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Note 1

Review of measure spaces, measures and integration.

see also A. Bovier's script for SS17, Chapter 1 [pdf].

A class𝒜⊆𝒫(Ω) is an algebra iff containsΩ and is closed wrt. complements and finite unions.
Is a 𝜎–algebra if it is also closed under countable unions.

The pair (Ω,ℱ) whereΩ is a set and𝒜 a 𝜎-algebra of subsets of Ω is a measurable space.

A (positive) measure 𝜇 on the measurable space (Ω, ℱ) is a map 𝜇: ℱ → [0, ∞] such that
𝜇(∅)=0 and

𝜇(∪nAn)=�
n
𝜇(An),

for any countable (An)n family of disjoint elements ofℱ. The measure𝜇 is finite if𝜇(Ω)<∞ and
𝜎-finite if there exists (Ωn)n⊆𝒜 such that𝜇(Ωn)<∞ for all n andΩ=∪nΩn. A triple (Ω,ℱ,𝜇)
is called a measure space.

A probability space is a measure space (Ω,ℱ,ℙ) such thatℙ(Ω)=1, the measureℙ is then called
a probability measure. The setΩ is called the set of elementary events andℱ is the 𝜎-algebra of
all the events.

In general, given a family 𝒢 of subsets of Ω we can consider the smallest 𝜎-algebra containing
𝒢 and we will denote it with 𝜎(𝒢).

If Ω is a topological space then we considerℬ(Ω) the Borel 𝜎-algebra, which is the smallest 𝜎-
algebra of Ω containing all open sets.

1 Carathéodory's construction of a measure

To construct a measure one has to overcome the sheer complexity of the structure of a 𝜎-algebra.

In order to describe a measure is useful to start with a simpler object, namely a 𝜎-additive (posi-
tive) set-function which is a function 𝜈:𝒰→[0,∞] defined over an arbitrary family𝒰 of subsets
of Ω satisfying 𝜈(∅)=0 and 𝜈(∪kAk)=∑k 𝜈(Ak) for all countable families (Ak)k⊆𝒰 such that
∪kAk∈𝒰 and made of mutually disjoint sets.

Theorem 1. (Carathéodory) Let Ω be a set,𝒰 an algebra of subsets of Ω and 𝜇0 a positive
𝜎-additive set-function on𝒰. Then there exists a measure 𝜇 on 𝜎(𝒰) such that 𝜇|𝒰=𝜇0. If 𝜇0
is 𝜎-finite then 𝜇 is unique.

Let us introduce some useful intermediate object to the construction.

A map𝜇∗:𝒫(Ω)→[0,∞] is an outer measure iff𝜇∗(∅)=0,𝜇∗ is non-decreasing for the inclusion
order and𝜇∗ is 𝜎-subadditive, i.e. 𝜇∗(∪kAk)⩽∑k𝜇

∗(Ak) for all countable families (Ak)k⊆𝒫(Ω).

If 𝜇∗ is an outer measure, then a set B⊆Ω is 𝜇∗-measurable iff 𝜇∗(A)=𝜇∗(B∩ A)+𝜇∗(Bc∩ A)
for all A⊆Ω. We letℳ(𝜇∗) the family of all measurable subsets of 𝜇∗.
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Theorem 2.

i.ℳ(𝜇∗) is a 𝜎-algebra that contains all B⊆𝒫(Ω) such that 𝜇∗(B)=0;

ii. The restriction 𝜇 of 𝜇∗ toℳ(𝜇∗) is a measure.

Proof. By subadditivity we have always 𝜇∗(A) ⩽ 𝜇∗(B∩ A) + 𝜇∗(Bc ∩ A), so if 𝜇∗(B) = 0 then
𝜇∗(A)⩽𝜇∗(Bc∩ A)⩽𝜇∗(A) and B∈ℳ(𝜇∗). Moreover if B∈ℳ(𝜇∗) then by symmetry of the
definition also Bc∈ℳ(𝜇∗). Assume B1, B2∈ℳ(𝜇∗) then 𝜇∗(A) = 𝜇∗(B1∩ A) + 𝜇∗(B1c∩ A) =
𝜇∗(B1∩ B2∩ A) + 𝜇∗(B1∩ B2c ∩ A) + 𝜇∗(B1c∩ B2∩ A) + 𝜇∗(B1c ∩ B2c ∩ A) ⩾ 𝜇∗((B1∩ B2) ∩ A) +
𝜇∗((B1 ∩ B2)c ∩ A) since (B1 ∩ B2)c = (B1 ∩ B2c) ∪ (B1c ∩ B2) ∪ (B1c ∩ B2c) and subadditivity.
Therefore B1∩B2∈ℳ(𝜇∗) and by stability under complement we have also thatℳ(𝜇∗) is stable
under finite unions. Let now (Bk)k⩾1 a countable family in ℳ(𝜇∗) made of disjoint sets. Let
B̄n=∪k⩾nBk. Then

𝜇∗(A)=𝜇∗((B1∪⋯∪Bn)∩ A)+𝜇∗((B1∪⋯∪Bn)c∩A)

⩾𝜇∗((B1∪⋯∪Bn)∩ A)+𝜇∗((∪k⩾1Bk)c∩A)=�
k=1

n

𝜇∗(Bk∩ A)+𝜇∗((∪k⩾1Bk)c∩ A).

Taking n→∞ we obtain, by 𝜎-subadditivity,

𝜇∗(A)⩾�
k=1

∞

𝜇∗(Bk∩A)+𝜇∗((∪k⩾1Bk)c∩ A)⩾𝜇∗((∪k⩾1Bk)∩A)+𝜇∗((∪k⩾1Bk)c∩ A),

while the reverse inequality holds also for 𝜎-subadditivity. Then (∪k⩾1Bk)∈ℳ(𝜇∗).

In order to prove that the restriction of 𝜇∗ to ℳ(𝜇∗) is a measure one simply observes that, if
(Bk)k⊆ℳ(𝜇∗) is a countable family made of mutually disjoint sets

𝜇∗(∪k⩾1Bk)=𝜇∗((∪k⩾1Bk)∩B1)+𝜇∗((∪k⩾1Bk)∩B1c)=𝜇∗(B1)+𝜇∗(∪k⩾2Bk)

therefore 𝜇∗(∪k⩾1Bk)⩾∑k𝜇
∗(Bk), so the equality holds by 𝜎-subadditivity. Note that 𝜇∗(∅)=0,

so the claim is proved. □

Lemma 3. Let𝒰 be an algebra of subsets of Ω and 𝜇 a 𝜎-additive set function on𝒰, define 𝜇∗:
𝒫(Ω)→[0,∞] by

A∈𝒫(Ω)↦𝜇∗(A)≔inf{{{{{{{{{{{{{{{{{{{{{{{{�k 𝜇(Fk): (Fk)k⊆𝒰 and A⊆∪kFk}}}}}}}}}}}}}}}}}}}}}}}}

Then 𝜇∗ is an outer measure. Moreover𝒰⊆ℳ(𝜇∗).

Proof. Is clear that 𝜇∗(∅)= 0 and that 𝜇∗ is non-decreasing. Let (Ak)k be a countable family of
sets in Ω, then find families (Fk,ℓ) such that Ak ⊆ ∪ℓFk,ℓ and 𝜇∗(Ak) ⩾∑ℓ 𝜇(Fk,ℓ) + 𝜀2−k. Then
∪kAk⊆∪k,ℓFk,ℓ and

𝜇∗(∪kAk)⩽�
k
𝜇(∪ℓFk,ℓ)⩽�

k,ℓ
𝜇(Fk,ℓ)⩽�

k
𝜇∗(Ak)−𝜀�

k
2−k
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and taking 𝜀→0 we obtain the 𝜎-subadditivity of 𝜇∗, so 𝜇∗ is an outer measure. Let us show now
that𝒰⊆ℳ(𝜇∗). Let A⊂Ω, and consider again (Fk)k⊆𝒰 such that 𝜇∗(A)⩾∑k𝜇(Fk)+𝜀. Now
for all B∈𝒰 we have

𝜇∗(A∩B)+𝜇∗(A∩Bc)⩽�
k
(𝜇(Fk∩B)+𝜇(Fk∩Bc))=�

k
𝜇(Fk)⩽𝜇∗(A)−𝜀

and taking 𝜀→0 we have that B∈ℳ(𝜇∗). □

We need now also a characterization for measures which is conveniently provided by Dynkin's
𝜋 −𝜆 theorem. We say that a family Λ of subsets of Ω is a 𝜆-system if it contains ∅, is closed
under complement and countable disjoint unions. Alternatively a 𝜆-system can be characterized
by saying that it containsΩ, is stable under differences (i.e. if A⊂B and A,B∈Λ then A\B∈Λ)
and under increasing limits (i.e. (Ak)k⊆Λ with Ak⊆Ak+1, then limkAk∈Λ). We say that another
familyΠ of subsets of Ω is a 𝜋-system if it is closed under finite intersection.

Theorem 4. (Dynkin's π −λ theorem) If Π is a𝜋-system andΛ a 𝜆-system thenΠ⊆Λ implies
that 𝜎(Π)⊆Λ.

Proof. (of Theorem 1) Existence of the required extension is an immediate consequence of
Lemma 3 and Theorem 2. Dynkin's theorem allows to prove that the measure 𝜇̄ obtained by
restriction of 𝜇∗ to 𝜎(𝒰) is the unique extension of 𝜇 from 𝒰 to 𝜎(𝒰) if 𝜇 is 𝜎-finite. Let
us describe the argument for 𝜇 a finite measure. It is left then to the reader to generalize to
𝜎-finiteness. Assume that 𝜇̂ is another such extension which coincide with 𝜇 on 𝒰. Let Λ be
the set of elements B∈𝜎(𝒰) such that 𝜇̄(B)= 𝜇̂(B). Then Λ is a 𝜆-system since {∅,Ω}⊆𝒰⊆
Λ, 𝜇̄(B1c)= 𝜇̄(Ω)− 𝜇̄(B1)=𝜇̂(Ω)− 𝜇̂(B1)=𝜇̂(B1c), and if (Bk)k⊆Λ is a pairwise disjoint family
we have 𝜇̄(∪kBk) = ∑k 𝜇̄(Bk) = ∑k 𝜇̂(Bk) = 𝜇̂(∪kBk). Also 𝒰 is a 𝜋-system, so by Dynkin's
theorem we have that 𝜎(𝒰)⊆Λ but thenΛ=𝜎(𝒰) and therefore 𝜇̄ and 𝜇̂ coincide on 𝜎(𝒰). □

Remark 5. Lebesgue measure on ℝ can be constructed starting from the additive set function
𝜆: 𝒰 → [0, ∞] defined on the family 𝒰 of sets obtained via finite unions of intervals of the
form (a, b], (−∞, b], (a, +∞)⊂ℝ by letting 𝜆(∪k(ak, bk])=∑k (bk − ak). One can prove that𝒰
is an algebra and 𝜆 a 𝜎-additive, 𝜎-finite set function. Then its extension 𝜆∗ toℳ(𝜆∗) defines
Lebesgue measure on 𝜎(𝒰) =ℬ(Ω) the Borel 𝜎-field of ℝ. Extension of this construction to
higher dimension is straightforward.

Remark 6. About the necessity of 𝜎-finiteness for uniqueness. The set-function 𝜈 defined on𝒰
(see previous Remark) by 𝜈((ak, bk]) = +∞ has an extension to 𝜎(𝒰) which is always infinite,
however this extension is not unique since for example the counting measure 𝜈̂ (i.e. the measure
which assigns to a set B its cardinality) has the same restriction to𝒰. Later on we will see that
product measures also provide another counterexample.

Theorem 7. A probability measure ℙ:ℬ(Ω)→[0, 1] on a compact Hausdorff metrizable space
Ω is inner regular (or tight), that is ℙ(F)= supK⊆Fℙ(K) where K runs over all the compacts K
contained in F.
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Proof. Let 𝒰 the subfamily of ℬ(Ω) made of sets B such that, for any 𝜀 > 0, there exists a
compact K⊆B and an open set O⊇B such thatℙ(B\K),ℙ(O\B)⩽𝜀. Is not difficult to prove that
𝒰 is a 𝜎-algebra on general grounds (exercise). We want now to prove that𝒰=ℬ(Ω). Here
we use the assumption that Ω is metrizable and let 𝜌 a metric which generates the topology of
Ω. For any compact K let Gn={𝜔∈Ω:𝜌(𝜔,K)<1/n}∈ℬ(Ω) which is open, decreasing in n
and converging to K, in the sense that K = ∩nGn. Then ℙ(Gn)↓ℙ(K) therefore K ∈𝒰. By the
compactness ofΩwe have also that any closed set B is compact, therefore B∈𝒰. Since all closed
sets are in𝒰 and𝒰 is a 𝜎-algebra, we conclude thatℬ(Ω)⊆𝒰 but this implies that𝒰=ℬ(Ω)
since the other inclusion is trivial. Now for any F ∈ℬ(Ω) we have a compact K ⊆ F such that
ℙ(F)−ℙ(K)=ℙ(F\K)⩽𝜀 therefore ℙ(F)=supK⊆Fℙ(K) as claimed. □

(recall that on Hausdorff spaces compact sets are closed and that closed sets in a compact topo-
logical space are compact, and that a space is compact iff every open cover has a finite sub-cover)

2 Random variables and integrals
A function f : (Ω,ℱ)→(E,ℰ) between two measurable spaces is measurable iff f −1(A)∈ℱ for
all A∈ℰ.

The interest of this definition is that given such a measurable function and a measure 𝜇 on (Ω,ℱ)
we can construct the induced measure 𝜇f on (E,ℰ) by letting 𝜇f (A)=𝜇( f −1(A)) for all A∈ℰ.

A (real valued) random variable on (Ω,ℱ) is a measurable function from this measure space to
(ℝ,ℬ(ℝ)). If (E,ℰ) is another measure space then an E-valued random variable is a measurable
map from (Ω,ℱ) to (E,ℰ). If E is a topological space, usually the Borel 𝜎-algebraℬ(E) is used
and the random variable is called E-valued. If E is a metric space then the random variable is
called Borel.

Given a random variable f : (Ω,ℱ)→(E,ℰ)we call 𝜎( f ) the smallest sub-𝜎-algebra ofℱ which
still makes f : (Ω,𝜎( f ))→(E,ℰ) measurable.

Measurable functions are stable under upper and lower limits, therefore if fn→ f and each fn is
measurable, then also the limiting f is measurable.

Given a family𝒰 of subsets ofΩwe would like to characterize all the functions which are 𝜎(𝒰)
measurable. This is the purpose of the following theorem:

Theorem 8. (Monotone class theorem) Letℋ be a class of bounded functions onΩ toℝ such
that

i.ℋ is a vector space over ℝ,

ii. 1∈ℋ,

iii. if fn⩾0 and fn↑ f with f bounded, then f ∈ℋ.

Then if ℋ contains the indicator functions of every element of a 𝜋-system𝒰 thenℋ contains
every bounded 𝜎(𝒰)-measurable function.

Proof. Consider the set Λ of subsets B of Ω such that 1B ∈ ℋ. This is a 𝜆-system (check).
Then by Dynkin's theoremℋ contains the indicator function of every element in 𝜎(𝒰). Let now
f ⩾0 be a bounded 𝜎(𝒰) measurable positive function and let K an upper bound for f . Define
functions fn as

fn= �
k=0

⌈K⌉2n−1

k2−n1{k2−n⩽ f⩽(k+1)2−n}.
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Note that {k2−n⩽ f ⩽(k+1)2−n}∈𝜎(𝒰), fn⩽ f , fn↑ f and fn∈ℋ. Therefore we conclude f ∈ℋ.
In order to deal with general f we decompose it into its positive and negative parts and reason as
above. □

In order to define integrals we need the notion of simple function. A function f : (Ω,ℱ)→ℝ is
simple if can be written as

f =�
i

wi1Ai,

where (Ai)i ⊂ ℱ is a partition of Ω and (wi)i ⊂ ℝ are distinct numbers. The space of simple
functions (on the measure space (Ω,ℱ)) is denoted ℰ and we denote by ℰ+⊆ℰ the subspace of
positive simple functions.

Simple functions are of course measurable. Given a measure 𝜇 on (Ω, ℱ) we can define the
integral of f =∑i wi1Ai∈ℰ wrt. 𝜇 as

�
Ω

f d𝜇=�
i

wi𝜇(Ai),

provided f ∈ℰ+ or provided the measure 𝜇 is finite. For general measurable functions f :Ω→ℝ
we define the integral as follows. If f ⩾0 then

�
Ω

f d𝜇= sup
g∈ℰ+,g⩽ f

�
Ω

gd𝜇,

otherwise we let f = f+− f− where f+=max( f , 0) and f−=max(− f , 0) and we let

�
Ω

f d𝜇=�
Ω

f+d𝜇−�
Ω

f−d𝜇,

provided either of the integrals in the r.h.s. is finite and leave the integral undefined otherwise.

A function f is absolutely integrable if ∫Ω | f |d𝜇 < +∞. (in probability theory they are usually
called simply integrable).

The integral is linear, and monotone. The basic convergence results for the (Lebesgue) integral
are (without proofs)

Theorem 9.

i. (Monotone convergence) If ( fn)n is an increasing sequences of measurable non-negative func-
tions such that fn↑ f. Then

lim
n
�
Ω

fnd𝜇=�Ω f d𝜇.

ii. (Fatou's lemma) If ( fn)n is a sequence of measurable non-negative functions, then

liminf
n
�
Ω

fnd𝜇⩾�Ω �liminfn
fn�d𝜇.
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iii. (Lebesgue's dominated convergence) Let ( fn)n be a sequence of absolutely integrable func-
tion, such that fn → f and let g another absolutely integrable function such that | fn(𝜔)| ⩽
g(𝜔) for 𝜇-almost all 𝜔 and for all n. Then

lim
n
�
Ω

fnd𝜇=�Ω f d𝜇.

Using monotone convergence is possible to prove a more intuitive representation of the integral
of a non-negative measurable function f , namely that

� f d𝜇= lim
n [[[[[[[[[[[[[[[[[[
[�

k=0

n2n−1

k2−n𝜇(k2−n⩽ f <(k+1)2−n)+n𝜇( f ⩾n)]]]]]]]]]]]]]]]]]]
].

(this was actually the original definition given by Lebesgue).

When dealing with a probability space (Ω,ℱ,ℙ) we denote with 𝔼 the corresponding integral,
namely if X:Ω→ℝ is a random variable, then

𝔼[X]=�
Ω

Xdℙ=�
Ω

X(𝜔)ℙ(d𝜔),

where sometimes we will use the notation on the r.h.s. in order to highlight the role of of the
“integration” variable.

An important concept related to integration, is the following.

A family (X𝛼)𝛼 of random variables is uniformly integrable if for any 𝜀>0 there exists L>0 such
that

sup
𝛼
𝔼[|X𝛼|1|X𝛼|>L]<𝜀.

In particular, it holds that sup𝛼𝔼[|X𝛼|]<∞.

A single random variable is uniformly integrable due to the monotone convergence theorem (exer-
cise). A finite family of random variable is also easily seen to be uniformly integrable.

An alternative characterization of uniform integrability is given by:

Lemma 10. A family (X𝛼)𝛼 of random variables is uniformly integrable iff sup𝛼𝔼[|X𝛼|] < ∞
and for all 𝜀 > 0 there exists 𝛿 > 0 such that, for all A ∈ ℱ for which ℙ(A) < 𝛿 we have
sup𝛼𝔼[|X𝛼|1A]<𝜀.

Proof. Note that, for all K>0, |X𝛼|⩽(|X𝛼|−K)++K therefore, if the family is uniformly integrable
we have

𝔼[|X𝛼|1A]⩽𝔼[(|X𝛼|−K)+1A]+Kℙ(A)⩽𝔼[(|X𝛼|−K)1|X𝛼|>K]+Kℙ(A)⩽𝜀/2+Kℙ(A)

by choosing K=K(𝜀) appropriately, then is enough to take 𝛿 small enough. The reverse implica-
tion follows observing that Kℙ(|X𝛼|>K)⩽sup𝛼𝔼[|X𝛼|]<∞ therefore by choosing K=K(𝜀) large
enough we have sup𝛼ℙ(|X𝛼| >K)<𝛿(𝜀) and as a consequence sup𝛼𝔼[|X𝛼|1|X𝛼|>K]<𝜀. □
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Uniform integrability is the best possible condition for the convergence of integrals, as the fol-
lowing theorem shows. In this respect it more general that Lebesgue's dominated convergence
theorem.

Theorem 11. (Uniform integrability) Let (Xn)n and X be integrable random variables, then
𝔼[|Xn −X|]→0 (convergence in average) iff

a) Xn→X in probability, i.e. limnℙ(|Xn −X|>𝜀)=0 for all 𝜀>0;

b) the family (Xn)n is uniformly integrable.

Proof. Let us show the reverse implication. Let 𝜙K(x)=(K∧x)∨(−K) and observe that |𝜙K(x)−
y| ⩽ |x − y| so if Xn→X in probability, then also 𝜙K(Xn)→𝜙K(X) in probability. Now by uniform
integrability we have

𝔼[|𝜙K(Xn)−Xn|]⩽𝔼[(|Xn|−K)1|Xn|>K]⩽𝜀/2

and a similar statement for X, provided that K=K(𝜀) is suitably chosen. On the other hand

𝔼[|𝜙K(Xn)−𝜙K(X)|]=𝔼[|𝜙K(Xn)−𝜙K(X)|1|Xn−X |⩽𝜀]+𝔼[|𝜙K(Xn)−𝜙K(X)|1|Xn−X |>𝜀]

⩽𝜀ℙ(|Xn −X| ⩽𝛿)+2Kℙ(|Xn −X| >𝛿)⩽𝜀+2Kℙ(|Xn −X| >𝜀)→𝜀,

therefore we conclude that limn𝔼[|Xn − X|]⩽ 3𝜀 and since 𝜀 is arbitrary 𝔼[|Xn − X|]→0 follows.
In order to deduce the direct implication, note that convergence in average implies easily conver-
gence in probability, moreover that we need to have𝔼[|Xn −X|]<𝜀/2 eventually, that is for n⩾n0
for some n0. The finite family (Xn)n<n0 is easily seen uniformly integrable, while if n⩾n0we have

𝔼[|Xn|1|Xn|>K]⩽𝔼[|Xn −X|1|Xn|>K]+𝔼[|X|1|Xn|>K]⩽𝜀/2+𝔼[|X|1|Xn|>K]

moreover, Markov's inequality gives

ℙ(|Xn|>K)⩽K−1𝔼[|Xn|]⩽K−1(𝔼[|X|]+𝔼[|X −Xn|])⩽K−1(𝔼[|X|]+𝜀/2).

Therefore if K is chosen big enough we have ℙ(|Xn|>K)<𝛿=𝛿(𝜀) and uniform integrability of
X allows to conclude that 𝔼[|Xn|1|Xn|>K]⩽𝜀 also for n⩾n0. □

3 Lp spaces

Given a measure space (Ω, ℱ, 𝜇) one can introduce a family of semi-norms on measurable
functions indexed by p⩾1:

‖ f ‖p≔��Ω | f |
pd𝜇�

1/p
.

That this function satisfies the triangle inequality is the content of Minkowski's inequality:

‖ f +g‖p⩽‖ f ‖p+‖g‖p.

Moreover, Hölder's inequality holds:

��
Ω

fgd𝜇�⩽‖ f ‖p‖g‖q
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for 1⩽ p,q⩽∞ such that p−1+q−1=1, where ‖ f ‖∞=esssup | f | = inf {L⩾0:𝜇(| f | >L)=0}.

Both inequalities can be deduced from Jensen's inequality (in the case of probability measures):

Lemma 12. (Jensen's inequality) Let (Ω,ℱ,ℙ) a probability space, X an absolutely integrable
random variable and 𝜑:ℝ→ℝ a convex function, then

𝔼[𝜑(X)]⩽𝜑(𝔼[X]).

Proof. Since 𝜑 is convex, for any z∈ℝ there exists m∈ℝ such that 𝜑(x)⩾m(x− z)+𝜑(z). Take
z=𝔼[X], then

𝔼[𝜑(X)]⩽𝔼[m (X −𝔼[X])+𝜑(𝔼[X])]=𝜑(𝔼[X]). □

For all p ∈ [1, ∞], the space of all function f such that ‖ f ‖p < ∞ is called ℒp = ℒp(Ω, ℱ,
𝜇). On this linear space ‖⋅‖p is only a semi-norm, since there exists functions f ≠ 0 such that
‖ f ‖p = 0. Introducing the equivalence relation f ∼ f ′ iff ‖ f − f ′‖p = 0 we can consider the set
Lp = Lp(Ω, ℱ, 𝜇) of equivalence classes of functions in ℒp modulo functions which are non-
zero on sets of measure zero. On Lp the function ‖∗‖p is a norm. Moreover if p=2 then we have
also |∫Ω fgd𝜇| ⩽ ‖ f ‖2‖g‖2, therefore L2 is an Hilbert space when endowed with the scalar product
⟨ f ,g⟩=∫Ω fgd𝜇. This is fully justified by the following completeness result.

Theorem 13. The spaces Lp are Banach spaces.

Proof. We need to show completeness. Let ( fn)n be a Cauchy sequence in Lp. We can choose
(nk)k increasing such that for all i, j⩾nk we have ‖ fi − fj‖⩽2−k−k/p. Now let F≔∑k 2

kp| fnk+1− fnk|p
and observe that, on the one hand

�Fd𝜇=�
k
2kp� | fnk+1− fnk|pd𝜇⩽�

k
2−k<∞,

so F is 𝜇-almost everywhere finite, while on the other hand, | fnk+1− fnk| ⩽ 2−kF1/p which implies
that ( fnk)k is a Cauchy sequence everywhere F is finite. Let f = limkfnk if F <∞ and f =0 when
F=∞. Observe that

| f − fnk| ⩽�
m⩾k
| fnm+1− fnm|⩽2−kF1/p

therefore ‖ f − fnk‖p→0 and as a consequence f ∈Lp and fn→ f in Lp. □

4 Product measures and integrals

Given two 𝜎-finite measurable spaces (Ωi, ℱi, 𝜇i)i=1,2 we can consider their product (Ω,ℱ, 𝜇)
whereΩ=Ω1×Ω2 (product of sets), ℱ=ℱ1⊗ℱ2 is the 𝜎-algebra onΩ generated by the family
𝒰 of sets of the form A ×B with A∈ℱ1 and B∈ℱ2 and 𝜇=𝜇1⊗𝜇2 is the measure defined by
𝜇(A × B) = 𝜇1(A)𝜇2(B) on 𝒰 (with 0 ⋅ ∞ = 0). Existence and uniqueness of such a measure
follows from Caratheodory's extension theorem.

On product spaces, sections are measurable.
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Proposition 14. If A∈ℱ1⊗ℱ2 and we let Ax≔{y∈Ω2: (x,y)∈ A} then we have Ax∈ℱ2.

Proof. Let𝒢 the family of sets A for which Ax∈ℱ1. Clearly measurable rectangles are in 𝒢 and
one observes that𝒢 is a 𝜎-algebra. Therefore𝒢⊆ℱ1⊗ℱ2⊆𝒢. □

Remark 15. We haveℬ(ℝn)⊗ℬ(ℝm)=ℬ(ℝn+m). Recall that the Borel 𝜎-algebra ofℝn can
be generated by rectangles.

In this setting we have the following results about integration with respect to the product measure
𝜇1⊗𝜇2.

Theorem 16. (Fubini-Tonelli) If f :Ω→ℝ is a non-negative measurable function we have

�
Ω1×Ω2

f (x,y)(𝜇1⊗𝜇2)(dxdy)=�Ω1
f1(x)𝜇1(dx)=�Ω2

f2(y)𝜇2(dy) (1)

where

f1(x)≔�Ω2
f (x,y)𝜇2(dy), f2(y)≔�Ω1

f (x,y)𝜇1(dx),

are functions which are measurable wrt. ℱ1 and ℱ2 respectively.

If f : Ω → ℝ is a 𝜇–absolutely integrable function, then f is absolutely integrable wrt. to each
variable separately, f1, f2 defined as above are well defined, except possibly for a set of measure
zero (wrt. 𝜇1 resp. 𝜇2) and the equality of integrals in (1) holds.

Remark 17. Again𝜎-finiteness is a necessary condition to be able to identify the product measure
𝜇1⊗𝜇2 uniquely using the condition that (𝜇1⊗𝜇2)(A×B)=𝜇1(A)𝜇2(B) for A∈ℱ1 and B∈ℱ2.
Indeed considerΩ1=Ω2=[0,1] with the Borel 𝜎-algebra and 𝜇1 given by the Lebesgue measure
while 𝜇2 given by the counting measure. Note that the set D={(x,y):0⩽x=y⩽1}⊆[0,1]×[0,1]
is measurable wrt. ℬ([0, 1]) ⊗ ℬ([0, 1]) = ℬ([0, 1]2) (this equality holds since [0, 1]2 is
separable and we can approximate open sets with balls and balls with rectangles). In this case
there are many possible product measures since one can take for example the measures 𝜈1,𝜈2 such
that 𝜈1(F)=∫Ω2𝜇1({x∈Ω1:(x,y)∈F})𝜇2(dy) and 𝜈2(F)=∫Ω1𝜇2({y∈Ω1:(x,y)∈F})𝜇1(dx) (one
would have to prove that such sections are measurable, of course). Both measures are product
measures but they are clearly different since 𝜈1(D)=0 and 𝜈2(D)=1. The extension 𝜈C given by
Carathéodory's theorem (starting from a 𝜎-additive set function on the algebra of sets generated
by measurable rectangles) satisfies 𝜈C(D) = +∞ since any finite cover of D by elements of the
algebra necessarily have infinite measure.
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