

Note 11

Brownian motion.

(Lectures and notes by Francesco De Vecchi)

1 Definition and equivalent characterizations

Definition 1. A stochastic process $B: \mathbb{R}_+ \times \Omega \to \mathbb{R}$ is a Brownian motion if

- 1. $B_0 = 0$,
- 2. for any $0 \le t_1 \le t_2 \le ... \le t_n \in \mathbb{R}_+$ we have that $B_{t_1} B_0$, $B_{t_2} B_{t_1}$, ..., $B_{t_n} B_{t_{n-1}}$ are independent random variables and $B_{t_i} B_{t_{i-1}} \sim N(0, t_i t_{i-1})$,
- 3. for almost every $\omega \in \Omega$ the function $t \mapsto B_t(\omega)$ is continuous (i.e., in $C^0(\mathbb{R}_+, \mathbb{R})$).

1.1 Brownian motion as a Markov process

We consider the following completed natural filtration of B_t given by

$$F_t = \sigma(B_s, s \in [0, t]).$$

Theorem 2. A Brownian motion B_t is a F_t Markov process with transition kernel given by

$$p(x,t;y,s) = \frac{1}{\sqrt{2\pi(t-s)}} \exp\left(\frac{-(x-y)^2}{2(t-s)}\right),\tag{1}$$

where $0 \le s < t$.

Proof. We have to prove that for any $0 \le s < t$ and any Borel set $A \subset \mathbb{R}$ there exists a version of $\mathbb{P}(B_t \in A|F_s)$ which is $\sigma(B_s)$ measurable.

By Definition 1 we have that $B_t - B_s$ is independent of $B_s - B_0 = B_s$ and $B_t - B_s \sim N(0, t - s)$

$$\begin{split} \mathbb{P}(B_t \!\in\! A|F_s) &= \mathbb{P}((B_t \!-\! B_s) + B_s \!\in\! A|F_s) \\ &= \int_A \frac{1}{\sqrt{2\pi(t\!-\! s)}} \!\exp\!\left(\frac{-(x\!-\! B_s)^2}{2(t\!-\! s)}\right) \!. \end{split}$$

Corollary 3. For any $0 < t_1 < t_2 < \dots < t_n$ we have that the law of $(B_{t_1}, \dots, B_{t_n})$ is given by

$$\frac{1}{\sqrt{(2\pi)^n \prod_{i=1}^n (t_i - t_{i-1})}} \exp\left(-\sum_{i=1}^n \frac{(x_i - x_{i-1})^2}{2(t_i - t_{i-1})}\right),\tag{2}$$

1

where $t_0 = 0$ and $x_0 = 0$.

Proof. We prove the theorem for n = 2. The general case can be proved by induction.

Let A_1, A_2 be two Borel subsets of \mathbb{R} , then we have

$$\mathbb{P}(B_{t_1} \in A_1, B_{t_2} \in A_2) = \int_{A_1} \frac{1}{\sqrt{2\pi t_1}} \exp\left(-\frac{x_1^2}{2t_1}\right) \mathbb{P}(B_{t_2} \in A_2 | B_{t_1} = x_1) dx_1
= \int_{A_1} \frac{1}{\sqrt{2\pi t_1}} \exp\left(-\frac{x_1^2}{2t_1}\right) \left(\int_{A_2} \frac{1}{\sqrt{2\pi (t_2 - t_1)}} \exp\left(\frac{-(x_2 - x_1)^2}{2(t_2 - t_1)}\right) dx_2\right) dx_1$$

where to obtain the last equality we use Theorem 2.

Corollary 4. Let B_t be a Markov process with transition kernel (1), $B_0 = 0$ and such that for almost every $\omega \in \Omega$ the function $t \mapsto B_t(\omega)$ is in $C^0(\mathbb{R}_+, \mathbb{R})$, then B_t is a Brownian motion.

Proof. We have only to prove that B_t satisfies the second property of Definition 1. Using the same reasoning of Corollary 3, we obtain that, if B_t is a Markov process with transition kernel (1), then it has finite dimensional marginals given by (2). This implies that for any $0 \le t_1 \le t_2 \le ... \le t_n \in \mathbb{R}_+$ we have that $B_{t_1} - B_0$, $B_{t_2} - B_{t_1}$,..., $B_{t_n} - B_{t_{n-1}}$ are independent random variables and $B_{t_i} - B_{t_{i-1}} \sim N(0, t_i - t_{i-1})$.

1.2 Brownian motion as a Gaussian process

Theorem 5. Brownian motion is a Gaussian process such that $B_0 = 0$ and

$$\mathbb{E}[B_t] = 0 \tag{3}$$

$$cov(B_t, B_s) = min(t, s). (4)$$

Proof. The fact that Brownian motion is a Gaussian process follows by the explicit expression of finite dimensional marginals given in Corollary 3.

Using the definition of Brownian motion we have $\mathbb{E}[B_t] = \mathbb{E}[B_t - B_0] = 0$ and, if $s \le t$,

$$cov(B_t, B_s) = cov(B_t - B_s, B_s) + cov(B_s, B_s) = s.$$

Corollary 6. Let B_t be a Gaussian process with mean (3) and co-variance (4), and suppose that $B_0 = 0$ and for almost every $\omega \in \Omega$ the function $t \mapsto B_t(\omega)$ is in $C^0(\mathbb{R}_+, \mathbb{R})$, then B_t is a Brownian motion.

Proof. We have only to prove that B_t satisfies the second property of Definition 1. Since $B_{t_1} - B_0$, $B_{t_2} - B_{t_1}, \ldots, B_{t_n} - B_{t_{n-1}}$ are Gaussian random variables (being linear combinations of jointly Gaussian random variables) we have to prove that $cov(B_{t_i} - B_{t_{i-1}}, B_{t_j} - B_{t_{j-1}}) = 0$ if $i \neq j$. Suppose that $t_j < t_i$ then

$$cov(B_{t_i} - B_{t_{i-1}}, B_{t_j} - B_{t_{j-1}}) = cov(B_{t_i}, B_{t_j}) - cov(B_{t_{i-1}}, B_{t_j}) - cov(B_{t_i}, B_{t_{j-1}}) + cov(B_{t_{i-1}}, B_{t_j})
= t_j - t_j - t_{j-1} + t_{j-1} = 0,$$

2 Lévy construction of Brownian motion

2.1 Haar and Schauder functions

We define Haar functions $h_n^k(t)$ for $n = 0, 1, ... \in \mathbb{N}$ and $k = 0, ..., 2^{n-1} - 1$ in the following way: for n = 0 we put $h_0^0(t) = 1$ and for $n \neq 0$ we write

$$h_n^k(t) = 2^{\frac{n-1}{2}} \left(\mathbb{I}_{\left[\frac{2k}{2^n}, \frac{2k+1}{2^n}\right)}(t) - \mathbb{I}_{\left[\frac{2k+1}{2^n}, \frac{2k+2}{2^n}\right)}(t) \right).$$

We define also Schauder functions as

$$e_n^k(t) = \int_0^s h_n^s(s) ds.$$

Lemma 7. The set of Haar functions forms an orthonormal basis of $L^2([0,1])$.

Proof. The orthonormality is a consequence of the fact that $h_n^k(t)$ and $h_n^{k'}(t)$ are supported in different sets when $k \neq k'$, and that $h_n^k(t)$ has integral 0 on the dyadic set of the form $\left[\frac{k'}{2^{n-1}}, \frac{k'+1}{2^{n-1}}\right]$ (for any $k' \in \mathbb{N}$).

In order to prove that the Haar functions form a complete basis of $L^2([0,1])$ we have only to prove that for any function $f \in L^2([0,1])$ such that $\int_0^1 f(t)h_n^k(t) = 0$ we have f = 0.

Consider the probability space ([0, 1], B, dx) (where B is the complete σ -algebra generated by Borel sets and dx is the Lebesgue measure) and consider the filtration $B_n = \left\{ \left[\frac{k}{2^n}, \frac{k+1}{2^n} \right], k = 0, ..., 2^n - 1 \right\}$, with $n \in \mathbb{N}$. It is clear that $\sigma(B_n | n \in \mathbb{N}) = B$. If $\int_0^1 f(t) h_n^k(t) = 0$ for $n \leq N$ then $\int_{\left[\frac{k}{2^n}, \frac{k+1}{2^n} \right]} f(t) = 0$ for $n \leq N$. This implies that

$$f_n = \mathbb{E}[f|B_n] = 0.$$

On the other hand $\int_0^1 f_n^2(t) dt = 0$ and so f_n is a B_n martingale bounded in $L^2([0,1])$. Thus, by Doob Convergence Theorem for martingales, we have that $f_n \to \mathbb{E}[f|B] = f$ in $L^1([0,1])$. This implies that $f = \lim f_n = 0$.

Lemma 8. We have that $\sup_{t \in [0,1]} |e_n^k(t)| \le 2^{-\frac{n-1}{2}}$ and the series

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{2^{n-1}-1} e_n^k(t) e_n^k(s) \right) = \min(t, s)$$
 (5)

is absolutely convergent and it is equal to min(t, s).

Proof. The bound on $|e_n^k(t)|$ follows by a direct computation. In order to prove equality (5) we note that $\int_0^1 \mathbb{I}_{[0,t]}(\tau) h_n^k(\tau) d\tau = e_n^k(t)$ (and a similar relation holds for $e_n^k(s)$). Using Parseval identity for orthonormal bases in an Hilbert space we obtain

$$\begin{aligned} \min\left(t,s\right) &= \int_{0}^{1} \mathbb{I}_{[0,t]}(\tau) \mathbb{I}_{[0,s]}(\tau) \mathrm{d}\tau \\ &= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{2^{n-1}-1} \int_{0}^{1} \mathbb{I}_{[0,t]}(\tau) h_{n}^{k}(\tau) \mathrm{d}\tau \int_{0}^{1} \mathbb{I}_{[0,s]}(\tau) h_{n}^{k}(\tau) \mathrm{d}\tau \right) \\ &= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{2^{n-1}-1} e_{n}^{k}(t) e_{n}^{k}(s) \right) \end{aligned}$$

and the previous series is absolutely convergent.

2.2 Lévy construction of Brownian motion

Let $Z_{n,k}(\omega)$ be a sequence of independent random variables such that $Z_{n,k} \sim N(0,1)$. Consider the following sequence of stochastic processes

$$B_t^N(\omega) = \sum_{n=0}^N \left(\sum_{k=0}^{2^{n-1}-1} Z_{n,k}(\omega) e_n^k(t) \right).$$

From now on we restrict Definition 1, to processes of the form $B: [0,1] \times \Omega \to \mathbb{R}$, i.e., defined only on the set [0,1] and not on the whole positive real line \mathbb{R}_+ .

If we have a sequence of independent Brownian motions $\tilde{B}_t^1, ..., \tilde{B}_t^n$ defined on [0, 1], we can easily build a Brownian motion B_t defined on the whole real positive line \mathbb{R}_+ in the following way: if $n-1 < t \le n$ (where $n \in \mathbb{N}$) we define $B_t = \sum_{k=1}^{n-1} B_1^k + B_{t-n+1}^n$.

Theorem 9. The sequence of stochastic processes B_t^N is almost surely convergent on [0, 1]. Let B_t be the limit of B_t^N , then B_t is a Brownian motion on [0, 1].

Proof. First we prove that the sequence of functions $t \mapsto B_t^N(\omega)$ is uniformly convergent in $C^0([0, 1], \mathbb{R})$ for almost every $\omega \in \Omega$. In order to prove this, we use Weierstrass criterion for uniform convergence in $C^0([0, 1], \mathbb{R})$, proving that, writing $K_n(\omega) = \sup_{t \in [0, 1]} \left| \sum_{k=0}^{2^{n-1}-1} Z_{n,k}(\omega) e_n^k(t) \right|$, we have $\sum_{n=0}^{\infty} K_n < +\infty$ almost surely.

Using the fact that for fixed n the functions $e_n^k(t)$ have disjoint support, and exploiting the bound $\sup_{t \in [0,1]} |e_n^k(t)| \le 2^{-\frac{n-1}{2}}$, we have that

$$K_n(\omega) \leq 2^{-\frac{n-1}{2}} \sup_k |Z_{n,k}(\omega)|.$$

We want to prove that there exists a positive random variable $C: \Omega \to \mathbb{R}$, almost surely finite, such that

$$\sup_{k}|Z_{n,k}(\omega)|\leq nC(\omega).$$

Define $B_n = \{\omega | \sup_k |Z_{n,k}(\omega)| > n\}$ then $C(\omega) < +\infty$ whenever $\omega \notin \limsup_n B_n$. If we are able to prove that $\mathbb{P}(\limsup_n B_n) = 0$ then $C(\omega) < +\infty$ almost surely. In order to prove that $\mathbb{P}(\limsup_n B_n) = 0$, we use Borel-Cantelli Lemma and the fact that $\sum_n \mathbb{P}(B_n) < +\infty$.

Indeed

$$\mathbb{P}(B_n) \le \sum_{k=0}^{2^{n-1}-1} \mathbb{P}(|Z_{n,k}(\omega)| > n) \le \frac{2^n}{n\sqrt{2\pi}} \exp\left(\frac{-n^2}{2}\right)$$

where we used the fact that $Z_{n,k} \sim N(0,1)$. This implies that

$$\sum_{n} \mathbb{P}(B_n) \le \sum_{n} \frac{2^n}{n\sqrt{2\pi}} \exp\left(\frac{-n^2}{2}\right) < +\infty$$

which means that $C < +\infty$ almost surely. On the other hand we have that $K_n(\omega) \le 2^{\frac{n-1}{2}} \sup_k |Z_{n,k}(\omega)|$ and so

$$\sum_{n} K_n(\omega) \leq \sum_{n} 2^{-\frac{n-1}{2}} \sup_{k} |Z_{n,k}(\omega)| \leq C(\omega) \sum_{n} n 2^{-\frac{n-1}{2}} < +\infty.$$

Thus the sequence $B_t^N(\omega)$ is almost surely convergent in $C^0([0,1],\mathbb{R})$.

Let B_t denote the limit of B_t^N when B_t^N is convergent and 0 otherwise. We have that B_t satisfies the condition 1 and 3 of Definition 1. In order to prove that B_t satisfies property 2 of Definition 1 we prove that B_t is a Gaussian process such that $\mathbb{E}[B_t] = 0$ and $\text{cov}(B_t, B_s) = \min(s, t)$. Using Corollary 6, this is equivalent to prove that B_t is a Brownian motion.

First we prove that for any $t \in [0, 1]$ the sequence of random variables B_t^N converges to B_t in $L^2(\Omega)$. Since B_t^N converges to B_t almost surely it is sufficient to prove that B_t^N forms a Cauchy sequence in $L^2(\Omega)$. We have that

$$\mathbb{E}[(B_t^N - B_t^M)^2] = \mathbb{E}\left[\left(\sum_{n=M}^N \left(\sum_{k=0}^{2^{n-1}-1} Z_{n,k}(\omega) e_n^k(t)\right)\right)^2\right]$$
$$= \sum_{n=M}^N (e_n^k(t))^2$$

when $M \le N$ and using the fact that $Z_{n,k}$ are i.i.d. normal random variables with variance 1. On the other hand, by Lemma 8, the series $\sum_{n=0}^{+\infty} (e_n^k(t))^2 = t < +\infty$ is absolutely convergent, this means that

$$\lim_{M \to \infty} \sum_{n=M}^{N} (e_n^k(t))^2 = 0,$$

which implies that B_t^N is a Cauchy sequence in $L^2(\Omega)$.

The fact that $(B_{t_1}^N,...,B_{t_n}^N)$ converges to $(B_{t_1},...,B_{t_n})$ in $L^2(\Omega)$ implies that B_t is a normal stochastic process (being the L^2 limit of a normal stochastic process), with $\mathbb{E}[B_t] = \lim_N \mathbb{E}[B_t^N]$ and $\text{cov}(B_t, B_s) = \lim_N \text{cov}(B_t^N, B_s^N)$. On the other hand we have that $\lim_N \mathbb{E}[B_t^N] = \lim_N 0 = 0$ and, by Lemma 8,

$$\lim_{N} \operatorname{cov}(B_{t}^{N}, B_{s}^{N}) = \lim_{N} \mathbb{E}[B_{t}^{N} B_{s}^{N}] = \lim_{N} \sum_{n=0}^{N} \left(\sum_{k=0}^{2^{n-1}-1} e_{n}^{k}(t) e_{n}^{k}(s) \right) = \min(t, s).$$

3 Regularity properties of Brownian motion

3.1 Non differentiability of Brownian motion

Let $M \subset \Omega$ be the measurable set

 $M = \{\omega \in \Omega, \text{ there exists } \tau \in [0, 1] \text{ such that } t \mapsto B_t(\omega) \text{ is differentiable in } \tau \}.$

We want to prove that $\mathbb{P}(M) = 0$. This implies that the function $t \mapsto B_t(\omega)$ is everywhere non differentiable for almost every $\omega \in \Omega$.

Theorem 10. Using the previous notation, if B_t is a Brownian motion then $\mathbb{P}(M) = 0$.

Proof. We introduce the set

$$N = \left\{ \omega \in \Omega, \text{ there are } t \in [0, 1] \text{ and } L, k \in \mathbb{N} \text{ such that } |B_t(\omega) - B_s(\omega)| < L|t - s| \text{ for any } s \in \left[t, t + \frac{1}{k}\right] \right\}.$$

Obviously $M \subset N$, so if we are able to prove that $\mathbb{P}(N) = 0$ we have proved $\mathbb{P}(M) = 0$.

If n > 4k we can find $i \in \{1, 2, ..., n\}$ such that $\left(\frac{j}{n}, \frac{j+1}{n}\right) \subset \left[t, t + \frac{1}{k}\right]$ for j = i, i+1, i+2. If $\omega \in N$ we have

$$\left|B_{\frac{j}{n}}(\omega) - B_{\frac{j+1}{n}}(\omega)\right| \le \left|B_{\frac{j}{n}}(\omega) - B_{t}(\omega)\right| + \left|B_{t}(\omega) - B_{\frac{j+1}{n}}(\omega)\right| \le \frac{8L}{n}.\tag{6}$$

Let $\tilde{N}_{L,k}$ be the set defined as follows

$$\tilde{N}_{L,k} = \bigcap_{n > AL} \bigcup_{i=1}^{n} \left\{ \left| B_{\frac{j}{n}}(\omega) - B_{\frac{j+1}{n}}(\omega) \right| \le \frac{8L}{n}, \text{ for } j = i, i+1, i+2 \right\}.$$

We have that

$$\mathbb{P}\left(\left\{\left|B_{\frac{j}{n}}(\omega) - B_{\frac{j+1}{n}}(\omega)\right| \le \frac{8L}{n}, \text{ for } j = i, i+1, i+2\right\}\right) \le \mathbb{P}\left(|Z| \le \frac{8L}{\sqrt{n}}\right) \le \frac{16^3 L^3}{n^{3/2} \sqrt{(2\pi)^3}}$$

where $Z \sim N(0, 1)$. This means that

$$\mathbb{P}\left(\tilde{N}_{L,k}\right) \leq \inf_{n \in \mathbb{N}} n \cdot \mathbb{P}\left(\left\{\left|B_{\frac{j}{n}}(\omega) - B_{\frac{j+1}{n}}(\omega)\right| \leq \frac{8L}{n}, \text{ for } j = i, i+1, i+2\right\}\right) \leq \inf_{n \in \mathbb{N}} \frac{16^3 L^3}{n^{1/2} \sqrt{(2\pi)^3}} = 0.$$

Since, by inequality (6), $N \subset \bigcup_{k,L \in \mathbb{N}} \tilde{N}_{L,k}$, we have that $\mathbb{P}(N) \leq \sum_{L,k \in \mathbb{N}} \mathbb{P}(\tilde{N}_{L,k}) = 0$.

3.2 Hölder continuity of Brownian motion

Definition 11. A function $f \in C^0([0,1], \mathbb{R})$ is called Hölder continuous of index $\alpha \in (0,1)$ if

$$\sup_{0 \le s < t \le 1} \frac{|f(t) - f(s)|}{|t - s|^{\alpha}} < +\infty.$$

In this case we use the notation $f \in C^{\alpha}([0,1], \mathbb{R})$.

Theorem 12. If B_t is a Brownian motion we have that the function $t \mapsto B_t(\omega)$ is Hölder continuous of index α for any $\alpha \in (0, \frac{1}{2})$ and for almost every $\omega \in \Omega$.

Proof. From Theorem 9, we have that the series $\sum_{n=0}^{\infty} \left(\sum_{k=0}^{2^{n-1}-1} Z_{n,k}(\omega) e_n^k(t) \right)$ is uniformly and absolutely convergent to the Brownian motion $B_t(\omega)$ almost surely. Let ω be an element of Ω for which the previous series is convergent, then we have that

$$|B_t(\omega) - B_s(\omega)| \le \sum_{n=0}^{\infty} \sum_{k=0}^{2^{n-1}-1} |Z_{n,k}(\omega)| |e_n^k(t) - e_n^k(s)|.$$

Using the proof of Theorem 9, we have that there exists an almost surely finite and positive random variable $C(\omega)$ such that $\sup_k |Z_{n,k}(\omega)| \le n \cdot C(\omega)$. Furthermore, by the definition of Schauder functions, we have that

$$|e_n^k(t) - e_n^k(s)| \le 2^{\frac{n-1}{2}} |t - s|$$

 $|e_n^k(t) - e_n^k(s)| \le 2^{\frac{n-3}{2}}.$

Fix $0 \le s < t \le 1$ and let $N \in \mathbb{N}$ be such that

$$2^{-N} < |t - s| \le 2^{-(N-1)}$$
.

Using the fact that in the sum $\sum_{k=0}^{2^{n-1}-1} |e_n^k(t) - e_n^k(s)|$ only at most two addends are non zero, we obtain

$$|B_t(\omega) - B_s(\omega)| \le 2C(\omega) \left(1 + \sum_{n=1}^N n 2^{\frac{n-1}{2}} |t - s| + \sum_{n=N+1}^{+\infty} n 2^{-\frac{n-3}{2}} \right).$$

On the other hand we have that

$$\sum_{n=1}^{N} n 2^{\frac{n-1}{2}} |t-s| \leq |t-s|^{\alpha} \sum_{n=1}^{N} n 2^{\frac{n-1}{2}} 2^{-(1-\alpha)(N-1)} \leq |t-s|^{\alpha} \sum_{n=1}^{N} n 2^{-\left(\frac{1}{2}-\alpha\right)(n-1)}.$$

Furthermore we obtain

$$\sum_{n=N+1}^{+\infty} n 2^{-\frac{n-3}{2}} = \sum_{n=N+1}^{+\infty} \frac{n 2^{-\frac{n-3}{2}} |t-s|^{\alpha}}{|t-s|^{\alpha}} \le |t-s|^{\alpha} \sum_{n=N+1}^{+\infty} n 2^{-\frac{n-3}{2}} 2^{\alpha N} \le 2|t-s|^{\alpha} \sum_{n=N+1}^{+\infty} n 2^{-\left(\frac{1}{2}-\alpha\right)\frac{n-1}{2}} |t-s|^{\alpha}$$

This implies that

$$\frac{|B_t(\omega) - B_s(\omega)|}{|t - s|^{\alpha}} \le 4C(\omega) \left(1 + \sum_{n=1}^N n2^{-\left(\frac{1}{2} - \alpha\right)\frac{n-1}{2}}\right) < +\infty$$

almost surely. Taking the sup over $0 \le s < t \le 1$ the thesis follows.

3.3 The law of iterated logarithm

Khintchine's version of the law of the iterated logarithm is a more precise statement on the local regularity of a typical Brownian path at a fixed time. It implies in particular that almost every Brownian path is not Hölder continuous with parameter $\alpha \ge \frac{1}{2}$.

Theorem 13. For $s \ge 0$, the following statements hold almost surely

$$\limsup_{t\downarrow 0} \frac{|B_{t+s} - B_s|}{\sqrt{2t\log\left(\log\left(\frac{1}{t}\right)\right)}} = 1 \qquad \liminf_{t\downarrow 0} \frac{|B_{t+s} - B_s|}{\sqrt{2t\log\left(\log\left(\frac{1}{t}\right)\right)}} = -1.$$

4 Donsker's Theorem

In this section we show how it is possible to approximate a Brownian motion through a random walk. Let $X_1, ..., X_n, ...$ be a sequence of random variables independent and identically distributed. We introduce the random walk S_n as the stochastic process defined as follows

$$S_n = \sum_{i=1}^n X_i.$$

It is possible to extend the discrete time process S_n to a continuous time process S_t , pathwise continuous, as follows

$$S_t = \left\{ \begin{array}{ll} S_n & \text{if } t = n \in \mathbb{N} \\ S_{n-1} + (t-n+1) \left(S_n - S_{n-1} \right) & \text{if } n-1 < t < n \end{array} \right..$$

If the random variables X_i are in $L^2(\Omega)$ with mean 0 and variance $\mathbb{E}[X_i^2] = \sigma^2$ we define the following stochastic process

$$\tilde{S}_t^n = \frac{1}{\sqrt{\sigma^2 n}} S_{nt}.$$

Definition 14. A stochastic process $Y: [0,1] \times \Omega \to \mathbb{R}$ is said to be defined on $C^0([0,1],\mathbb{R})$ if the functions $t \mapsto Y_t(\omega)$ are continuous for almost every $\omega \in \Omega$.

Definition 15. Let $Y_t, Y_t^1, ..., Y_t^n, ...$ be a sequence of continuous time $t \in [0,1]$ stochastic processes defined on $C^0([0,1],\mathbb{R})$. We say that the sequence of stochastic processes Y_t^n converges to Y in distribution on $C^0([0,1],\mathbb{R})$ if for any bounded and continuous functional $F: C^0([0,1],\mathbb{R}) \to \mathbb{R}$ (where $C^0([0,1],\mathbb{R})$ is equipped with the topology induced by the uniform convergence) we have that

$$\mathbb{E}[F(Y^n)] \to \mathbb{E}[F(Y)]$$

as $n \to +\infty$.

Remark 16. It is important to note that the convergence in distribution of the finite dimensional marginals $(Y_{t_1}^i, ..., Y_{t_k}^i)$, of the sequence of processes Y_t^i , to the finite dimensional marginal $(Y_{t_1}, ..., Y_{t_k})$ of the process Y, is only a necessary but not sufficient condition for the convergence in distribution on $C^0([0,1],\mathbb{R})$ of Y_t^i to Y.

In the rest of the section we want to prove the following theorem.

Theorem 17. (Donsker's Theorem) Suppose that $X_i \in L^4(\Omega)$, then we have that \tilde{S}_t^n converges to a Brownian motion B_t on $C^0([0,1],\mathbb{R})$.

Remark 18. The actual Donsker theorem requires only that $X_i \in L^2(\Omega)$. We assume $X_i \in L^4(\Omega)$ in order to simplify the proof.

4.1 Convergence of finite dimensional distribution

Lemma 19. Under the hypotheses of Theorem 17, let $0 \le t_1 \le ... \le t_k \le 1$ then $(\tilde{S}_{t_1}^n, \tilde{S}_{t_2}^n, ..., \tilde{S}_{t_k}^n)$ converges in distribution, as \mathbb{R}^k random variables, to $(B_{t_1}, ..., B_{t_k})$, where B_t is a Brownian motion.

Proof. We give the proof only for the case k = 2, being the general case a simple generalization.

For k = 2, the thesis of the lemma is equivalent to prove that $(\tilde{S}_{t_1}^n, \tilde{S}_{t_2}^n - \tilde{S}_{t_1}^n)$ converges in distribution to a pair of independent random variables with Gaussian distribution and variance t_1 and $t_2 - t_1$, respectively.

First of all we note that $\tilde{S}_{t_1}^n - \frac{1}{\sqrt{\sigma^2 n}} S_{\lfloor nt_1 \rfloor}$ and $\tilde{S}_{t_2}^n - \tilde{S}_{t_1}^n - \frac{1}{\sqrt{\sigma^2 n}} (S_{\lfloor nt_2 \rfloor} - S_{\lceil nt_1 \rceil})$ converges to 0 in L^2 . Indeed $\mathbb{E}\left[\left(\tilde{S}_{t_1}^n - \frac{1}{\sqrt{\sigma^2 n}} S_{\lfloor nt_1 \rfloor}\right)^2\right] = \frac{1}{\sqrt{\sigma^2 n}} \mathbb{E}\left[\left(t_1 - \frac{\lfloor nt_1 \rfloor}{n}\right)^2 X_{\lceil t_1 n \rceil}^2\right] \leq \frac{\sigma^2}{\sqrt{\sigma^2 n}} \to 0$, and a similar relation holds for $\tilde{S}_{t_2}^n - \tilde{S}_{t_1}^n - (S_{\lfloor nt_2 \rfloor} - S_{\lceil nt_1 \rfloor})$.

This implies that if $\left(\frac{1}{\sqrt{\sigma^2 n}}S_{\lfloor nt_1\rfloor}, \frac{1}{\sqrt{\sigma^2 n}}(S_{\lfloor nt_2\rfloor} - S_{\lceil nt_1\rceil})\right)$ converges in distribution to a pair of independent random variables with Gaussian distribution and variance t_1 and $t_2 - t_1$, the lemma is proven.

By the Central Limit Theorem, we have that

$$\frac{1}{\sqrt{\sigma^2 n}} S_{\lfloor nt_1 \rfloor} = \sqrt{\frac{\lfloor nt_1 \rfloor}{n}} \cdot \left(\frac{1}{\sqrt{\sigma^2} \lfloor nt_1 \rfloor} \left(\sum_{k=1}^{\lfloor nt_1 \rfloor} X_i \right) \right) \longrightarrow_d N(0, t_1).$$

In a similar way it is possible to prove that $\frac{1}{\sqrt{\sigma^2 n}}(S_{\lfloor nt_2 \rfloor} - S_{\lceil nt_1 \rceil}) \longrightarrow_d N(0, t_2 - t_1)$. Furthermore since $\frac{1}{\sqrt{\sigma^2 n}}S_{\lfloor nt_1 \rfloor}$ is independent of $\frac{1}{\sqrt{\sigma^2 n}}(S_{\lfloor nt_2 \rfloor} - S_{\lceil nt_1 \rceil})$, the limit of these two random variables is a pair of independent random variables.

4.2 Convergence in distribution on $C^0([0,1],\mathbb{R})$

Definition 20. A sequence of stochastic processes Y_t^n defined on $C^0([0,1],\mathbb{R})$ is tight if, for any $\varepsilon > 0$, there exists a compact set $K \subset C^0([0,1],\mathbb{R})$ (with respect to the topology induced by uniform convergence) such that $\mathbb{P}(Y^n \in K) \ge 1 - \varepsilon$ uniformly on $n \in \mathbb{N}$.

Theorem 21. (Prokhorov's theorem) Let $Y, Y_t^1, ..., Y_t^n, ...$ be a sequence of stochastic processes defined on $C^0([0, 1], \mathbb{R})$, then the sequence $Y_t^1, ..., Y_t^n, ...$ converges to Y in distribution on $C^0([0, 1], \mathbb{R})$ if and only if the finite dimensional marginals $(Y_{t_1}^i, ..., Y_{t_k}^i)$, of the sequence $\{Y_t^i\}_{i \in \mathbb{N}}$, converge to the finite dimensional marginals $(Y_{t_1}, ..., Y_{t_k})$ of the process Y and the sequence Y^i is tight.

Definition 22. Consider $K \subset C^0([0,1], \mathbb{R})$, we say that the functions in K are equibounded and equicontinuous if there exists a M > 0 such that for any $f \in K$ sup_{$t \in [0,1]$} $|f(t)| \le M$ and for any ε there exists a $\delta > 0$ such that $\sup_{|t-s| < \delta, t, s \in [0,1]} |f(t) - f(s)| < \varepsilon$.

Theorem 23. (Arzelà-Ascoli Theorem) A set $K \subset C^0([0,1], \mathbb{R})$ is compact (with respect to the topology induced by uniform convergence) if and only if K is closed and the functions defined on K are equibounded and equicontinuous.

We introduce the following notation, for $f \in C^0([0,1], \mathbb{R})$ and $\delta > 0$ we write

$$w_f(\delta) = \sup_{|t-s| < \delta, t, s \in [0,1]} |f(t) - f(s)|.$$

We also write, for any $t \in [1, 1 - \delta]$,

$$\tilde{w}_{f,t}(\delta) = \sup_{s \in [t,t+\delta]} |f(s) - f(t)|.$$

Lemma 24. Let $Y_t^1, ..., Y_t^n, ...$ be a sequence of stochastic processes defined on $C^0([0,1], \mathbb{R})$ such that $Y_0^n = 0$. If, for any $\varepsilon > 0$, we have

$$\lim_{\delta \to 0} \left(\limsup_{n \to +\infty} \mathbb{P}(w_{Y^n}(\delta) > \varepsilon) \right) = 0 \tag{7}$$

then $Y_t^1, ..., Y_t^n, ...$ is tight.

Proof. If the limit (7) holds, then for any sequence $\varepsilon_k \to 0$, as $k \to \infty$, and for any $\eta > 0$ there exist two sequences $\delta_k \to 0$ and $n_k \in \mathbb{N}$ such that

$$\mathbb{P}(w_{Y^N}(\delta_k) > \varepsilon_k) \leq 2^{-k} \eta$$

when $N \ge n_k$. Consider the sets $A_k \subset C^0([0,1], \mathbb{R})$ defined as

$$A_k = \{f, f(0) = 0 \text{ and } w_f(\delta_k) \le \varepsilon_k\}.$$

We have that A_k are closed, and thus the set $A = \bigcap_{k \in \mathbb{N}} A_k$ is closed. Furthermore the functions in A are equibounded. Indeed if $f \in A$ we have that

$$\sup_{t \in [0,1]} |f(t)| = \sum_{i=0}^{\left\lfloor \frac{1}{\delta_1} \right\rfloor} \sup_{t \in \left[\frac{i}{\delta_1}, \frac{i+1}{\delta_1} \wedge 1\right]} \left| f(t) - f\left(\frac{i}{\delta_1}\right) \right| \le \left\lceil \frac{i}{\delta_1} \right\rceil \varepsilon_1.$$

By construction *A* is formed by equicontinuous functions. Thus, by Arzelà-Ascoli Theorem, *A* is compact. On the other hand

$$\mathbb{P}\left(Y^n\!\in\!A\right)\geq 1-\sum_k\,\mathbb{P}\left(Y^n\!\in\!A_k^c\right)=1-\sum_k\,\mathbb{P}\left(w_{Y^N}(\delta_k)>\varepsilon_k\right)\geq 1-\eta.$$

Since η is arbitrary the sequence $Y_t^1, ..., Y_t^n, ...$ is tight.

Lemma 25. Let $Y_t^1, ..., Y_t^n, ...$ be a sequence of stochastic processes defined on $C^0([0,1], \mathbb{R})$ such that $Y_0^n = 0$. If, for any $\varepsilon > 0$, we have

$$\lim_{\delta \to 0} \left(\limsup_{n \to +\infty} \left(\frac{1}{\delta} \sup_{t \in [0, 1-\delta]} \mathbb{P}(\tilde{w}_{Y^n, t}(\delta) > \varepsilon) \right) \right) = 0$$
 (8)

then $Y_t^1, ..., Y_t^n, ...$ is tight.

Proof. We want to prove that

$$\mathbb{P}(w_{Y^n}(\delta) > 3\varepsilon) \leq \left\lfloor \frac{1}{\delta} \right\rfloor \sup_{t \in [0, 1-\delta]} \mathbb{P}(\tilde{w}_{Y^n, t}(\delta) > \varepsilon).$$

Fix $\delta > 0$ and $\varepsilon > 0$, and consider the set

$$B_t = \{f, f(0) = 0 \text{ and } \tilde{w}_{f,t}(\delta) > \varepsilon\}$$

and consider

$$B = \bigcup_{i < \delta^{-1}} B_{i \cdot \delta}$$

then we have that $\{f, w_f(\delta) > 3\varepsilon\} \subset B$. Indeed suppose that $s \le t \in [0, 1]$ realizes the sup of for $w_f(\delta)$, then there are two $i_1, i_2 \in \mathbb{N}$ (equal or one next to the other) such that $t \in \left[\frac{i_1}{\delta}, \frac{i_1+1}{\delta}\right]$ and $s \in \left[\frac{i_2}{\delta}, \frac{i_2+1}{\delta}\right]$. Then we have that

$$\left| f(t) - f\left(\frac{i_1}{\delta}\right) \right| + \left| f(s) - f\left(\frac{i_2}{\delta}\right) \right| + \left| f\left(\frac{i_2}{\delta}\right) - f\left(\frac{i_1}{\delta}\right) \right| \ge |f(t) - f(s)| \ge 3\varepsilon$$

which implies that one term among $|f(t) - f(\frac{i_1}{\delta})|$, $|f(s) - f(\frac{i_2}{\delta})|$, and $|f(\frac{i_2}{\delta}) - f(\frac{i_1}{\delta})|$ is greater than ε , which means that $\{f, w_f(\delta) > 3\varepsilon\} \subset B$.

On the other hand we have

$$\mathbb{P}(Y^n \in B_{i \cdot \delta}) \leq \sup_{t \in [0, 1 - \delta]} \mathbb{P}(\tilde{w}_{Y^n, t}(\delta) > \varepsilon).$$

Thus we obtain

$$\mathbb{P}(w_{Y^n}(\delta) > \varepsilon) \leq \sum_{i \leq \delta^{-1}} \mathbb{P}(Y^n \in B_{i \cdot \delta}) \leq \sum_{i \leq \delta^{-1}} \sup_{t \in [0, 1 - \delta]} \mathbb{P}(\tilde{w}_{Y^n, t}(\delta) > \varepsilon) \leq \left\lfloor \frac{1}{\delta} \right\rfloor \sup_{t \in [0, 1 - \delta]} \mathbb{P}(\tilde{w}_{Y^n, t}(\delta) > \varepsilon)$$

and, using Lemma 24, the lemma is proved.

4.3 Proof of Donsker's Theorem

Proof of Theorem 17. By Prokhorov's Theorem we have to prove that the finite dimensional marginals converge and that the sequence $\tilde{S}^1, ..., \tilde{S}^n$ is tight. The convergence of finite dimensional marginals is proven in Lemma 19. For proving the tightness of the sequence $\tilde{S}^1, ..., \tilde{S}^n$ we use Lemma 25.

First of all we note that for any $t \in [0, 1 - \delta]$

$$\tilde{w}_{\tilde{S}^{n},t}(\delta) \leq \frac{1}{\sqrt{\sigma^{2}n}} \left(\sup_{k \in \{ [nt], \dots, [n(t+\delta)] \}} |S_{k} - S_{[nt]}| \right),$$

since the S_t is the straight line interpolation between $\{S_k\}_{k\in\mathbb{N}}$. This means that

$$\mathbb{P}(\tilde{w}_{\tilde{S}^n,t}(\delta) > \epsilon) \leq \mathbb{P}\left(\sup_{k \in \{\lfloor nt \rfloor, \dots, \lceil n(t+\delta) \rceil\}} |S_k - S_{\lfloor nt \rfloor}| > \sqrt{\sigma^2 n} \cdot \varepsilon\right).$$

Since X_i are i.i.d. we have that

$$\mathbb{P}\left(\sup_{k\in\{|nt|,\dots,[n(t+\delta)]\}}|S_k-S_{\lfloor nt\rfloor}|>\sqrt{\sigma^2n}\cdot\varepsilon\right)=\mathbb{P}\left(\sup_{k\in\{1,\dots,[n\delta]\}}|S_k|>\sqrt{\sigma^2n}\cdot\varepsilon\right).$$

The sequence $S_1, ..., S_n, ...$ is a martingale with respect to its natural filtration, since it is the sum of i.i.d. random variables with zero mean. Thus, by Doob inequality for martingales, we have

$$\mathbb{P}\left(\sup_{k\in\{1,\dots,\lfloor n\delta\rfloor\}}|S_k|>\sqrt{\sigma^2n}\cdot\varepsilon\right)\leq \frac{\mathbb{E}\left[S_{\lfloor n\delta\rfloor}^4\right]}{\sigma^4n^2\epsilon^4}.$$

On the other hand, since X_i are i.i.d. random variables with zero mean we have

$$\mathbb{E}[S_k^4] = \sum_{i,j \le k} \mathbb{E}[X_i^2 X_j^2] \le k^2 \mathbb{E}[X_1^4].$$

This implies that

$$\mathbb{P}\left(\sup_{k\in\{1,\dots,\lfloor n\delta\rfloor\}}|S_k|>\sqrt{\sigma^2n}\cdot\varepsilon\right)\leq \frac{\lceil n\delta\rceil^2\mathbb{E}[X_1^4]}{\sigma^4n^2\epsilon^4}.$$

Thus

$$\begin{split} &\lim_{\delta \to 0} \left(\limsup_{n \to +\infty} \left(\frac{1}{\delta} \sup_{t \in [0, 1 - \delta]} \mathbb{P}(\tilde{w}_{\tilde{S}^n, t}(\delta) > \varepsilon) \right) \right) \\ & \leq \lim_{\delta \to 0} \left(\limsup_{n \to +\infty} \left(\frac{1}{\delta} \mathbb{P}\left(\sup_{k \in \{1, \dots, \lceil n \delta \rceil\}} |S_k| > \sqrt{\sigma^2 n} \cdot \varepsilon \right) \right) \right) \\ & \leq \lim_{\delta \to 0} \left(\limsup_{n \to +\infty} \left(\frac{1}{\delta} \frac{\lceil n \delta \rceil^2 \mathbb{E}[X_1^4]}{\sigma^4 n^2 \epsilon^4} \right) \right) \\ & = 0. \end{split}$$

So, by using Lemma 25, the thesis follows.