

which by Exercise 5.1 is in L'(£2). Furthermore, for any || < Ao —¢& (where A\g > e > 0) we have

8,\<G<Bt)\/Oth(s)st)exp<)\/0th( )dB, J\; 0 (h(s))st))‘ <
< G’(Bt—/\/Oth(s)st>exp<)\/Oth( JAB, — *2 st)/ h(s)dB,
+’G<th /O th(s)st>exp<)\ /O th(s)st—%Q /0 t(h(s))2ds>H< /0 th(s)st—)\; /O t(h(s))st)
JRCE)CIREEE

t
<cx0,a<||G|Lm+|G'an)exp(Ao(sup [ nsjan. ))
0

t>0
where we use that there is a constant C, . such that for any x>0, :rexp(()\o —e)x) < Chyy,cxp(Aox).
Since both G(B, — Afy h(s)dB,)exp( Af, h( 5J (h(s))*ds ) and its derivative with

respect to |A| < Ao — e are uniformly bounded by a LI(Q) funcmon, we can exchange the deriv-
ative operation with the expectation in expression (5.7). This means that taking the derivative
in 0 with respect to A at both sides of expression (5.7) we get

<||G||Looexp<)\0<sup

t>0

<

<G~ + |G'||Loo>exp(uos>(sup

t>0

t

0= _]E{G’( B) /0 th(s)st] + ]E[G(Bt) /

0 h(s)st]. O

Remark 5.37. A particular case of expression (5.6) is when h(s) = Ijg 4(s) which gives
E[G(B:) By =tE[G’(B¢)],

AG(x)x'yt(dx):t[RG’(x)fyt(d:r)

which is equivalent to write

where y,(dz) = ﬁexp( —;—j)

5.2.4.2 Law of hitting times for Brownian motion with drift

Using the Cameron-Marint theorem is it possible to hitting time of the Brownian motion with a
drift c€ R. Let a >0 and consider

Ty.e=inf{t>0, B+ ct=a}. (5.8)

Lemma 5.38. (Reflection principle) Let B; be a Brownian motion and a >0 then

IP((suth) > a) =2P(B;>a).
s<t
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Proof. The stopping time 1, :=1, o then the process X, = Br, ++ — B, = Br, 1+ — @ is a Brownian
motion independent of the o-algebra Fr, (Proof for exercise). The we have

P (supB:|=2a) = P [supB:|=>a,Bi>a |+P( (supB: \=a,B:<a
s<t s<t s<t

= P(Bi>a) +IP<<suth) >a, By <a>

s<t

P(B, > a) +IP<<suth) >a, X, 1, < 0)
s<t
— P(B;>a)+P(Ta<t, X1, <0)

where we have that the equality of sets

e ()=

Since {1, <t} € Fr,, X¢_r, is independent of Fr,, and X;_1, has the same distibution of —X;_1,
(being X a Brownian motion) we get

]P(Tt‘z gt; thT,l < O) :]P(Tt‘l < t; thT,l > O)
and so
]P(Tagt,thTa < 0) :]P(Tagt, Bt —a> 0) :]P(Tagt, Bt > (Z) :IP(Bt > (Z) :IP(Bt > a). O

Corollary 5.39. We have that the density of the random variable 1;, o is

a  _2
2783

I, 0(t) = Lo, 100)()

Thanks to Cameron-Martin theorem we can prove that:

Theorem 5.40. We have that the density of the random variable 1, . is

fT (S)—]I (S)Lexp Ca_lc25_a_2
@ [O, (XJ) 27'(53 2 2s )
Proof. Consider

hy(t) = cljo,u(t),
and the functions

Fﬁ,a(w) = ]I{supsg u(y(s)+es)>a}

Fu,a(7) = Lsup. < ov(s) 2 a}-
It is clear that

FU,G(7<->+ / ﬁ(s)ds)=FU,a<v<->+c->=Fﬁ,a<w>.

Thus we have that

P(T, <U) 1P<51<13 (Bi+ct) > a) —E[F§ o(B)] =

=E[Fy o(B.+c-)]= E[FU,G(B.)exp<c/0tst - %c%” =

E{FUya(B.)E[exp<c/otst - %&t) ‘]-‘Ta] } - E{FU,Q(B.)eXpG/OTQdBS _ %&Taﬂ _

:]E{]I{Tagy}exp<cBTa — %021;)] = ]E[]I{TagU}eXp<ca — %CQE)]

v 1, Vo a 1, a®
— ; J1, o(t)exp ca—ict dt = ; 27Tt?’exp Ca_§Ct_2_t dt. 0




Chapter 6
Stochastic differential equations

6.1 Definition

Fix a probability space (Q, F,P) and two natural numbers n, m € N, and consider two (Borel-
measurable) maps

pi=(pF)k=1,... m: Ry x R™ = R™,
o= (Uf)k:L Com=1,... n: Ry x R™—R"*™:=Mat(m,n).
Let B=(B!,..., B") be a n-dimensional Brownian motion and consider the filtration
Fi=0(Fo, FP),
where FP = 0(B,|s <t) is the natural o-algebra generated by the Brownian motion B and Fy is
some o-algebra independent of FP for every ¢t >0 (i.e. Fy is independent of B).

Definition 6.1. Consider Y =(Y},...,Y™) an Fo-measurable random variable taking values in
R™ and let X :=(X1,..., X™): Ry x Q—R" be a continuous process adapted with respect to the
filtration {Fi}ier, (generated by Fo and FB). Furthermore, suppose that for the process X; we
have, for any t>0,

t t
[ ks, o, [ ks, XPds < oo
0 0

almost surely. Then we say that X; is a strong solution to the stochastic differential equa-
tion with coefficients (u,0) driven by the n-dimensional Brownian motion B and with
initial condition Y if X, is adapted with respect to the filtration U(Y,ftB) and, for any t >0 and
k=1,...,m, we have

t n t .
th:Yk+/ uk(S’XS)dS+Z / O’f(S,XS)dB;
0 = /o

Remark 6.2. If X, satisfies Definition 6.1 we, also, say that X; satisfies the SDE (pu,0) with initial
condition Y. If X, satisfies the SDE (4, 0), then X; is a continuous semimartingale and we write

dXt:,u(t,Xt)dt—f—O'(t,Xt)-dBt, XQ:Y
Remark 6.3. Hereafter, we denote by
L°(G)
the set of all functions that are measurable with respect to the o-algebra G.

Remark 6.4. By Definition of strong solution we get that there is a function F: R, x L°(Fp) x
C°(R,R"™) — R such that, for any 7> 0, the restriction F'[j ,: [0, 7] x L°(Fo) x C°(R4,R") = R
is B([0, 7]) ® B(L°(Fy)) ® FP-measurable (i.e. the map F is progressive), and

Xi=F(t,Y, Bjo,y)-

6.1.1 Some examples

6.1.1.1 The geometric Brownian motion
In the case m=n=1, consider the following SDE
dX;=AX dt+CXdB;, Xo=Y (6.1)

where A, B €R. Solutions to equation (6.1) are called geometric Brownian motions. It is possible
to find a function F: R4 X R x R — R such that

X:=F(t,Y, By),

71
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(note that, in this case, the solution F' depends on the Brownian motion B; only at time ¢ on not
on the whole interval [0, ¢]). Indeed, suppose that F' € C*(R4+ x R x R, R) then, by Ito formula,
we have

dX,=dF(t,Y,B) = <8tF(t, Y, B+ %&%F(t, Y, By) )dt +0pF(t,Y, By)dB,.

If we want that X;=F(t,Y, B;) is solution to equation (6.1), then we must have

Y = F(0,Y,By), (6.2)
AXt:AF(tayaBt) = <8tF(tayaBt)+%a%F(t5Y5Bt)>v (63)
CX,=CF(t,Y,B,) = O0pF(t,Y,B). (6.4)

From equation (6.4) we get
F(t,Y,By) =G(t, Y)GCBta

for some function G: Ry x R — R. From equation (6.3) we obtain

D.G(t,Y) + %C2G(t, Y) = AG(LY),
and so
_Le2
Glt,Y) = H(y) A3
Finally, by equation (6.2) we get H(Y) =Y and therefore

F(t,Y, By) = ye A3 e

This means that equation (6.1) admits a strong that has the form

(A—%C2)t+CBt

X,=Ye (6.5)

Remark 6.5. By Theorem 6.16 below, expression (6.5) gives the unique strong solution to equa-
tion (6.1).
6.1.1.2 Ornstein—Uhlenbeck process
Let m=n=1 and consider the SDE

dX;=AX,+CdW,, X;=Y, (6.6)
where A, C € R. The solutions to equation (6.6) are called Ornstein—Uhlenbeck processes. We can
provide an explicit solution to the previous equation. Indeed, consider

Xt = e*AtXt,
then we have
dX;=—Ae X, dt + e~ AdX, = —Ae A X dt + Ae= X, dt + Ce 4t B, = Ce~A'dB,.

Since Xo=e 40X, = Y, we get that

~ t
X =Y+ C’/ e~ 4sdB,.
In this way, we obtain . 0
X, =eMY +C / eAt=9)4B,. (6.7)
0

From the previous expression it is clear that equation (6.6) has a strong solution which is given by
expression (6.7). In this case the function F' of Remark 6.4 is given by

t
F(t,Y,B[O,t]):eAtY+/ eA(t*S)dBS:eAtY+ClimO > e AUTR(B, — By, ).
0 " ern\ {0}

Differently from the geometric Brownian motion case, the function F' giving the solution to Orn-
stein—Uhlenbeck process equation depends on the values of Brownian motion B on the whole
interval [0,¢] and not only on the Brownian motion B, evaluated at the final time ¢.
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6.2 Uniform Lipschitz case

6.2.1 Existence

Definition 6.6. We say that p and o (as in Section 6.1) satisfy a uniform Lipschitz condition
(or assumption A) if there is a constant K such that, for any k=1,...,m, j=1,...,n and any
t>0, we have

[kt )| SK(L+[z]),  |of(t, o) <KL+ |z)),
|uk(t7$)_uk(tay)| <K|l‘—y|, |O-jk(t7‘r) _O-jk(tay)l <I(|y_$|

Remark 6.7. Let A >0 we define the space
Xy :={X|X continuous adapted process, || X || <400},

where

||X||§:=supe-2ATE[ sup |Xt|2].
>0 0<t<T

=

Furthermore, if Y € L?(, Fo, P) we write
Xy := {X S X)\|X0: Y}
Exercise 6.1. Prove that (X, ||||») is a Banach space (i.e. ||| is a norm and X, is complete with respect
to it). Furthermore, show that for any A >0 we have

IX112 < E{fgg{e%\xﬁ} <IX13 )2

Theorem 6.8. Suppose that (u,0) satisfy assumption A, and suppose that Y € L*(Q, Fo,P). Then
there exists Ao >0, for which there is a continuous adapted process Xy strong solution to the SDE
(p, o) with initial condition Y such that, for any A\ > Ao,

E|sup (e 2| Xy|?) | < +oo0. (6.8)
20

Furthermore, Xy is the unique strong solution to the SDE (u, o) with initial condition Y satis-

fying (6.8).

Theorem 6.9. (Banach fixed point theorem) Let (X, d) be a (complete) metric space and let
T:X — X be a map such that there is 0< k<1 for which, for any x,y € X, we have

A(T(2), T(y)) < kd(z, ).
Then the map T admits a unique fixed point, i.e. there is only one T € X such that
T(Z)=1.
Furthermore, for any xg€ X, we have that the sequence {x,}nen C X, defined by recursion as
x1=T(x0), Xnt1=T(zn),
converges to T.

Proof. The proof can be found in [6] Chapter 9 Theorem 9.23. O

Proof of Theorem 6.8. By Exercise 6.1, for any A’ >0 and Y € L*(Q, o, P), the set Xy, with
distance d(-,-) = ||-—||x is a complete metric space. Furthermore, if X € XY, then

E| sup e 20X | < || X1,
>0
and thus X satisfies the condition (6.8) for A=2)". This means that if we prove that there is a

unique X a strong solution to the SDE (y, o) and initial condition Y such that X € &Y, for any
A > Ay Theorem 6.8 is proved with \g=2\.
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For this reason, we will prove that there is Aj > 0 such that for any X' > Ay the SDE (u, o)
admits a unique strong solution in Xy.

In order to prove the previous statement we will use Banach fixed point theorem. Consider the
map T defined on the set of continuous adapted processes on R™ and taking values in the set of
continuous adapted process on R" such that for any continuous adapted process X we have

. n .
OO =+ [ ks Xgds+ Y [ k(s X, (6.9)
0 — Jo
for k=1,...,m. Since u,o satisfy assumption A, we have that

|1M(s, X S KA +[X),  ofi(s, X)P < K21+ X)),

and so the Riemann-Stieltjes integral and the Ito integrals in equation (6.9) are well defined, and
thus T is well defined. Furthermore X is a strong solution to the SDE (u, o) with initial condition
Y if and only if X =T(X) and thus if and only if X is a fix point of the map T'. Thus, if T satisfy
the hypotheses of Banach fix point theorem on X3 for X’ big enough, we can exploit Banach fix
point theorem for proving that 7" has a unique fix point in XY, for A’ big enough, concluding in
this way the proof.

In order to apply Theorem 6.9 we have to prove that for any A > Ay there is k < 1 for which
for any X, Z € XY, we have

1 T(X)eXxy,

2. |T(X)=T(Z)In< kX = Z]x-
Fix k=1,...,m, and X', T >0, then we have
r 2

t
e~ 2N'TE| sup /ak(s,Xs)stj
> [ o

t<T |5

- 2
(Doob martingale inequality) < e TR Z/ o¥(s, Xs)dB!
—1 Jo

n T

(Ito isometry) < e TR E / |UJ]'€(S,XS)|2dS
. 0
J=1

n T
(Assumption A) < €2>‘/T<Z IE[/ K2(1+ |XS|)2ds}>
k=1 0

T
< K> / e~2NTE[1 4| X,|9ds
0

nK2 T ’ ’
< — +2nK2/ e NI =38)( =25 sup | X,|? | )ds
A 0 l<s

nK2 T ’ ’
< — + 2nK2</ e 2 (Ts)ds> supe 22| sup | X,|?
A 0 s>0 <5

nK2 nK2 _ o)/
< T+T(1 —e 2T X3

nk?
52 14 1x R,

where we used that foTe’Q/\,(T*S)dS < fOTe_QXSds. This implies that

<

n . 2 n t 2
> / ok(s, X)dBI|| = supe VTE|sup / ok (s, X,)dB?
k=170 A T=0 t<T =1 YO0
nK?
< (L + X [1R)-

)\/
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We have also that, for any X' > 1,

i t 2
6—2,\/T]E sup /uk(s,Xs)dS ]
t<T 0
< 672,\’T1E sup (/ |‘u S, X |dS)‘|
t<T
, 2
< TR (/ (s, Xl ) |
vy ([T —s]) ’
< e 2NTR / ( k(s, Xs)|d
; ( Rt X s
(Cauchy-Schwarz ineq.) < T;ds e TR T(1+|T*S|)2|Mk(s X)|ds
o T+[T—sP? 0 ’
T
< 4K%artan(T) / e NI (L4 T — 5|2 e (1 + E[| X,[2) }ds
0
T !
< 2K27r</ e A <T‘s)(1+ITsIQ)dS)(HHX“i')
0
+oo ,
< 2l [ e o+ xR
0
CK?r
< 5 HIXR),

where we use that

T aw 2 1 +Oo § 1 [hee 2 c
/O e (1+S)dS<W/O <1+4/\,2>d3<ﬁ/o € (1+5)d3<W7

for some constant C' >0 (not depending on A’ >1). This means that, for X' > 1,

m

7Ol < 32 ITCO

uF(s, Xs)ds

\/nK2 \/CK T

which is bounded when X € &3, This prove that T(X) € XY, when X € XY, for X' > 1.

Suppose now that X, Z € XY, fix k=1,...,m and X' > 1, then, using the same steps as above
and the second condition of assumption A, we get

2\

<||Y||L2 o+ (1+ IIXIIA')>,

r 2
n

t n
e 22TE| sup /0 5, X,)dBJ — /0 s, Zs)dBJ
Z 0 J g J

t<T |5

n T
< 1| 3 [ (of(s, ) (s, 200
_j:1 0

T
KQ/ e~ 2TE[|X, — Z,|%ds
0

N /AN
i

HX Zxy-

/
)
==
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Furthermore, we have, for \' > 1,

¢ noopt
k k
w(s, Xs)ds — E /u (s, Zs)ds
J = Jo

Using the previous inequality, we get

e—2NTR <X |5

sup X 2N

t<T

2‘| CK27T 2

m

I7X) -T(2)|x < 3

k=1

[ s xXods = [ ks, Z)as
0 0

2\

+Z Z/aj’-“(s,Xs)stj—Z/ajl-“(s,Zs)ng
k=1 ||j=1 0 j=170

mvn K2 + mvVr2 K2C
< ( N [X = Z]|x.

2\

This means that if A’ >max (1, m*n K2 +m?n? K?C) we have that there is k <1 for which

IT(X) =T(Z)|x <EX = Z]|x 0

6.2.2 Uniqueness

It is possible to improve the uniqueness result proved in Theorem 6.8.
First, we introduce the notion of weak solution of a SDE.

Definition 6.10. Let B; be a (R" dimensional-)Brownian motion on (0, F,P) and let {J;}ier,
be a filtration. We say that By is a J;-Brownian motion if

1. By is adapted with respect to {Titier,;
2. for every >0, the sigma algebra o(B; — B, |t >T) is independent of J;.

Remark 6.11. If J,=F;= a(}'o,}'té) (i.e. the filtration introduced in Section 6.1), then the n-
dimensional Brownian motion B is also a J; = F; Brownian motion.

Definition 6.12. Let (2, F,IP) be a probability space with a filtration {Ji}ier,. We say that a pair
(X, B) of (Ji)-adapted continuous processes is a weak solution to the SDE with coefficient
(1, 0) with initial condition Y if B is a n dimensional J;-Brownian motion and if, for any
t>0and k=1,...,m, we have

t n t )
X[“:Yk+/uk(3,Xs)ds+Z/aJ’-“(s,Xs)ng. (6.10)
0 —.Jo

We can introduce a notion of uniqueness for weak solution.

Definition 6.13. Let (p,0) and Y as in Section 6.1 and (0, F,P) and {Ji}ier, as in Defini-
tion 6.12, we say that the SDE (u,0) with initial condition Y satisfies the pathwise uniqueness if,

for any n dimensional J;-Brownian motion B, if (X,B) and (X', B) are two weak solutions to
the SDE (p,0) with initial condition Y we have that X and X are indistinguishable.

Remark 6.14. It is important to note thatr Definition 6.13 must hold for any probability space
(Q, F,P). In other words if (u, o) is an SDE satisfying pathwise uniqueness for any probability

space (€2, F,P) and filtration {7;}+cr,, and weak solutions (X, B) and (X', B) such that Xo=X{
then X and X’ are indistinguishable.

Remark 6.15. Suppose that a SDE (u, o) with initial condition Y satisfies pathwise uniqueness
and it admits a strong solution, then the strong solution is unique (if we identify processes if
they are equal up to set Q; C Q2 of measure 0). This also implies that any weak solution (X, B) is
indistinguishable by the (unique) strong solution X driven by the Brownian motion B.
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Theorem 6.16. Suppose that (u,0) satisfy assumption A, Y be a Jp-measurable random variable,
then the SDE (p, o) with initial condition Y satisfies pathwise uniqueness.

First we recall the (integral) Gronwall lemma.

Lemma 6.17. Let f:IR. — Ry be a (locally bounded) measurable function from Ry into Ry and
a, B € R, such that

t)<a+ /O tﬂf(s)ds

then we have

f(t) <aexp(6t)

Proof. Exercise. O

Proof of Theorem 6.16. Let (X, B) and (X', B) two weak solutions to the SDE (yu, o) with
initial condition Y. Consider the continuous adapted process Z; = X; — X{ and, for any ¢ € Ny, the
stopping time

Ty=inf{t,|Z:| > ¢}.
Then we have that the process | Z/*| < ¢ (since Zo=0) and it satisfies the differential relation
dZ{ = (u(t, X{") = u(t, X'1))dt + (o8, X[") — o (t, X)) - dB,.

By Ito formula, using the fact that Zy =0, that fo o(t, X — o(t, X'T1)) - dBy is an L2() mar-
tingale and that ZtT" is bounded, we get

E[|Z"’| = Z / Bt X i XI) 28T s+ (of (s, X[ = of(s, X)) ?ds |-

j=1
Using assumption A and Young inequality we obtain
t
EZ{P < 2m (K +n&?) [ EZIP s
0

If we denote by fo(t):=E[|Z]*|?] the previous inequality is equivalent to write

ity <2+ k) [ 1ts)ds

which, by Gronwall lemma for a =0 and §=2m(K +nK?), implies that f,(t)=0. This means

that, for every ¢ >0, ZT“ 0 almost surely, and, since Z; Tt is continuous, that the process Z7 is
indistinguishable from 0. Since T; > 0 almost surely, this implies that 7y = 400 almost surely and
that Z =X — X' is indistinguishable from 0. O

6.3 Weak solutions and Girsanov theorem

6.3.1 Tanaka counterexample

We have introduced strong solutions introducing a distinction between them and weak solutions
(i.e. solutions which are not necessarily adapted to the driving Brownian motion).

We now propose an example which does not admit strong solutions. Consider n=m =1 and
let X be a one-dimensional Brownian motion and consider

t
Bt:/ sign(X)d X,
0
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where sign(z) =1 if >0 and sign(z) =1 otherwise. By Lévy’s characterization of Brownian motion
the process (B;); is again a Brownian motion. Moreover, we have

¢ ¢ ¢
/ sign(X;)dBs = / sign(X;)2d X = / dX, =X, — Xo,
0 0 0

and so X satisfies the SDE
dXt = SigH(Xt)dBt, (611)

with B as driving noise and o(x) =sign(z). This coefficient is not Lipschitz (not even contin-
uous...), and thus we cannot apply Theorem 6.8. Furthermore, if we consider the initial condition
Xo=0, then we have that both (X:);>0 and (—X;):>0 are solutions, i.e. path-wise uniqueness do
not hold for (6.11).

However, solutions of the SDE (6.11) cannot be arbitrary. Indeed, let (X, B) be any solution
to equation (6.11), then we have that X; is a martingale and also

[X,X]t:/o (sign(Xs))2ds=t.

This means that, by Levy characterization of Brownian motion, the process X; — Xy must be a
Brownian motion. We call this kind of uniqueness, uniqueness in law. More formally:

Definition 6.18. Let (p,0) and 'Y as in Section 6.1, we say that the SDE (u, o) with respect
to the initial condition Y satisfies the uniqueness in law property if for any weak solutions

(X,B) and (X', B') such that Xo~ X{~Y then X ~ X' (i.e. the processes X and X' has the same
law).

Remark 6.19. If X and X’ are two (continuous) processes we say that they have the same law
if, for any (Borel)-measurable bounded function F: C°(R4,R™)— R, we have

This is also equivalent to say that for any Borel measurable set A € B(C°(R4,R™)) (i.e. CO(R4,
RR™) is equipped with the topology of uniform convergence on compact sets) we have

P(X. € A) = E[I4(X)] = E[I4(X')] = P(X' € A).

We want now to prove that if (X, B) is a weak solution of the SDE (6.11) with initial condition
Xo=0, then the process X; cannot be adapted with respect to the filtration {]-'tB}t cRr, generated
by B (and thus X; cannot be a strong solution to equation (6.11)).

Recall that if ¢ is a smooth function, by It6 formula we have

t t

gp’(Xs)dXs—l—%/ ©"(Xs)ds.
0

(X)) = p(Xo) +/

0
Take now ¢ = @, even with o.(z) = (¢ + 22)*/2. Then @.(z)=xz(c +2?)~ /2 and

9

iz _ 2\—1/2 _ .2 2\—3/2 _
o (r) = (e +2°) (e +27) I

Suppose that X; is a solution to equation (6.11) and consider the process Z7 = f; PL(X5)d X we
have, for any 7 >0,

]E[sup |Zf — Bt|2]

t<T

E|Z: - B, |*= ]E{/O |pl(Xs) — sign(X;)|?ds

/(JTE[|<P2(XS) — sign(X,)[*|ds — 0,
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as € — 0 by dominated convergence, since p.(x)=xz(e +22) /2 = sign(z) if £#0 and is uniformly
bounded so the pointwise (in s) convergence E|p.(X;) — sign(X;)| — E[lx,—o] = P(X;=0), since
X, has the law of a Brownian motion, allows to conclude.

As a consequence, there is a subsequence €, — 0 by subsequences Z;" — B; uniformly almost
surely in any bounded interval. Since ¢, is even, we also have

I I
Zi = 0uX) =5 | L0 s = pe(1Xi) =5 [ 1K D

Therefore (Z7);>0 is actually a function of |X;|. We conclude that (B;);>0 is measurable (and

adapted) with respect to the filtration le‘ =0(|Xs|, s <t). In particular, this proves that (X¢)¢>0
cannot be a strong solution to the SDE (6.11) since otherwise we will have the following inclusion
of completed filtrations

(F)i20C (FP)ix0 C (flxl)@o

which is absurd since knowing the modulus of a Brownian motion does not allow to recover its sign.
We must conclude that X is strictly a weak solution. And that this holds for all weak solutions.
So no strong solutions exists.

What we have discussed is Tanaka’s example of a weak solution of an SDE with bounded
coeflicients which is however not strong. This shows that some regularity of the coefficients is
needed to ensure existence of strong solutions.

6.3.2 Building weak solutions with Girsanov theorem

We return now to the concept of uniqueness in law introduced in Definition 6.18.
Let (X;);>0 be a n-dimensional Brownian motion starting at Xo=y € R™ and b: R™ —R™ a
measurable vector field growing at most linearly at infinity: i.e. there is a constant K such that

lb(x)] < K (14 |z]).
Then the process

t t
Ztexp< / b(X,)dX, f% / |b(XS)|2ds), £>0, (6.12)
0 0
is a positive local martingale (and therefore a supermartingale).
Lemma 6.20. (Extended Novikov’s condition) Consider a (progressive random) process 6. €

LIQOC(R+,R”L) almost surely and let X; be a m-dimensional Brownian motion. Suppose that there
is a partition m CII(]0, +00)) such that, for any tp € w\{0}, we have

tk
E[exp<l/ |95|2ds>}<+oo, (6.13)
2 th—1
t 1 t
EtX(G‘)eXp</ GSdXSf—/ |6‘5|2ds)
0 2 0

is a real martingale (and not only a local martingale).

then the process

Proof. Since £~ (0) is a positive local martingale, and thus a positive supermartingale, proving
the lemma is equivalent to deduce that, for any ¢ >0, we have

E[EX(0)] =1.

Let t <t then we have that

k
EXO)=T] &(0Tp, _11)())-
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By Novikov’s condition we have that & (0.1, _)(-)) are real martingales, furthermore
E(0Xy, _,4,)(-)) is Fi, measurable. Thus we get

k
EEX(©0)] = E H (0 Lpe, _1t,)()

k

[T &(000, 00

r=1

=EE

k‘%
,..»—A

= E 5t(9~1[[t7.lt,.>(~))1E[5t(9~H[tk1tk>('))|ftk1]1

I 03
|
-

= E 5t(9~]1[n1tr)('))5tk1(9~H[tk1tk)('))]

o

= E|]] &6 tT1tT>(-))1E[5t(9~]1[tH,tkn(-))lftmll

ﬁ
[l
—

H (0L, e, (1))

1T
ﬁ

e
|
)

R‘ %
Il
[\3 =

:EH 91[7115)))

— EE0T0.()] =1,

where we used the fact that for any r > 1 we have &, _ (6.1, _,)(-)) =1. O
Lemma 6.21. Let X; be a m dimensional Brownian motion, starting at Xo=1y € R™, and let b:
R™—R™ be a measurable map growing at most linearly at infinity. Then Z; defined in (6.12) is

a real (not only local) martingale.

Proof. We want to apply Lemma 6.20 to the process 6, =b(X}).

Fix t >0 and 0 >0, then we have
r 2 pt+4s
exp(KT/ (14 |XT|)2dr>]
L t

E[exp@[Hw(XT)I?dr)]
:exp< 3I2(2[+5(1 bt X, - x|2)dr>]

N
=

N
&

[ 2 2 prt4d
< Elex (W)exp(%/ 5|er|2%>]
L t
[ 2 t+0 2
< E exp M l exp 3K 7"_1"|2 dr
i 2 5/, 2
2 2
< exp(w)E[exp(%MwxP)],

1

! When t =0 we can take § < el

tro K2
. 2 \/ﬁ
6<< 1 ) 1 3K%+ 9Kt+12K.

3K2%t 1 ) 6 K2
* +ﬁ
We consider now the sequence
2 1 1 1 1 1
to=0,t1=—/5—=5,t2=1 e te=1K—
0=0,11 3\/ 352 2 1+<3K2t1>1+ ==t 1+<3K2tk1)1 -

which is finite whenever 36 K2 < ——

can take

and when ¢ > % we
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We have that the seuquence ¢y — 400 as k— 400. Indeed, by inequality (6.21), we have that

te+1 2 2
(3 ) Bl )
t

k

where §p = %, /3% and 0 = (31{1% ) ! . Thus the hypotheses of Lemma 6.20 hold for
e e
EX(b(X))). Since Z;=EX(b(X.)); the lemma is proved. O

We can then consider the measure @@ defined as, for any 7> 0,
Q(A) =E[Z,14], AeF,.

Since by Lemma 6.21 the process Z; is a martingale, @ is a new measure on {2 which is locally
absolutely continuous with respect to P.

Theorem 6.22. Let X be a m-dimensional Brownian motion with respect to the probability P
starting at y € R™, let b: R™ —R™ be a measurable function with at most linear growth at infinity,
and consider the process

¢
Bi=X,—x— / b(Xs)ds. (6.14)
0

Then the pair of processes (X, B) is a weak solution of the SDE (u,0) = (b, I, xm) with (deter-
ministic) initial condition y € R™ with respect the probability Q defined in equation (6.21).

Proof. By Girsanov theorem By is a Brownian motion with respect to the probability Q. Fur-
thermore if the drift of the SDE p(z) =b(z) and the diffusion matrix o(z) = I, xm (the identity
matrix in Mat(m,m)) equation (6.14) is equivalent to the fact that (X, B) satisfies equation

6.3.3 About uniqueness in law

Theorem 6.23. Suppose that the SDE (u,0) with initial condition Y satisfies pathwise uniqueness
property then it satisfies the uniqueness in law property.

Proof. (See also Chapter IX Theorem 1.7 of [5]) Suppose that (X, B) and (X', B’) are two weak
solution of the SDE (x,0) we want to build a new probability space ' containing both the solution
X and X'’ driven by only one Brownian motion B.
Consider
Q'=C'(R4, R™) x COY(R4,R™) x CO(R4, R"),

with the Borel o-algebra F. On )’ we defined a probability law P’ induced by the probability IP,
of the form

]P’(dwl, dWQ, dW3,) = ]P/(dwl|W3)IP/(C1WQ|W3)]P§(C1W3),
such that, if we denote (w1, ws, ws) € ', we have that the process
wi()~ X, wy()~X!, wy()~B~B"

In other words, we want that P’(ws|dw;)Pj(dws) is the law of the weak solution (X, B) € CO(R4,
R™) x CO(R4, R™) and that P’(wsa|dw ) Ps(dws) is the law of the weak solution (X', B') € C(R+,
R™) x CO(R4,R™), i.e. we built a probability space where the weak solutions (X, B) and (X', B')
are driven by the same Brownian motion B = B’.

On this new probability, ws is a Brownian motion and (wy,ws) and (we,ws) are two weak solution
to the SDE (u, o) with initial condition wy(0) =wq(0) ~Y.

Since (u, o) has the pathwise uniqueness property then the processes w; is indistinguishable
from the process ws (obviously with respect to the probability P’), i.e.

wi(+) =wa(+),

almost surely. This means that the processes wy(-) ~wa(-) has the same law but since wi(-) ~ X.
and wsy(+) ~ X/ we conclude that X. ~ X/ O
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We return to the SDE
dX:=b(X)dt + dB,,

discussed in Section 6.3.2. In Theorem 6.22 we prove that (when b has at most linearly growth at
infinity) then there exists a weak solution. We prove now a result on the uniqueness (in law) of
the previous weak solution.

Theorem 6.24. All the weak solutions (X, B) of the SDE

dX; =b(X;)dt +d By, t>0, (6.15)
satisfying for all 7 =0
/ |b(X,)|?ds <oco, a.s., (6.16)

have the same law.

Remark 6.25. Under the hypotheses of Theorem 6.24, we do not require that b has at most linear
growth at infinity but that f 0 |b(Xs)|?ds < oo almost surely. If b has at most linearly growth at
infinity then

/|b 2ds<K/ 1+|X|2ds<2KT<1+sup|X|2>

s<T

which is always bounded since the process X; is continuous.

Proof of Theorem 6.24. Let (X, B) any weak solution of (6.15) satisfying (6.16). Define the
increasing sequence of stopping times (7),)n>1 as

¢
Tninf{t>0:%/ |b(X)|?ds 271},
0

and note that (6.16) implies T,, — oo almost surely. Now consider (Z;);>0 as in eq. (6.12) above
and observe that the process (Q¢);>0 defined as Q; = Z; * satisfies

o - tAT, 1 [tATn ,
Qiat, = Ziap, =exp b(XS)dXS+§ |b(X5)|*ds
0 0

tATy 1 tATy
_ exp<_ / b(X)AB, 5 / |b(Xs)|2ds>.
0 0

Due to the presence of the stopping time, the Novikov’s criterion is trivially satisfied, and we can
define the measure Q™ such that dQ"™|z,=Qn7,dP|z, for all ¢ >0 and under which

. tATy,
BM™ =B+ / b(X,)ds
0

is a Brownian motion. However by the SDE (6.15) we have BS}\)T?? = XinT, so indeed (X¢)i>o is
a Q-Brownian motion in the random interval [0,7),]. As a consequence, for any 7 >0 and any
14(X, B) € F; we have
Ep[1a(X, B)1:<1,]
= Eq[l-<1,1a(X,B)Q; ]

- Eq lngTnllA(X,B)exp</ b(XS)dXSf%/ |b(X5)|2ds>}
L 0 0
r _ ~ t _ T _ ~ T _ T
= Eq 17<Tn]l,4<3§"),3£n)—/ b(BS("))ds)exp</ b(BS("))ngn)—%/ |b(BS("))|2ds) .
L 0 0 0

2ds )

Since BE") is a Q-Brownian motion and B is a [P-Brownian motion we get that

t
Eq 1T<TR1A<B§">,B§">/ b(B§”>)ds>exp</ b(BI")dBM™ — / b(B™)
L 0

= Ep ]ngsn(B)JlA<B,B—/i)(B)ds)exp(/ . )dBs — / |b(B |2ds>}
L 0
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where S,,(B) =inf {t > 0: %fot |b(Bs)[*ds > n} and ha: C(R4; R™) — R4 is a suitable measurable
function depending on A (and on 7). Since the previous proof holds for any weak solution (X, B),
if we consider two weak solutions (X, B®") i=1,2 we

E[14(X®, BM1__ 0] =E[ha(BY)]=Eha(B®)] =E[14(X®, BO)1___ ],
where T,,gi) =S, (X®) for i=1,2. Letting n— oo and using (6.16) to prove that T,Ei) — 00 a.s. for
i1=1,2, we deduce by dominated convergence that
E[La(X™, BW) =E[L4(X®, B)].

Since 7 > 0 is arbitrary this equality holds for all A € B(C(R4;R™)) and therefore we conclude
that Law(X 1, BW) =Law(X?, B?®) (as measures on C(R4;R™)). O






Chapter 7

Local (in time) solutions of SDEs, Markov
property, and relation with PDEs

7.1 Local (in time) solution to SDEs and explosion

7.1.1 Local existence and uniqueness

Definition 7.1. Under the same hypotheses and notation of Section 6.1, we say that the con-
tinuous process Xy is a local strong solution to the SDE (u, o) driven by the Brownian
motion B with initial condition Y, till the stopping time T if X, is adapted with respect to
the filtration o(Y , F;) and if, for any t >0 and k=1,...,m, we have

TA TAt
Xf’T:XfAT:Y’“Jr/ (s, X) ds+2/ (s, Xs)dBY.
0

Definition 7.2. Under the same hypotheses and notation of Section 6.3, we say that the pair of
continuous process (X, B) (adapted to the filtration {Ji}icr, ) is a local weak solution to the
SDE (p, o) with initial condition Y, till the stopping time T if B is adapted with respect
to the filtration o (Y, Fy) and if, for any t 20 and k=1,...,m, we have

TNt

sts+Z/ k(s, X,)dBY.

TNt

Xf7T:Xf/\T:Yk+/
0

Remark 7.3. We can extend the notion of pathwise uniqueness and uniqueness in law (till a
stopping T') to the case of local strong and weak solutions.

Definition 7.4. We say that the function (u,0) satisfies the local assumption A, if for any bounded
closed set U CR™ there is a constant Ky such that, for any t >0, k=1,...,m, 5=1,...,n and
xz,y €U we have

[kt o) | S Ku(L+z]),  |of(t,2)] < Ku(1+|z)),
|1t ) — u*(t y) | < Kule —yl,  |of(t,x) = of(t, y)| < Kule —yl.
Theorem 7.5. Suppose that the SDE (u,0) satisfies the local assumptions A, then, for any random

variable Y € L*(Q, Fo,P), the SDE (u1,0) driven by the Brownian motion B with initial condition Y’
admits a local strong solution Xy till any stopping times Ty of the form, for any U open bounded set,

TX =inf{t >0, X, € U°}. (7.1)
Furthermore, under the previous hypotheses on (u,c), the solution is pathwise unique.

Remark 7.6. The strong solution X; built in Theorem 7.5 does not depend on the stopping time
T¢F. The statement of the theorem says that there is a continuous stochastic process X; taking
values in R™U {00} such that X} is a strong local solution to the SDE (u, o) till any stopping time
T,

85
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Proof of Theorem 7.5. Fix U bounded open set, and define the map
T At TE AL
Su(Xu . )E(t) :yk+/ 1F (s, Xu s ds+z / (s, Xu o)dB7.
0
If we define the set
Y ={Xexy, Xo=Y}

Using the same methods of the proof of Theorem 6.8 we get that

\/nKU \/CKUW

n K& +my\/m? K&C

2N

1Su(Xu, )l <m <||Y|L2<Q> +

)

>||XU,~—X/J,~|A/-

and also for any X{; .

|Su(Xu,.) — Su(Xi )|l < (m

We can then apply Banach fix point theorem and we obtain the existence and uniqueness of a
process Xy ¢ (which is such that XU.T[j(UAt = Xy ) for which Sy(Xy) =Xy, which is equivalent to
say that Xy ; is a local strong solution to the SDE (1, o) till the stopping times T .

In order to prove that the process Xy ; does not depend on U, or more precisely that there is
a process X such that

T
X0 = Xt/\T@‘ = Xu ts

it is enough that if X is a solution till the stopping time T[f” and X7;/ is a solution till the stopping
time TJ{/U " we have

U T;,{j//\t:XU/ XU/\t7

almost surely. Indeed if Xy is a solution till the stopping time T,i(U and X{;/ is a solution till the
stopping time TUX,U' then both Xy and X7}/ is solution to the stopping time
Ty v = TU YA TXU,.

, , Xy X
Consider the process Z7 V" = Xglft’u — X} v = X% = Xt ", then using the same rea-
soning of the proof of Theorem 6.16

t
(|20 V'12) < 2m (K +nk?) / B[ 27V 2ds,
0

and so, by Gronwall inequality, Z,f] Uls indistinguishable from 0. This proves that

Xy Xy

U
XU, = XG0
almost surely. A consequence of the previous proof is that

TU7U/:inf{t2 O,Xtﬁ UﬂU’},

and so
X

T X
XU[,] = X(4" = Xvauni, (7.2)
XU/
(i.e. any solution process XU . restricted to any open subset U cCU of U is equal X, which is
the solution process of the equation restricted to the subset U ).
In particular, let By ={z € R™,|z| < N} then we have

TB..,
XBNNt - XBN’7t7
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if N'< N. Since the sequence Tp, is increasing in N, the following process is well defined

. T . .

X(w) = limy oo Xp N (w),  ift <lmy o Thy(w),
0, otherwise.

The process X, satisfies the properties of the thesis of Theorem 7.5. Indeed, if U is a bounded open

set, there is N >0 such that U C By. Let (Xy 4, B) the solution to the equation (o, ) stopped in
the set U, then by equality (7.2), we have

T
XY =XvunBy,t = Xv ¢ O

Definition 7.7. Under the hypotheses and the notation of Theorem 7.5, we call the explosion time
of the SDE (p,0) with initial condition Y the stopping time

Ey:= lim T5B~,
N—-+oo

Remark 7.8. From the proof of Theorem 7.5, it is clear that the definition of 7y does not depend
on the increasing sequence By ={y € R™,|y| > N} of open sets converging to all R™. Indeed Ty
can also be defined as

Ey:mf{t2 O,Xt:OO}.

Remark 7.9. From the proof of Theorem 7.5, it is clear that P(Ey =0)=0.

7.1.2 Explosion time and Lyapunov function
First of all we introduce the operator £;: C2(R4 x R™, R) — LRy x R™, R) given by

m

x):Zuk(t,x e f(t, o) + Z Z ol (t,)0%, W f(t, 2).
k=1

kk’l; 1

Lemma 7.10. Let (X, B) be a local weak solution to the SDE (u,0) till the stopping time T then,
for any f € CH2(Ry x R™ R) we have

df(t, XD) = (0uf (t, XT) + Lof (8, X))t + (Z of(t, XT)0uf (t, XTI >>dB£’T.

j=1 \k=1

Proof. The proof is a simple application of Ito formula. ]

Definition 7.11. Let V:R™— R be a positive C2(R™, R) function, we say that V is a Lyapunov
function for the SDE (u,0) if
1. limg 4oV (z) =400;
2. there is A\, A€ R such that
L:(V)(z) <AV (x)+ A.

Theorem 7.12. Suppose the function Vis a Lyapunov function for the SDE (u,0). Suppose that
the SDE (u, o) satisfies local assumption A, it has a (local in time) weak solution (X, B) with
ingtial condition 'Y, such that E[V (Y)] <400, and explosion time Ey. Then Ey <400 almost surely.

Proof. In order to prove the theorem, it is enough to prove that for any ¢ >0 then P(Ey <t)=0.
Consider the sequence of stopping times Ty =inf {t > 0,|X;| > N}, applying Ito formula to the
process e MV (X,) we get

NV (X -V (V) = /()TNM(e-Ascswxg e NV(X,))ds

—i—i /OTNM<i e ok (s, Xg) Oy (XS)>dBSj.

j=1 k=1
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When Ty >0 we have that | X7, | < N. This implies that (on the set Tiy >0) o (s, X;) 0,V (X;) is
a bounded process, and thus fOTNM(kazl o¥ (s, X5)0,+V (X,))dB! is a M2 martingale. Furthermore
the process (e "ML,V (X,) — Ae **V(Xy)) is bounded and we have also

lo|<N

V(X)) < (( max V(:v)) + V(Y)) e LY(Q).

We can take the expectation at both side of the integral obtaining

TN At

Ele A0V (XI)] — BV (Y)] E[ [ e - AeASV(Xs»ds] <A (17) <C

since (e MLV (X;) — Ae MV (X)) <e **A being V a Lyapunov function, and C' € R. Thus we
get
(BVY)]+0) > Ble MMMV(X/N)] > Ele OV (X )Iry < (7.3)

e/\”( lmi‘rifNV(x) )IP(O <Ty<t)—e ME[V(Y)P(Ty=0) (7.4)

VoWV

On the other Ty — Fy almost surely and so, by Remark 7.9,
P(Iy=0)—P(Ey =0)=0.

We have also

IP(O<TN<t)HIP(OSEygt):IP(Eygt).

On the other hand since lim, .oV (x) = 400, we have (inf}, -V (2)) — +00 as N — 4-o0. Finally
we get

PIELY ()] +C) > limsup ((xingV(x) )]P(O <Ty< t))

we need to have P(0 < Ty <t) — 0, and thus P(Ey <t)=0. O

Corollary 7.13. Under the hypotheses of Theorem 7.12, we have that, for any t >0,

X
E[V(X,)] < eM(E[V(Y)] +%>. (7.5)
Proof. Under the previous hypotheses, by the proof of Theorem 7.12, more precisely inequality
(7.3), we get
Y
Ele M0V (XT¥)] < (E[V(Y)] +%). (7.6)

Since, by Theorem 7.12, Ty :=inf{t > 0,|X;| > N } — 400 almost surely (and thus Ty At— ¢ almost
surely), we get the thesis of corollary, by taking the limit of inequality (7.6) as N — +oo. |

An important consequence of the previous corollary is the following one.

Theorem 7.14. Suppose that the SDE (p,0) satisfies local assumption A and that there is K >0
for which

[pF (@) S K1+ z]),  [of| <K (1+]z)). (7.7)
Suppose that there is p >0 such that E[|Y |P], then, for any t >0, we have E[|X|P] < +o0.

Proof. By Corollary 7.13 it is enough to prove that

V)= (14 |e/2 = <1+fj (W)z
k=1
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is a Lyapunov function for the SDE (u, o) when the linear growth at infinity of the coefficients
holds. We have

P
s—1f m m n

Li(V(2) = p<1+2 <xk>2> S bt 423 | S o mok )
k=1 j

m L2 1
(o 2><1+ 3 (xk>2> L[S0 cdttarott.patar
k=1 yh= j

Thus, using inequality (7.7), we get

Ly(V(2)) < p(l+|z[)P2~HEm(1 +|z])|z] + K*mn|z]?)
+p(p = 2)| K2(1+ |2[2)P2 72 (1 + |2]?) ||
< O+ 2P A+ |2 ) + (1 + |22 2 72 (1 + |]?)]
< CV(x), (7.8)

where C > 0 is a suitable constant dependent on p, K, m, and n. O

Corollary 7.15. Under the hypotheses of Theorem 7.14, for any p>0 there is a constant Cp, >0
such that

E[|X|"] < Cpe ' (1 + E[|Y |7).

Proof. The Corollary is a consequence of Corollary 7.13, Theorem 7.14 and inequality (7.8). O

The presence of Lyapunov functions not only permits to obtain some better linear bounds on
the moments of the process X; when the growth of the coeflicient is linear, but it also allows us to
study some SDE with coefficient with superlinear growth of the coefficients.

Consider m=n=1 and let u(t,z)= p(r)=—22*~1 forsome k€N, k>1,and o(t,z) =0 (z) =1,
i.e. the SDE

dX,=-X?"'dt +dB,. (7.9)

Since p,0 € C°(R,R), by Lagrange theorem, the SDE (1, o) satisfies local assumption A. In this
case the operator £; =L is

LUt ) =~ 10, f (1) + 503 ().

Consider
V(x)=laf?
for p>1, then we have
LV)(x) = —2p2®*~lsign(@)|z[** !+ p(2p — 2)[x[PP~2 = —2p o [PM2P =1 4 p(2p — 2) [P
< p2p -2z P72 <p(2p - 2)V (2) + p(2p - 2).
So |z |?P are Lyapunov function also in the case where u(z)=—2?*~! and o(z) = 1.

We can get better estimate for the expected value of X; if we consider
V(l‘) — e(l-}-gﬂ)k—g-

for some 0 <e < k. In this case, we have

2
E(V)(x) = _(k_€)$2k(1+$2)k‘—1—8€(1+x2)2k1£+%<§_E) xg(l+$2)2k_2_256(1+x2)2k7175

So, for any A € R, we get that
LOV) (@)= AV (2) < {—(k — £)at* =272 L Oy (1 4 2tk —2—45)}(1F27)

2k—1—¢
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Since lim|g | 400 {—(k — )2 7272 + Cy (1 + $4k7274€)}6(1+wz)2k7175 = —o00, there is a constant
Ay € Ry such that

2k—1—¢

{*(k*E)IE4k7272€+C}€75_’,\(1 +x4k72745)}e(1+zz) gAk,s,)w

This means that for any A € R there is
LV)(z) <AV () + Ak e

For example if the initial condition ¥ =y € R is deterministic Corollary 7.13 and the previous
computation implies that

Elexp((1 +Xt?/72)k—a)] < (exp((l + y2)k—g) +M))

where X/ is the solution to the equation (7.9) with initial condition X§ =y € R.
Definition 7.16. Let V:R™ — Ry be a positive C*(R™, R) function, we say that V is a anti-
Lyapunov function if
1. supgzermV(z) < +o0;
2. There is A >0 such that
Li(V) (@) 2 AV (2).

Theorem 7.17. Suppose that the SDE (u,0) (satisfying local assumption A) admits an anti-
Lyapunov function V then for any Y =y € R™ (deterministic) such that V(y) >0 we have

P(E, < +00) >0.

Proof. Since V(y) is strictly positive, there is 7> 0 such that

V(y)> e—”< sup V(:U)). (7.10)

rzeR™

Define the stopping times Ty =inf {¢t >0, | X¢| > N} as usual. Since there is Ny >0 such that
Bn, = {|y| < No} for which y € By, then Ty >0 almost surely for N > Ny. Following similar
computations to the ones done in the proof of Theorem 7.12, we get that

V(y) < e MEV (X < e‘”( sup V(x))]P(TN > 1)+ ( sup V(x))]P(TN <)
zeR™ zeR™
IfP(Ty <7)—0as N — 400, we get that, for any e >0, for any N > N, big enough P(Ty >7)>1—¢
and thus

Viy) < e‘”(wsel]lf}{;)mV(ac) )(1 _o)+ (Iseunfm\/(x) )]P(TN <r)— e‘AT<wselg)mV(ac)>(1 —e).

For ¢ small enough, the previous inequality contradicts inequality (7.10). This means that IP(Ty <
7) — C >0. On the other hand, for what we said in the proof of Theorem 7.12, P(Ty < 7) —
P(E, < 7) and the proof of the theorem is concluded. O

We now propose an example of SDE with explosion time P(E, < 4o00) > 0 for some (determin-
istic) initial condition y € R™. Let m=n=1 and consider the (additive noise) SDE

dX;=+X2dt+dB;,, Xo=vy€R,

namely p(z) =22 and o(z)=1. Consider the function
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which is stretly positive for z# 0. We now prove that V(z) for the SDE (p,0) = (23,1) and any
initial condition y € R. We have that

4 4 4
£dV) = ( (xfj— 1)2 * xzj— 1 ) * <ac2:- 1 (xQ—EI)— 1)2 * (ac28—a|c— 1)3 ) -
:2x6+2x4—3x2+1
(x2+1)3
Consider the polynomial P(z)=223+22% -3z +1 for 2> 0 (here z=212?). We have
P'(2)=62+42 -3

which has zeros in

—2+4418
6 )

21,2=

o —24+/22

. This implies that, for any z € R,

which implies that P(z) has a minimum in z=2x
—2+4 /22
P(—e ) _58-11V2 6

Li(V)(x) > (x2+1)3 27(22+1) 7 27(22+1)

>0.

Since

] =00
this implies that there is C' > 0 such that
L(V)(x)>C, zeR.
Finally, since V' (z) <1, we get that there is A >0 for which
Li(V)(x) 2 AV ().

7.2 Markov property of the solutions to autonomous SDEs

7.2.1 Continuous dependence of solutions on (deterministic) initial con-
dition

If the SDE (pu, o) satisfies assumption A, we proved in Section 6.2, that there is a (unique) strong

solution for any Y € L?(Fy). In other words, there is a map

F:Ry x L2(Fo) x CO(Ry, R") - R,

such that for any 7> 0 the restriction of F [j ,:[0,7] x L°(Fo) x C°(R4+, R™) — R is B([0,7]) ®
B(L?*(Fo)) ® B(CY([0,¢],R™)) measurable (i.e. the map F is progressive), and such that the process

Xt:F(ta Ya B[O,t])

is the strong solution to the SDE (u,c) driven by the Brownian motion B and with initial condition
Y e L2(f0)
We restrict now to the case where the initial condition Y =y € R™ is deterministic.

Theorem 7.18. Let (u,0) be a SDE satisfying assumption A, then there is a function
F:Ry xR™x CO%(R4,R") — R™,

such that for any 7> 0 the restriction of F |jo ;1 [0, 7] x LY(Fo) x C°(R4+, R™) — R is B([0, 7]) @
B(L*(Fo)) @ B(C([0,t], R™)) measurable (i.e. the map F is progressive), for it is continuous in
the second component R™, and such that for any n-dimensional Brownian motion B and for any
y €R™ the process

Xty:F(ta y:B[O,t])

is the unique strong solution to the SDE (u,0) driven by B and with initial condition y € R™.
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Remark 7.19. Consider two functions F: Ry x R™ x CO(R,;, R") — R™ and F: Ry x R™ x
C°(R4,R"™) — R™ which are measurable with respect all variables and continuous with respect
the first two variable. Let Pg(d7y) the probability measure on the space C°(R, R") such that
the paths v € C°(R., R") are Brownian motion (with respect to the probability Pg), i.e. for each
t1 <--- <tp, the random variables y(t2) — y(t1),..., Y(tn) — ¥(tn—1) are independent normal random
variables with mean 0 and variance ¢t —t1,..., t, — t,—1. Suppose that there is a (measurable) set
I C C°(R4, R™) such that Pg(I') =1 and

F(ta Y, ’Y) :F(ta Y, ’Y)a

for any t € R4, y € R™ and v €T'. Let (2, F,IP) be any probability space and B: Ry x 2 — R"™ be
a Brownian motion defined on the probability space (2, F,P), then we have

F(t,y, Bo,y(w))=F(t,y, Bpo,yw))
for every ¢,y € R4 x R™ and almost surely with respect to w € Q (with respect to the probability P).
In order to prove the previous theorem, we need the following result.
Theorem 7.20. (Kolmogorov continuity criterion) Let
X Ry xR™x Q—R™

be a continuous adapted stochastic process (with respect to t € Ry ) taking values in R™ and
depending on the parameter y € R™, such that there is a p >1 and a v>m for which for any
7> 0 there is a constant C, >0 such that
E|sup | X/ — XV |P | < Crly—y/|".
t<T
Then, there is a process X R4 x R™ x Q — R™ which is continuous adapted stochastic process

(with respect to t € Ry ) taking values in R™ and depending continuously on the parameter
y € R™, such that for any y € R™ and t € Ry we have

Xp= %y
almost surely.

Proof. The proof of this theorem can be found in Chapter 2 Theorem 2.9 of [4] or Chapter 1
Theorem 1.8.1 of [3]. O

Proof of Theorem 7.18. For simplicity of notation, we consider the case m=n=1 (i.e. we
have B; = B} = B; a one-dimensional Brownian motion and X; = X} is a one-dimensional process).
For this reason, we write u(t,z):= u'(t,z) and o(t,z):=oi(t,x). The general case is a simple
generalization.
Fix the probability space
Q'=C°R4, R)
with the Borel o-algebra. Let P the probability measure on €’ such that the process
By(w) :=w(t)

is a one-dimensional Brownian motion. Let F; be the natural filtration of B;. Let X} be the
(unique up to null sets) strong solution of the SDE (u, o) driven by the Brownian motion B; and
with initial condition y € R™=R. If y, 3y’ € R we write Z¢*¥ = XY — X?". With this notation we
have, for any p >4,

1

alzpve = Lo olzpvpe-tapy 22 e oo, 7)o, X)) a1

—2 ’ _ ’
— LDz e, X — e XY ) e
=2 =D, o200, X2) ~ o (e, X )l
22 70 2o, X0) o0, X)) AB



7.2 MARKOV PROPERTY OF THE SOLUTIONS TO AUTONOMOUS SDEs 93

We recall that, since |y|, |y’| € L>(Q2) C LP(Q2) for every p>1, by Theorem 7.14 we have that, for
any p>4 and any y,y’ € R, X7, Xty/ €LP(Q) and so Z¥¥" is a LP semimartingale. Thus, we get

T

E[sup |Z,;y’y’|ﬂ

t<e

< 4y —y'|P+4E

t
-2 " 9— /
sup L2 2UZ0 P2 s, X7) = s, X1 s
t<e Jo 2

t — — ’ ’ 2
+4B| [sup [ EZDLZL 70 o220, ) — o0 XY )?
t<e Jo 4
t(p—Q) y.y! 2 Yy’ 2
[ sup | [ 22700 P2 o0, X2) (e, X2 )NE,
t<e 1Jo

—_ e ’ e ’
< aly o+ a2k [ ZEY s + (o - 2) (- 0K [ BZ2Y s
0 0
¢ (p—2) 2 Y,y |p—2 y y'\\2
+4E 0 T |Z5 | (U(tﬂXs>7U(tﬂXs )) ds
¢ , ¢ /
< Ay -yl + CK,T»IJ/ E[| 2 Plds <dly —y'|P + CKmp/ E{Sup 122" |p]dt’
0 0 |s<t
for a suitable constant Ck r , >0 depending on K, 7 and p. If we denote by foy'(e) =
E[supi<¢ | Z{Y |F], then we get the integral inequality
¢
P <aly =P+ Coc | P00,
0
and thus, by Grownall lemma, we obtain that, for any /< 7,
FUY(0) <Ay —y/|P et
This means that there is a constant C’Kmp > 0 such that
| sup XY X7 | =B sup 12117 | < Gyl =y
t<T t<T
If we choose p>m =1, we can apply Theorem 7.20, i.e. there is a measurable map
X/ Ry xR™x Q' —R™
which is predictable with respect to t, and continuous with respect to both t € R and y € R such
that
XY =X{,
almost surely. Since X/ is predictable with respect to the o-algebra generated by the Brownian
motion B; and the (deterministic) initial condition y € R, and X/ is almost surely equal to the

strong solution X/, the process X/ is also a strong solution to the SDE (u, o) driven by Brownian
motion B; and initial condition y € R. Now we define

Fit, y,w) = XH(w)
The theorem is proved. O

Theorem 7.21. Suppose that (u,0) satisfies the assumption A and let X; be the strong solution
to the SDE (u, o) driven by the Brownian motion B and with initial condition Y € L*(Fy). Then
there is a set 21 CQ of full measure such that, for any t >0, we have

Xy(w)=F(t,Y (w), Bjo,g(w)),

almost surely, where F: Ry x R™ x Co(R4,R™) — R™ is the map in the thesis of Theorem 7.18.
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Proof. Since F(, -, B[o,t]) is predictable and continuous with respect the first two variables,
the process (t,w)— F(t,Y (w), By (w)) is predictable and continuous with respect to the time.
Furthermore, F'(t,Y (w), Bjg¢(w)) is measurable with respect to the o-algebra o (o(Y), FB) (ie. the
o-algebra generated by Y and Bjg 4). If we are able to prove that F(t,Y (w), Bj 4(w)) satisfies the
SDE (p, o) by the uniqueness of strong solution the theorem is proved.

By definition of F' we have that

t

(E(t,z, Bo,yg))*=a* +/ p

n t )
; (S,F(S,l‘,B[Oys]))dS—l—Z/()O‘;-C(S,F‘(S,x,B[O?S]))ng. (7.11)

Consider the (measurable and adapted) maps
MF*:R™ x R+ X CO(IR+, Rn) — IR,

SFR™x Ry x CO(Ry, R") = R,
defined as
Mk(xa t, B[O,t]) = lim /Lk(tlflﬂ F(tffla xz, B[O,t@—l]))(t‘e - tffl)a

0
|| — oot
and

SJ’-“(JU, t, Bjo,y) := |711|r£0 t;t af(te—h F(tg_y,, Bio,t,_1)))(Bt, — Bt,_,)-
L
By the definition of Riemann-Stieltjes and Ito integral we have that equation (7.11) implies
(F(t, T, B[Oyt]))k =zF 4+ Mk(:E, t, B[O,t]) + i S]k(:r, t, B[O,t])- (7.12)
=1
On the other hand, we have j

( /OtMF(s,Y,B[o,smds)(w) = im S (e F(te 1, Y (@), By (@)t~ o)

|r|—0
tecmt

Mk(Y(w),t,B[07t](w)),

and similarly

(/Otajk(F(s,Y,B[Oys]))ng)(w) = lim (T]k(tg,l,F(tgfl,Y(w),B[Oytgil](w)))(tgftgfl)

|m|—0 et
= S]k(Y(w), t, B[O,t])-

Replacing # by Y (w) in equation (7.11) and the previous expression for M*(Y (w), ¢, By ) and
SF(Y (w),t, Bjo,g), we get

(F(t,Y (w), Bpo,y(w)))*

- Yk(w)+Mk(Y( )ath[Ot] +Z Sk ;taB[Ot]( ))

= Yk(w)—l—(/otuk(ﬁ(s Y, Bjo,s) ds) +Z (/ F(s,Y, By, 5]))ng)(w).

Thus (F(t,Y (w), Bjo,(w)))* is a strong solution to the SDE (4, o) driven by B and with initial
condition Y, and by uniqueness of strong solution we have F(t,Y (w), B 4(w)) = X;(w) for almost
every w € (). a
7.2.2 Markov property of strong solutions
Definition 7.22. An SDE (u,0) is called autonomous if

wuk(t, z) = pk(x), aj’-“(t,x) :af(ac),
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i.e. the coefficients do not depend explicitly on the time t > 0.

Definition 7.23. Let X; be a (R™ )-stochastic process and let Fi* =o(X,,s <t) its natural filtra-
tion. We say that the process X is a Markov process if, for any (bounded) continuous function G:
R™ R and any t <t <--- <tp €Ry, we have

E[G(Xty, ..., Xe )| Ft) =E[G( Xy, - -+, Xt )| X4

For any t >0, we consider the map Q¢ Cf(R™,R) — C(R™,R) (where CP(R™, R) is the set
of bounded continuous functions on R™) given by

Q:(f)(z):=E[f(F(t,z,Bjy))], [ECHR™R),zeR™,

where F: Ry x R™ x C°(R;4, R") — R is the function introduced in Theorem 7.18. Since the
function F is continuous with respect to the first two variables, if f is continuous and bounded,
by Lebesgue dominated convergence theorem Q¢(f) is (bounded) and continuous.

We want to prove the following theorem.

Theorem 7.24. Let (u,0) be an autonomous SDE satisfying assumption A and let Xy the strong
solution to the SDE (u, U) driven by the Brownian motion B and with initial condition Y € L*(Fo)
then, for any t>s, we have

E[G(Xt)lj:s] = Qt—s(G)(Xs)'

Remark 7.25. Hereafter, we introduce the concept of strong solution X*Y to the SDE (i, o)
driven by the Brownian motion B, starting at the time ¢o > 0 with initial condition Y € (LO(F,))™,
namely we have that X% the process is continuous and it satisfies the first part of Definition 6.1
and we have

Xtto,Y.,k:Yk_i_/ XtoY ds-l-Z/aj XtondBJ

Lemma 7.26. Consider an autonomous SDE (p, o) satisfying assumption A and let to =0,
Y € (L°(F;,))™ and B a n-dimensional Brownian motion. Then we have that

X[V = F(t—t0,Y, (Biy — Buy))

is the unique strong solution to the SDE (u, o) driven by the Brownian motion B, starting at the
time to >0 with initial condition Y € (L%(Fy,))™, where F: Ry x R™ x CO(Ry, R™) — R™ is the
map in the thesis of Theorem 7.18.

Proof. The existence and uniqueness of strong solutions starting at an arbitrary time ¢y can be
proved as in Theorem 6.8 and Theorem 6.16.
Consider the stochastic process

Bi_t,=B;— By, = (B} = Bl,,..., Bl — B),

defined for t > to. The process By is a Brownian motion independent of Fi, and, denoting by }:tB
the natural filtration of B; we have that

.7:15 = O'(]:—té,tm .7:,50).

Let X, be the strong solution to the SDE (u,) driven by the Brownian motion B; and with initial
condition Y € F;,, thus we have that X, is given by the expression
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On the other hand we have that

t ~ ~ ~
/0 oH(X)dB! = lm 3 of(X,, )(Bl-Bi_)

= hIE Uf(Xté—l)(ng—‘rtO - Bg[,1+t0)

t - .
= / o (Xy—1,)dBY.
t

(o]

This means that, if we write X, ::X},to (defined for t >tg), we get that
Xf:yhr/ étodﬁz/ o) dB
= Yk—i—/ ds+Z/aJ X;)dB!,

and thus Xf= Xf"’Y is the strong solution to the SDE (u,0) driven by B, starting at ¢y with initial
condition Y. On the other hand, by Theorem 7.21, we have

X[ (w) = Xy(w) = Xy gg(w) = F(t —to, Y (), Bpo,t—15) = F(t = t0, Y (w), (Bpzo,) = Buo)),
for almost every w € (0. a

Proof of Theorem 7.24. If X; is the strong solution to the SDE (u,0) driven by the Brownian
motion B, then for any t > s we have

XF—xk= / ds+2/ X,)dBY.

In other words, for any ¢ >s, X;= X~ where X is the strong solution to the SDE (y, o)
starting at s > 0 with initial condition X, € L2(fs). On the other hand, by Lemma 7.26, we have

th"Xs = F(t -5, X, B[s,t] — Bs)
Thus we obtain

E[G(X,)|F] = E[G(X;)|F) = E[G(F(t s, Xy, Bs,) — Bs))|F-

Furthermore, since B is a Brownian motion and it has independent increments, the Bt,s =B;— B,
is a Brownian motion independent of Fs and thus we have

]E[G(F(t—s,XS,B[M]—Bs))|fs](W)=/CO(R RH)G(F(t—s,Xs(w),Bt s()Pg,_(d-)

:EB[G(F'(t — s, Xs(w), Btfs(')»]

where the previous symbols we mean that w € {2 we fix the value of the random variable X,(w) and
we take the expectation with respect to the independent Brownian motion B. On the other hand,
by definition of Q;_s, we have

Es[G(F(t — s, X(w), Bi—s()] = Qi—s(G)(X,). O
Corollary 7.27. We have that for any ty,ty >0, then, for any f € CRQ(R™ R), Qi 10,(f) =
Qh(Qh(f))'

Proof. It follows from Theorem 7.24 and the tower property of the expected values. Indeed,

Quiro(N)(2) = Bl (X{14,)|Fol = B[E[f (XT] 40,)|F.] [ Fo]
= E[Q:,(XE)1Fol = Quo(Qu, (/) (XF) = Qu,(Q1, () (),

which is the stated property. O
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Remark 7.28. Corollary 7.27 proves that the family of maps @Q; is a semigroup. When X; is a
Markov process, the semigroup @, is called Markov semigroup associated with the process X;.

Corollary 7.29. We have that, for any t1,t2 >0

F(t1+to, @, Bo,t,+15]) = F(t2, F(t1,7, Bpo,1,)), Bity,t1+t:) — Bta)- (7.13)

Proof. The statement follows directly from the proof of Theorem 7.24. g

Remark 7.30. Sometimes it is equation (7.13) that is called Markov property of the solution
to the SDE (u, o). More generally (7.13) show that, defining for every s <t € Ry and w €2, the
continuous map P, 4),.,: R™— R™, as

(I)(s,t),w(-r) = F(t - 5,7, B[s,t](w) - Bs(w))7
for any w € Q, the map ®. ,(-) is a flow of homeomorphism, namely, for any s <t <wu we have

P (5,u),0(T) = Pt u),uw(P(s,b),0(T))-

Theorem 7.31. Let (p,0) be an autonomous SDE satisfying assumption A and let X; the strong
solution to the SDE (u,o) driven by the Brownian motion B and with initial condition Y € L*(Fo)
then X is a Markov process.

Proof. We prove the theorem for functions G: R™* — R of the form
G( Xty X)) =G1(Xt,) - Gi(Xt,)-
Since the functions of the previous form are dense (with respect to the point wise convergence) in

the set of continuous bounded function, the theorem is proved.
Consider t <t; < --- <t € Ry, then, by Theorem we have

E[G(Xy, ..., X )| F) = E[G1(Xy) - Gr-1(Xs,, ) BIGr(Xe )| Fr_ ]| F]
= E[G1(Xy) - Gr—1(Xe, ) Quy—tr 1 (G)( Xty )| F
= E[G1(Xt,) Gr—2(Xp, H)E[Gr-1(Xt, ) Qup—t 1 (G) (Xt )| Fr, ]| T
= E[G1(Xt) Gr—2(Xt, 5)Qty 1t 1(Gr—1Qt—t, (Gr))( Xty o) F]
= ]E[ (th)th tl(G2Qt3 tg( th—tk,l(Gk)"')(th) |~7:t]

= Qu-(G1Qu—1,(Ga - Q1,1 (Gr) -+ +))(X0).
In other words E[G(X4,, ..., X, )|Fi is equal to a function of only Xy, i.e.
E[G(Xt,,..., X )| Xs] = E[E[G(Xy,- .-, Xe,) | Fe]| X4

= E[Qtl*t(GthQ*tl(GQ"'th*tk—l(Gk)”'))(Xt)|Xt]
= Qt,-t(G1Qt,—1,(G2 - Quy—t,, 1 (Gr) ) (Xe).

This proves that X; is a Markov process. O






Chapter 8
SDEs and evolution PDEs

8.1 Kolmogorov (backward) equation

We recall the definition of the operator

m n

Lif)ta)=3 uk(t,x)awkf(t,ac)—i—% S S okt 2)ok (1 2) |0, f ().
k=1

k,k'=1 \ j=1

Hereafter we denote by C*2(IRy x R™, R) the set of functions u: R4 x R™ — R which are differ-
entiable one time with respect to the first variable (i.e. t € R4) and two times differentiable with
respect to the second set of variables (i.e. x € R™), and all the derivatives of « mentioned before
are continuous. We will use also the notation C12([0, 7] x R™, R) for the set of functions defined
only on the compact set [0, 7] which are differentiable one time with respect to the first variable
and two times differentiable with respect to the second set of variables.

Theorem 8.1. Let (uu,0) be a SDE satisfying assumption A, and consider a function u € C2(]0,
7] x R™,R) which is a (classical) solution to the PDE

Owu(t, z) + Lyu(t, ) =0, wu(r,z)= f(x) (8.1)

(where f(x)€ C*(R™,R)) and such that u grows at most polynomial at infinity, i.e. there is N € N
and R >0 such that, for every t € [0, 7], € R™ we have

lu(t, z)| < R(1+ |2 |Y).
Then we have

E[f (X7 ") =Elu(r, X;")] = u(t, ), (8.2)

where X1* is a the strong solution to the SDE (u, o) starting at time t € Ry and with initial
condition X" =z € R™.

Proof. The theorem is a simple application of Ito formula. Indeed, by Lemma 7.10, we have

du(s, X5") = (0wu(s, XI7) + Ls(u)(s, X0%))ds + Z (Z ok(s, X;f»x)azku(s,X;»r))ng

j=1 \k=1

n m
=y (Z Jf(s,X;=m)aIku(s,XQ?”))ng,
j=1 \k=1

where we used that u satisfies equation (8.1). The previous equality proves that the process
u(s, X!'*) (defined for s >1) is a local martingale.

We now prove that u(s, X'") is a real martingale. Since the initial condition of the strong
solution X:"L to the SDE (u,0) is deterministic by Theorem 7.14, we have

E[|IX,7|P] < O p 01+ [z |P),

99
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for every s >0 and p >4 and suitable constant Ck p, Ax,p = 0. Thus we have

Ellu(s, X, )7 < E[(1+ X072 <22V (1 +E[ X 7*N])
< 22N(1+CK?2N6AK,2N(S—t)(1+|x|2N))<+OO'

This implies that the process u(s, X; *¥) is a continuous local martingale bounded in L?, which
means that u(s, X/'*) is a M2 martingale and so a real martingale. Thus by definition of martingale

E[f(X7")] =Elu(r, X;")] = E[E[u(r, X;")|F]] = Elu(t, X; )] = E[u(t, z)] = u(t, z),
which concludes the proof. O

Remark 8.2. Equation (8.1) is usually called the Kolmogorov (backward) equation associated with
the SDE (u,0).

For autonomous SDE, i.e. in the case where u,o do not depend on ¢t and so the operator

m n

Li=L=Y" uk(x)awk+% S [ ok@)el @) |, (8.3)
k=1

Ek'=1 \ j=1
do not depend on ¢ too, we can give to Theorem 8.1 the following formulation.

Theorem 8.3. Let (pu,0) be an autonomous SDE satisfying assumption A, and consider a function
ve CL2([0,7] x R™, R) which is a (classical) solution to the PDE

ow(t,x)=Lo(t,z), v(0,2)=f(x) (8.4)

(where f(x) € C*(R™,R)) and such that v grows at most polynomial at infinity, i.e. there is N € N
and R>0 such that, for every t € [0, 7],z € R™, we have

lu(t, z)| < R(1+ [z |V).
Then we have

where X{* is the strong solution to the SDE (u, o) starting at time 0 and with initial condition
X§=zeR™.

Remark 8.4. Using the map F: Ry x R™ x C°(R,4, R") — R™ defined in Theorem 7.18, equa-
tion (8.5) can be written in the following way

v(z,t) =E[f(F(t, 2, Bo,y)] = Q:(f)(2).
Proof of Theorem 8.3. Fix 7> 0 and consider the function
u(t,z)=v(r —t,x).

Then the function u solves the Kolmogorov backward equation associated with (u,o); indeed

owu(t,z)=—0w(rT —t,x)=—Lo(T —t,x) = —Lu(t, ).
By Theorem 8.1, this means that, for any 0 <t < 7, we have

o(r —t,2) = u(t, z) = Elu(r, X)) = E[o(0, X2%)] = E[f(X}")]

On the other hand by Lemma 7.26, we have

v(r —t,2) =Bl (X2")] = B[f(F(r ~ t,2, Br—y))]
which, by Remark 8.4, is equivalent to the thesis. O

We can prove a sort of reverse of Theorem 8.3.
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Proposition 8.5. Consider f € C*(R™,R) and suppose that (u, o) satisfies assumption A. If
the function u(t,z) = Q+(f)(x) (as a function of (t,z) Ry x R™) is such that for any t € R4 we
have u(t,-) € C*(R™,R) and for any x € R™ we have that u(-,x) is differentiable with respect to
time, and the function u(t,x) and its first and second derivatives have at most polynomial growth
at infinity, then we have

Opu=L(u)(t,x).

Proof. By the semigroup property of Q; we have that for any At >0
u(t, +At, ) = Qryacf (2) = Qae(Qif (2)) = Qar(u(t, ).
Furthermore, by definition of Qa¢, we have
Qad(u(t, ) = Elu(t, XX,)]-
Since u € C*2(Ry x R™,R) we can apply Ito formula to u(t, X£;), getting

m n At
L(u)(t, XZ)ds |+ E / oM (XZ)dpeu(t, XZ)dB! |.
<><>] >3 [ x)

j=1

At

E[u(t,xgt)]:u(t,xHEU

0

Since O ru(t, ) has at most linear growth at infinity then
At
E{/ |Jf(X§)8xku(t,Xf)|2ds] < 400
0

and so fOAtaj’-“(Xf)axku(t, XZ)dB! is a real martingale. This implies that

Elu(t, X&) —u(t,z) _ [ 1 (%
At At

We have that, for any p>1 and At <1,
E[|u(t, XX,)|?] < Cp,

E(u)(t,Xf)ds}.

and

1 At p 3 1 At
~ T < Jensen _~ o\ |p
]E{ At/o L(u)(t, XS)ds ]\ At/o E[|IL(u)(t, XT)|?] < C,,

for some constant Cp >0 (dependent on p but not on At). Thus the random variables {u(t,
X&) argt and {Aitfomﬁ(u)(t, X7)ds} , are uniformly integrable.
Finally, since X" — x as t— 0 and £(u) is continuous (being u € C1?(Ry x R™,R)), we have
1 [At

— L(u)(t, XH)ds— L(u)(t,z), At—D0,

almost surely. By the uniform integrability of {ﬁfomﬁ(u)(t, XZ)ds} \,<,, this implies that

At
AlirilOE[é e, xi)ds | = L)t ).
Thus we have
. u(t+ At,x) —u(t, x
i) = im0+ AL —u(t2)
— lim (QAtu(t,fL') 7u(tﬂx))
At—0F At
— lim (QAtU(t,$)—U(Tf,$))
At—0F At
At—0F At
At
- Amﬁ{é/o L(u)(t, XP)ds | = £(u) (¢, 2).
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O

8.1.1 Feynman-Kac formula

The probabilistic representations (8.2) and (8.5), of the solutions to equations (8.1) and (8.4)
respectively, can be extended to a more general linear parabolic equations.

Definition 8.6. Consider a continuous function ¢: R™ — R bounded from below, an autonomous
SDE (u,o) satisfying assumption A (and the related operator L defined in (8.5)), a CH2(R4 x R™,
R) function g: Ry x R™— R, and a C*(R™,R) function f:R™— R growing at most polynomially
at infinity. Then a function v € CL2(Ry x R™, R) growing at most polynomially at infinity is a
classical solution to the parabolic equation (q, L, g) with initial condition f if

ow(t,x)=Lo(t,z) — q(x)v(t,z) — g(t,x), ©v(0,z)= f(z), (8.6)
for any (t,x) e Ry x R™.

Theorem 8.7. Under the hypotheses and notation of Definition 8.6, if v is a solution to equa-
tion (8.6) growing at most polynomially at infinity then we have that

t z t s ©
v(t,z)=E f(Xf)eiqu(Xs )ds +/ g(s,Xf)eiqu(X"' )y , (8.7)
0
where X is the strong solution to the SDE (u,0) such that X§ =z €R™.
Proof. Fix 7> 0 and consider the process (defined in the set [0, 7])

z t s
Ry=v(r —t, Xf)eifgq(xé' )ds 4 / q(s, Xf)eifﬂq(xg)deds.
We have that 0

dR; =

/N

—O(r —t, XP)e WD g(xE)o(r —t, X SIXDM )y

+

(ot =7, Xp)e 0T XD 4 g(t, X)e 0909 )y

e

+ (Z (X P)Dprv(t — T,X{”))ng

j=1 \k=1

=y (Z oH(XE) O (t T,Xf)>d3g',
k=1

=1

3

thus R; is a local martingale. Using the fact that E[|X[|P] < 400 for any p>1, in a way similar
to what was done in the proof of Theorem 8.1, it is possible to prove that R; is a real martingale.
Thus, we get

E[f(Xf)e_foTQ(Xsm)dé +/ g(S, X;v)e—fosq(X[)dédS:|
0

— E[U(T—T,Xf)efJQ(Xf)d5+/ g(s’X:)efgq(Xe)dlds}
0

= E[R;] =E[E[R,|Fo]] = E[Ro] = E[v(r, X{)] = v(7, z),
which gives the result. g

8.2 Existence of solution to Kolmogorov PDE: Ornstein-Uhlen-
beck case

Let use consider the Ornstein-Uhlenbeck equation, namely

t
Xf=ax+ / aXds+ By, (8.8)
0
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where ae € R. In Section 6.1.1.2 the explicit solution to the equation (6.6) is given by the expression
t
XF=ey +/ e“(t=9)dB,.
0

Let f € C?*R,R) be a function such that f and its first and second derivatives grow at most
polynomially at infinity. Define the function

v(t,z) =B[f(XF)] E{f(eater/Otea(ts)st)].

Proposition 8.8. The function v is in C*(Ry x R,R) and it satisfies the equation

Ow(t,z) :%aﬁxu(t, x)+axdo(t,x), v(0,z)=f(x).

Proof. The proof is given for the general case below. O

8.3 Regularity of SDEs with additive noise

Definition 8.9. Let (u,0) be a SDE we say that the coefficients (or the SDE) i, o satisfy assump-
tion B, if (p,0) is an autonomous SDE and, for every k=1,...,m and j=1,...,n, we have that
pk, o € CHR™,R) and there is K >0 such that, for any h,h'=1,...,m, we have

0,0t (@), 910 (@), 10,1t (@), [y oh (@) <K, xR

Definition 8.10. We say that a SDE (u,0) is an additive noise SDE if 0 = cost does not depend
ont,rc Ry xR™.

Let X be a solution to an additive noise SDE, i.e.
t n ,
Xpt—ats [ hxds+ 3 ofB
0 ‘
Jj=1

(where in the last term we use the fact that
t . .
/ okdB! =0k B}
0

Theorem 8.11. Let (u,0) be a SDE with additive noise satisfying assumption B, then, for every
teRy and w €, the map x— X{(w) is C*(R™,R™). Furthermore, if we define, for every h,h’,
k=1,...,m, the processes

being of € R).

f}i:f(w) = 8thtw(w>ﬂ XZ:E’,t(W) - awhzh’Xf(w)v

then they satisfy the (random) ODEs

d x,k m m
gh("i—tt(w) = Z OpeptF (X (w Z Ab(t, z,w) Ie(w), (8.9)
=1 =1
dX}f:Z’,t(w) _ = k T z,l 0’
—a Z Opet™ (X (w)) Xh h’ Z 0 iml’ﬂ (X (w)) h,t(w)gh’,t(w)
=1 0,0'=1
:ZA(tacthh, ZB”tacw (),f,e,( ). (8.10)
=1 L.0'=1
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Remark 8.12. In order to have a simpler notation, we denote by A(t,z,w):=(A5(t,z,w))e.k=1,... .m
the matrix in Mat(m,m) associated with A and by

m
B(t,z,w)[a, b= Z BZ@/(f,lL’,W)aebel
0,0=1

the quadratic for associated with Bé“, ¢(t,z,w). Adopting this notation, we have that equations (8.11)
and equations (8.9) become

:A(tafraw)'é’f?ta (811)

dgji ¢
dt

dXh h't

dt A(t x w) Xﬁ,h’,t+B(taxaw)[&f,tagﬁf’,t]' (812)

Proof. We provide a complete proof only for & ;. For the second derivatives xj 5, the proof is
similar.

Let {er}r=1,...,m CR™ be the standard basis of R™ and consider
Xy — XY

AkAXF = <

We have that

lim ARAXF () = €7.()

if the limit exists. We have that the process A** X[ solves the following SDE

h(yT+Ae oh J_ o J
(ph(X ARy — ph(XF) dt+>\zl hdB] Azl 4B
‘7 =

dARAXP" =

(M(X7TA0) — ph(XF))dt

kS
X
1
X
m 1 zH+Xer,d  yrtAex,l
- (Z/ Dy (r Xz 4 (1 — ) xp) i X )d7>dt
0

A

m 1

= > ( / axeuh(TXt””J“\e"—i—(l—T)Xﬁ)dr)Akv’\Xf’edt
=1 V0

= Z ANt 2 w) ACAX AL,
=1

with the initial condition
kA h_ Sskoh
ARAXT =gkl

The solution to the previous (random) ODE can be explicitly computed and it has the following
form

AFAXE
t
= AFAXE+ /A’\(sl,x w) - AF: ’\ngsl—&—// A’\ (s1,2,w)" A’\(SQ,x,w)-Ak”\X&dsldSQ (8.13)

+.. +/ / / ANy, w) - AMN(sg, 2, w) - - ANy, x, w) AP AXFds dsy- - -dsy + . ..
Since, by assumption B,
sSup ”A/\(Sa:ﬂvw)”Mat(n,n)gc;
:DE]R,m.,Se]R,+
and so we have that
1 ~ - TNCN

sup Msy,m,w) - AN(s2, 2, w) - - AMNsn, 7, w) AFAXE dsidse- - -dsy|| < T
zeR™ !
te(0,7]

(8.14)
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thus the series (8.13) converges uniformly in ¢,z € Ry x R™.
Furthermore, for any K C R™ compact set, we have

sup  ||AME, z,w) — AL, z,w)||

tel0,7],zeK
1
< m? sup e (r XETA (W )+(177")Xt’”(w))d7’f/ Opept (X (w))dr
te[0,7],zeK L, h=1,...,m 0
< m? sup Dot (r XA (w) + (1= 1) XF (@) = Dpept" (X7 (W) -

te[0,7),r€[0,1],z€K £,h=1,...,m

Since the function
(t,r, 2, \) = Opept’(r XM (W) + (1 — 1) X (w)) — Opept(XF(w))
is continuous (being the function (¢, y)— X(w) continuous), and thus it is uniformly continuous
when (¢,7,2,A) are in the compact set [0, 7] x [0,1] x K x [0, 1], and since
lim (0 (r X7 0) 4 (1= 1) X7 () — et (X)) =0,
by the uniform continuity we get

i  swp AN 2 w) — Al W)
/\"OtG[O,T],IEK
< mlim s | XEPW) + (1 - 1) XEW)) — O (XE(W))
A—0 telo,7],7€10,1],
rzeK L,h=1,....,m

= 0.

This implies also that, for any compact set X C R, 7>0 and N € N,

// / Msy,z,w) - A’\(SQ,JU w)-- t‘i’\(SN,x,w)Ak”\X&dsldSQ---dsN

lim  sup
A—=0¢elo,7],z€ K

f// / A(sl,x,w)~A(32,x,w)~'~A(sN,x,w)Ak*/\XO“d31d32~~dsN‘ = 0.
Using the uniform bound (8.14) we obtain that
t
hmAk AXE = kar/ (s1,z,w) exdsy+ -+
(8.15)

/ / / A(sy,z,w) - A(s2,2,w) - A(sn, x,w)edsidse - -dsy + . ..

where
fk:(fklraafl?l)ERma fk:(si
(and 67 is the Kronecker delta). On the other hand, the left hand side of equation (8.15) is equal to

lim AR AXF = ¢,
A—0

and the right hand side of equation (8.15) is the explicit expression of the solution to the ODE
dz(t)

dt
Thus, & exists finite and it is solution to equation (8.16) (which is exactly equation (8.11)). [

=A(t,z,w) z(t), z(0)= f. (8.16)

Corollary 8.13. Suppose that (u, o) satisfies the hypotheses of Theorem 8.11, then there is C >0
such that, for any te Ry, reR™, weQ, k£, 0'=1,...,m, we have

€0 1< Ce, g < Cet.

Proof. The result is easy consequence of inequality (8.14). O
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8.4 Existence of solutions to Kolmogorov equation: additive
noise case

We recall the definition of the semigroup Q; associate with an (autonomous) SDE (pu, o):

Qu(f)(@) =E[f(X)] =E[f(F(t,z, Bp,y)))-

Theorem 8.14. Consider f € C*(R™,R) and suppose that f and its first and second derivatives
have at most polynomial growth at infinity. Suppose that (u, o) is an autonomous additive noise
SDFE satisfying assumption B. Then the Kolmogorov equation

Ou=L(u)(t,x), u(0,2)=f(x), (8.17)

admits a unique classical solution u € CY2(R4 x R™,R) such that u has at most polynomial growth
at infinity and we have

u(t, ) = Qu(f)() =E[f(F(t, 2, Bp,y))| = E[f(X7)].

Lemma 8.15. Let g:RF x Q— R be a function which, for any w €, is continuous in x € RF and
suppose that there is p>1, for any compact K C RF, we have

SEEJE[Ig(x, 7] < Cx (8.18)

for some constant Cx.. Then the function G(x):=E[g(z,w)] is continuous in x € R¥. If furthermore
g(-,w) € CYR™, R) and we have

( sup E[I@e;}(%-)lﬂ)éﬁc, (8.19)
zel,l=1,...,k

the function G(x) is C1(R*,R) and we have
0,G(x) =E[0yeg(,")], xzeRF I{=1,... k.

Proof. Consider x € R¥ and let By(x) C R be the (closed) ball of radius 1 and center x € R.
Then, by condition (8.18), the family of random variables {g(y,w)}ye B, () is uniformly integrable.
Furthermore since, for any w € 2, g(-,w) is continuous we have
lim  g(y,w)=g(z,w). (8.20)
y—z,y€Bi(z)

Since the family {g(y,w)}yeB, (2) is uniformly integrable, the limit (8.20) is not only pointwise (in
weN) but in L(). Thus we have

lim G(y)= lim E yw)=E lim ,w) | =E[g(z,w)]=G(z
o Gl)= lm Ele(yw) [yWGBl L 9(0:6) | =Elg(e. )] =6(a)
where we can exchange the limit with the expectation since the convergence (8.20) is in L((Q).
Let {es}r=1, ...k be the standard basis of RF. By the fundamental theorem of calculus, we have that

1

glx+ Aeg,w) — g(z,w) = )\/ Opeg(x + oep,w)do.
0

We have that the family of random variables

gz +Xep,w) — g(z,w)
{ A }o<x|<1 (8.21)

is uniformly integrable. Indeed

P 1 1
]E[ ] = ]E[ / 0peg(x + oep,w)do } g/ E[|0ye9(x + oep, w)|P]do
0 0

< sup E[|0y9(x 4 oe, w)|P] < Cp, ()
y€Bi(z)

g9(x +Aep,w) — g(z, W)
A
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where By (z) C R¥ is the ball of radius 1 and center z € R*. Since g(-,w) € C}(R*,R) we have that

lim g(.’L’ + ey, W) _ g(x, W)
A0 A

= 0peg(z,w), (8.22)

for every w € §2. Since the family (8.21) is uniformly integrable we have that the limit (8.22) is not
only pointwise (in w € Q) but also in L*(Q). Thus we get

G(z + Aeg) — G(x) Elg(z + Aeg, w) — g(z, w)]

b ) = )
~ E| lim 9($+Aef"‘;)_9(x"") = E[9,:9(z, w)], (8.23)

where we can exchange the limit with the expectation because the convergence (8.22) is in L(Q).
This proves the existence of the derivatives 0,¢G(z). The fact that 0,:G(x) is continuous follows
from the first part of the present lemma and the representation formula (8.23). O

Remark 8.16. If g€ C%(R* R) and we have, for some p>1,
supB[|0,,09(z,w)|P] < Ck,
ze

then G € C*(R¥,R). Indeed we can apply the Lemma 8.15 to the function 0,:G = E[0,cg(x,w)].

Proof. The uniqueness of solution to equation (8.17) has been proved in Theorem 8.3.
Let f € C?(R™,R) growing at most polynomially (say of degree L € N) as z— o0, and consider
the function

u(t, z) = E[f(X{)].

Consider t,s € R4 and t > s, then
u(t,x) —u(s, /Ef (XHdr + Z Z/O'J (X2)O,rf(X2)dBY |.

As usual, we can prove that f k(X2 zkf(Xf)dBi are martingale, and so

u(t,z) —uls,z) = / "BlLf (X)) dr / Gr.2)dr.

By Lemma 8.15 (and the polynomial growth of L£f(X7?)) is continuous the function G(7,z) is
continuous, and thus w is differentiable with respect to the time with continuous derivatives.
Furthermore, by Corollary 7.15, and the polynomial growth of f, we have

u(t, z)| SB[ f(XF)|] < KE[(1+]XF|V)] < K (14 Cne (1 +|z|V))
and also

[Oru(t, )| = |G(t,2)| SB[ LX) < KE[(1+ [ XV S K (14 Oy e+ (14 |2 VH).

Furthermore, by Theorem 8.11, for any t € Ry and w € €, the map = — f(X{(w)) is C*(R™, R),
furthermore we have

Ope(f(XE(w))) = Z Oy f (XF(W))&5

O,egrr (f( Z 0,y FXE@NENFETE + 37 0 f(XE(W)XE 01
k=1

k,k'=1

Thus we have that, for any p >1 and Corollary 8.13,
E(|0p(f(XFW)P] < mP~ IZ (10, f (X (w))[P 167 17]

< mP2r— 1KPCP6PCtIE[(1+|X§”|Np)]
< m2PLKPCP ePCH(1 4 Cpne®» (1 4 |2|PN)),
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and similarly

E[|0, e (f(XE@)IF] < m?P=! Z B[00, f (X7 (@) €5 €7 1P)

kk=1
42P—Lyp— IZ [0y f (X ( ))Xe 0r.417]

< (2Pm2rl +2pmp)(K”C2p62pCt+KpCpepCt)(l +CpneP N (14 |z [PN)).

Thus we can apply Lemma 8.15 and Remark 8.16, obtaining that for any ¢t € Ry, u(t,z) € C3(R™,
R) with at most polynomial growth in the derivatives. This implies that u(¢,r) € C*2?(R4 x R™, R).
The thesis, thus, follows from Proposition 8.5. O
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