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Note 10

Construction of general stochastic processes. The Daniell-Kolmogorov
theorem.

1 Introduction

In this brief note we review the general construction of a stochastic process via its marginal dis-
tributions.

For modelisation purposes we would like to consider families of random variable (Xt)t∈I indexed
by a general parameter set I. When I is discrete and finite then there is no problem to see the
family as a single sample of a vector valued random variable with values in the product measure
space (E I ,ℰI) where (E ,ℰ) is the measure space where each Xt is defined, i.e. Xt: (Ω,ℱ)→(E ,
ℰ) for all t ∈ I. Taking 𝜋t: (E I , ℰI) → (E , ℰ) to be the measurable map giving the coordinate
projecton on the factor t we can simply define X: Ω→ (E I , ℰI) with (X(𝜔))t = Xt(𝜔) for all t ∈ I
and 𝜔∈Ω and obtain that 𝜋t X =Xt. In this way we have replaced the family of random variables
(Xt)t each of them taking values on E with one single random variable X taking values on (E I ,ℰI)
where ℰI is the product 𝜎-algebra, i.e. the 𝜎-algebra generated by sets of the form ∏i∈I Ai ⊆ E I

where Ai ∈ℰ for all i∈ I.

As soon as I is not finite or not even countable this procedure has to be clarified. As an example
we would like to allow I to be ℕ, ℤ or even ℝ or ℝn, or even larger spaces like the space of
Schwartz test functions 𝒮(ℝd) on some Euclidean space ℝd. In the case the parameter set is not
one dimensional, we usually speak of random fields instead of random processes. Anyway in the
following the explicit form of I does not play particular role, and this is quite remarkable and due
to the fact that the axioms of a 𝜎-algebra already put very stringent constraints on the objects one
can construct that already the example of I =ℕ or I =ℤ essentially saturates those constraints in
such a way that going from I =ℕ to I =𝒮(ℝd) does not add additional difficulties.

We are looking at a definition for ℰI which retains the property that for all t ∈ I the maps 𝜋t: (E I ,
ℰI)→(E,ℰ) remains measurable. Therefore we can just pose this as a definition and let ℰI be the
smallest 𝜎-algebra which makes all the 𝜋t:E I →(E,ℰ) measurable. The family of sets of the form

𝜋J
−1(A), J ⊆ I,J finite, A∈ℰJ,

where 𝜋J: E I → EJ is the projection on the coordinates in J constitute an algebra in 𝒫(E I). Sets
of the form 𝜋J

−1(A) are called cylinder sets. The family of special cylinder sets of the form

𝜋J
−1((((((((((((�

t∈J
At)))))))))))),J ⊆ I,J finite, At ∈ℰ for all t ∈J,

is a 𝜋-system inside the algebra of cylinder sets. Both systems generate ℰI : any 𝜎-algebra which
contains the special cylinder sets makes every projection 𝜋t measurable and the smallest is indeed
ℰI .

The definition of the product 𝜎-algebra is conceived to achieve the following equivalence.
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Lemma 1. A map X: (Ω,ℱ)→(E I ,ℰI) is measurable iff 𝜋tX: (Ω,ℱ)→(E,ℰ) is measurable for
all t ∈ I.

Proof. Note that X: (Ω, ℱ) → (E I , ℰI) is measurable iff X−1(A) ∈ ℱ for all A which generates
ℰI but this means that we can check the condition for the special cylinders A=𝜋J

−1(∏t∈J Bt) for
Bt ∈ ℰ and J ⊆ I finite and this is indeed implied by the measurability of each of the projections
(𝜋t)t∈J since 𝜋J

−1(∏t∈J Bt) = ∩t∈J𝜋t
−1(Bt) ∈ ℱ. The opposite implication derives immediately

from the composition of measurable functions since 𝜋t is measurable from (E I ,ℰI) to (E,ℰ) for
all t ∈ I. □

The interest of this result is that, as soon as I is not finite, ℰI contains very interesting events
which are not simply determined by any of the finite dimensional projections, think for example
to some tail events.

Given a process X: (Ω, ℱ) → (E I , ℰI) we call the measure 𝜇X on (E I , ℰI) given by 𝜇X(A) =
ℙ(X ∈ A) for all A ∈ ℰI its law. Moreover as already seen, on the space (E I , ℰI) we can always
realize the stochastic process (Xt:Ω→E)t∈I by taking Xt(𝜔)=𝜔t so that X(𝜔)=𝜔. This is called
the canonical process.

2 Daniell-Kolmogorov's theorem

Another advantage of working with the 𝜎-algebra ℰI is that the law of a stochastic process is
characterized by its finite dimensional marginals. Indeed the special cylinders form a 𝜋-system
which generates ℰI and therefore two probabilities on (E I , ℰI) which coincide on all special
cylinders must also coincide on ℰI by the standard 𝜋−𝜆 argument (consider the Λ-system of sets
on which the two measures coincide.. .).

The following theorem, due to Kolmogorov (and independently to Daniell) state the existence of
a probability on (E I ,ℰI) is ensured by the existence of a family of consitent probabilities for the
special cylinders.

We say that a family of probabilites (𝜇J)J indexed by the finite subsets of I is consistent if for
any J′ ⊆ J with J finite and with 𝜋J ,J ′: EJ → EJ ′ the canonical projection from EJ to EJ ′we have
𝜇J ∘𝜋J ,J ′

−1 =𝜇J ′.

Theorem 2. (Daniell-Kolmogorov) Assume that (𝜇J ∈Π(EJ,ℰJ))J⊆I ,J finite is a consistent family
of probabilites which are inner regular. Then there exist a unique measure 𝜇 on (E I , ℰI) such
that 𝜇∘𝜋J

−1=𝜇J for all finite J ⊆ I.

Proof. On the algebra of cylinder sets we can define an additive set function 𝜇0 as follows. Let
A be a cylinder set, then A=𝜋J

−1(AJ) for some J ⊆ I finite and AJ ∈ℰJ. Then let

𝜇0(A)=𝜇J(AJ).

The consistency of the family is needed to ensure that this definition is well posed, indeed if we
have A=𝜋J ′

−1(AJ ′) for another J′⊆ I finite, we also have A=𝜋J ′
−1(AJ ′)∩𝜋J

−1(AJ)=𝜋J∪J ′
−1 (AJ∪J ′)

for AJ∪J ′ ∈ℰJ∪J ′ with AJ∪J ′ =𝜋J∪J ′,J
−1 (AJ)=𝜋J∪J ′,J ′

−1 (AJ ′), then by consistency

𝜇J(AJ)=𝜇J∪J ′(𝜋J∪J ′,J
−1 (AJ))=𝜇J∪J ′(AJ∪J ′)=𝜇J∪J ′(𝜋J∪J ′,J ′

−1 (AJ ′))=𝜇J ′(AJ ′)
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and therefore the definition does not depends on the particular choice of the “base” of the repre-
sentation of A as a cylinder set. It is clear that 𝜇0(E I) = 1 and that 𝜇0 is additive, since any pair
of cylinders can be represent as preimages of the same projection. Less clear is the 𝜎-additivity
which is where we need the additional assumption that E is compact and metrizable, but which is
equivalent to prove that for a family (An)n of cylinder sets so that An ⊇ An+1 and An↓∅ we have
𝜇0(An) → 0. We are going to prove that this is necessarily true by showing that if 𝜇0(An) ⩾ 2𝜀
for all n then ∩nAn ≠ ∅. Since each An is a cylinder set, there exists Jn ⊆ I finite and AJn ∈ ℰJn

such that An = 𝜋Jn
−1(AJn). Since 𝜇Jn is inner regular there exists a compact set Kn ⊆ An such that

𝜇Jn(Kn)⩾𝜇Jn(An)−2−n𝜀. Then if we let Hn =𝜋Jn
−1(Kn) we have

𝜇0(∩k=1
n Hk)⩾𝜇0(∩k=1

n Ak)− �
k=1

n

𝜇0(Ak\Hk)⩾2𝜀− �
k=1

n

𝜀2−k ⩾𝜀

and in particular for any n, ∩k=1
n Hk ≠ ∅. Let xn ∈ ∩k=1

n Hk, that is 𝜋Jkxn ∈ ∩ℓ=1
k Kℓ for all k ⩽ n. By

compactness there exists a subsequence (𝜋Jkxnr)r such that limr𝜋Jkxnr ∈ ∩ℓ=1
k Kℓ. By a diagonal

argument we can extract a further subsequence such that limr𝜋Jkxnr = xk ∈ ∩ℓ=1
k Kℓ for all k ⩾ 0.

Clearly 𝜋Jmxk = xm for all k ⩾m. Therefore there exists x∈E I such that 𝜋Jkx= xk ∈∩ℓ=1
k Kℓ for all

k and as a consequence x ∈ ∩ℓ=1
∞ Kℓ. But this implies that ∩ℓ=1

∞ Kℓ is not empty. By contradiction
we established that 𝜇0 is 𝜎-additive and therefore that by Caratheodory extension theorem can
be extended to a probability measure on (E I , ℰI). Uniqueness comes from the 𝜋-𝜆 argument
sketched above. □

In particular the assumption of inner regularity holds if E is a Polish space as the following lemma
establish.

Lemma 3. Any probability on a Polish space (Ω,ℱ) endowed with its Borel 𝜎-algebra is inner
regular.

Proof. Let Br(x) denote the (closed) ball around x∈Ω of radius r. Since Ω is separable, for any
n there exists a sequence of points (xk

n)k such that Ω=∪kB1/n(xk
n) and by 𝜎-additivity there exists

an ln such that

ℙ�∪k=1
ln B1/n(xk

n)�⩾1−𝜀2−n.

Then the set K =∩n∪k=1
ln B1/n(xk

n) is closed and

ℙ(Kc)=ℙ�∪n�∪k=1
ln B1/n(xk

n)�c�⩽�
n

𝜀2−n ⩽𝜀.

Moreover K ⊆ ∪k=1
ln B1/n(xk

n) for every n, therefore K is closed and totally bounded and therefore
compact since Ω is complete. So Ω can be approximated by a compact set with arbitrary small
loss of measure. From this one can also deduce that any closed set has this property and from
Dynkin's theorem that all the measurable set have the same property. □

3 Gaussian processes
To show the generality of the above construction we start by considering a real Hilbert space H
with scalar product ⟨⋅, ⋅⟩. To each finite subset J ⊆H we associate the measure 𝜇J on ℝJ given by
the law 𝒩ℝJ(0,CJ) of the Gaussian vector (Xh)h∈J with mean zero and covariance

Ch,h′
J =⟨h,h′⟩, h,h′∈J.
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Note that his is possible since the covariance matrix (Ch,h′
J )h,h′ is positive semidefinite, since it is

so the scalar product of H:

�
h,h′∈J

𝜆h𝜆h′Ch,h′
J = �

h,h′∈J
𝜆h𝜆h′⟨h,h′⟩= ��

h∈J
𝜆hh�

H

2
⩾0

for all choice of (𝜆h ∈ ℝ)h∈J. An alternative characterisation of the measure 𝒩ℝJ(0,CJ) is given
by its caracteristic function

�
ℝJ

e i(∑h∈J𝜆hxh)𝜇J(dx)= e−1
2∑h,h′∈J𝜆h𝜆h′Ch,h′

J
.

An easy computation shows that, if J ⊆J′ then 𝜇J ∘𝜋J ,J ′=𝜇J ′, for example from the caracteristic
function, since

�
ℝJ′

ei(∑h∈J′𝜆hxh)(𝜇J ∘𝜋J ,J ′)(dx)=�
ℝJ

ei(∑h∈J′𝜆h(𝜋J,J′x)h)𝜇J(dx)

=�
ℝJ

e i�∑h∈J𝜆̂hxh�𝜇J(dx)= e−1
2∑h,h′∈J𝜆̂h𝜆̂h′Ch,h′

J
=e−1

2∑h,h′∈J′𝜆h𝜆h′Ch,h′
J′

=�
ℝJ′

e i(∑h∈J′𝜆hxh)𝜇J ′(dx)

where 𝜆̂h = 1h∈J ′𝜆h. Therefore the family (𝜇J)J is consistent and by the Daniell-Kolmogorov
theorem it defines a measure ℙ on the measure space (ℝH,ℬ(ℝ)⊗H) under which the canonical
process (Xh)h∈H has Gaussian finite dimensional marginals with covariance given by the scalar
product of H. In particular we have

𝔼ei𝜆Xh = e−1
2𝜆2‖h‖2

and this suffices to characterise ℙ since for any finite J, choosing h=∑h∈J 𝜆hhh we have

𝔼e iXh = e−1
2 ‖h‖2

= e−1
2∑h,h′∈J𝜆h𝜆h′⟨h,h′⟩

which shows that the law of the vector (Xh)h∈J is precisely 𝜇J for all finite J. Note that

𝔼(𝜆Xh −X𝜆h)2=𝜆2‖h‖2+‖𝜆h‖2−2𝜆⟨h,𝜆h⟩=0

therefore, almost surely 𝜆Xh =X𝜆h. Similarly one can prove that Xh1+h2 =Xh1 + Xh2 almost surely
for any h1,h2∈H. The map h∈H ↦Xh ∈L2(ℙ) is an isometry.
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