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Note 11

Brownian motion.

(Lectures and notes by Francesco De Vecchi)

1 Definition and equivalent characterizations

Definition 1. A stochastic process B⋅:ℝ+×Ω→ℝ is a Brownian motion if

1. B0=0,

2. for any 0≤ t1≤ t2≤…≤ tn∈ℝ+ we have that Bt1 − B0, Bt2 −Bt1, . . . , Btn − Btn−1 are independent
random variables and Bti −Bti−1∼N(0, ti − ti−1),

3. for almost every 𝜔∈Ω the function t⟼Bt(𝜔) is continuous (i.e., in C0(ℝ+,ℝ)).

1.1 Brownian motion as a Markov process

We consider the following completed natural filtration of Bt given by

Ft=𝜎(Bs, s∈[0, t]).

Theorem 2. A Brownian motion Bt is a Ft Markov process with transition kernel given by

p(x, t;y, s)= 1
2𝜋(t − s)�

exp((((((((((((−(x− y)2
2(t − s) )))))))))))), (1)

where 0≤ s< t.

Proof. We have to prove that for any 0≤ s< t and any Borel set A⊂ℝ there exists a version of
ℙ(Bt∈A|Fs) which is 𝜎(Bs) measurable.

By Definition 1 we have that Bt −Bs is independent of Bs−B0=Bs and Bt −Bs∼N(0, t − s)

ℙ(Bt∈ A|Fs) = ℙ((Bt −Bs)+Bs∈A|Fs)

= �
A

1
2𝜋(t − s)�

exp((((((((((((−(x−Bs)2
2(t − s) )))))))))))).

□

Corollary 3. For any 0< t1< t2<⋯< tn we have that the law of (Bt1,…,Btn) is given by

1
(2𝜋)n∏i=1

n (ti − ti−1)�
exp(((((((((((((((((−�

i=1

n (xi − xi−1)2
2(ti − ti−1) ))))))))))))))))), (2)
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where t0=0 and x0=0.

Proof. We prove the theorem for n=2. The general case can be proved by induction.

Let A1,A2 be two Borel subsets of ℝ, then we have

ℙ(Bt1∈A1,Bt2∈ A2) = �
A1

1
2𝜋t1�

exp((((((((((((− x12
2t1))))))))))))ℙ(Bt2∈ A2|Bt1= x1)dx1

= �
A1

1
2𝜋t1�

exp((((((((((((− x12
2t1))))))))))))(((((((((((((((((�A2

1
2𝜋(t2− t1)�

exp((((((((((((−(x2− x1)2
2(t2− t1) ))))))))))))dx2)))))))))))))))))dx1

where to obtain the last equality we use Theorem 2. □

Corollary 4. Let Bt be a Markov process with transition kernel (1), B0=0 and such that for almost
every 𝜔∈Ω the function t⟼Bt(𝜔) is in C0(ℝ+,ℝ), then Bt is a Brownian motion.

Proof. We have only to prove that Bt satisfies the second property of Definition 1. Using the same
reasoning of Corollary 3, we obtain that, if Bt is a Markov process with transition kernel (1), then
it has finite dimensional marginals given by (2). This implies that for any 0≤ t1≤ t2≤…≤ tn∈ℝ+
we have that Bt1−B0, Bt2−Bt1,. .. , Btn−Btn−1 are independent random variables and Bti −Bti−1∼N(0,
ti − ti−1). □

1.2 Brownian motion as a Gaussian process

Theorem 5. Brownian motion is a Gaussian process such that B0=0 and

𝔼[Bt] = 0 (3)
cov(Bt,Bs) = min (t, s). (4)

Proof. The fact that Brownian motion is a Gaussian process follows by the explicit expression of
finite dimensional marginals given in Corollary 3.

Using the definition of Brownian motion we have 𝔼[Bt]=𝔼[Bt −B0]=0 and, if s≤ t,

cov(Bt,Bs)=cov(Bt −Bs,Bs)+cov(Bs,Bs)= s. □

Corollary 6. Let Bt be a Gaussian process with mean (3) and co-variance (4), and suppose that
B0=0 and for almost every 𝜔∈Ω the function t⟼Bt(𝜔) is in C0(ℝ+,ℝ), then Bt is a Brownian
motion.

Proof. We have only to prove that Bt satisfies the second property of Definition 1. Since Bt1 −
B0, Bt2 − Bt1, . . . , Btn − Btn−1 are Gaussian random variables (being linear combinations of jointly
Gaussian random variables) we have to prove that cov(Bti − Bti−1,Btj − Btj−1) = 0 if i= j. Suppose
that tj< ti then

cov(Bti −Bti−1,Btj −Btj−1) = cov(Bti,Btj)−cov(Bti−1,Btj)− cov(Bti,Btj−1)+cov(Bti−1,Btj)
= tj − tj − tj−1+ tj−1=0,
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which conludes the proof. □

2 Lévy construction of Brownian motion

2.1 Haar and Schauder functions

We define Haar functions hn
k(t) for n=0,1,…∈ℕ and k=0,…,2n−1−1 in the following way: for

n=0 we put h00(t)=1 and for n=0 we write

hn
k(t)=2

n−1
2 �𝕀� 2k

2n ,
2k+1
2n �(t)−𝕀�2k+1

2n , 2k+2
2n �(t)�.

We define also Schauder functions as

en
k(t)=�

0

s
hn

s(s)ds.

Lemma 7. The set of Haar functions forms an orthonormal basis of L2([0,1]).

Proof. The orthonormality is a consequence of the fact that hn
k(t) and hn

k′(t) are supported in
different sets when k= k′, and that hn

k(t) has integral 0 on the dyadic set of the form � k′
2n−1 ,

k′+1
2n−1 �

(for any k′∈ℕ).

In order to prove that the Haar functions form a complete basis of L2([0,1])we have only to prove
that for any function f ∈L2([0, 1]) such that ∫0

1 f (t)hn
k(t)=0 we have f =0.

Consider the probability space ([0, 1], B, dx) (where B is the complete 𝜎-algebra generated by
Borel sets and dx is the Lebesgue measure) and consider the filtration Bn = �� k

2n ,
k+1
2n �, k = 0,…,

2n − 1�, with n ∈ ℕ. It is clear that 𝜎( Bn|n ∈ ℕ) = B. If ∫0
1 f (t)hn

k(t) = 0 for n ≤ N then
∫
� k
2n ,

k+1
2n �

f (t)=0 for n≤N . This implies that

fn=𝔼[ f |Bn]=0.

On the other hand∫0
1 fn2(t)dt=0 and so fn is a Bn martingale bounded in L2([0,1]). Thus, by Doob

Convergence Theorem for martingales, we have that fn→𝔼[ f |B]= f in L1([0, 1]). This implies
that f =lim fn=0. □

Lemma 8. We have that supt∈[0,1] |en
k(t)|≤2−n−1

2 and the series

�
n=0

∞

(((((((((((((((((
(((
(
( �

k=0

2n−1−1

en
k(t)en

k (s))))))))))))))))))
)))
)
)=min(t, s) (5)

is absolutely convergent and it is equal to min(t, s).
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Proof. The bound on |en
k(t)| follows by a direct computation. In order to prove equality (5) we

note that ∫0
1 𝕀[0,t](𝜏)hn

k(𝜏)d𝜏 = en
k(t) (and a similar relation holds for en

k(s)). Using Parseval
identity for orthonormal bases in an Hilbert space we obtain

min(t, s) = �
0

1
𝕀[0,t](𝜏)𝕀[0,s](𝜏)d𝜏

= �
n=0

∞

(((((((((((((((((
(((
(
( �

k=0

2n−1−1

�
0

1
𝕀[0,t](𝜏)hn

k(𝜏)d𝜏�
0

1
𝕀[0,s](𝜏)hn

k(𝜏)d𝜏)))))))))))))))))
)))
)
)

= �
n=0

∞

(((((((((((((((((
(((
(
( �

k=0

2n−1−1

en
k(t)en

k (s))))))))))))))))))
)))
)
)

and the previous series is absolutely convergent. □

2.2 Lévy construction of Brownian motion
Let Zn,k(𝜔) be a sequence of independent random variables such that Zn,k∼N(0,1). Consider the
following sequence of stochastic processes

Bt
N(𝜔)=�

n=0

N

(((((((((((((((((
(((
(
( �

k=0

2n−1−1

Zn,k(𝜔)en
k(t))))))))))))))))))
)))
)
).

From now on we restrict Definition 1, to processes of the form B: [0,1]×Ω→ℝ, i.e., defined only
on the set [0, 1] and not on the whole positive real line ℝ+.

If we have a sequence of independent Brownian motions B̃t
1,…, B̃t

n defined on [0,1], we can easily
build a Brownian motion Bt defined on the whole real positive line ℝ+ in the following way: if
n−1< t≤n (where n∈ℕ) we define Bt=∑k=1

n−1 B1
k+Bt−n+1

n .

Theorem 9. The sequence of stochastic processes Bt
N is almost surely convergent on [0, 1]. Let

Bt be the limit of Bt
N, then Bt is a Brownian motion on [0, 1].

Proof. First we prove that the sequence of functions t⟼Bt
N(𝜔) is uniformly convergent in C0([0,

1], ℝ) for almost every 𝜔∈Ω. In order to prove this, we use Weierstrass criterion for uniform
convergence in C0([0, 1],ℝ), proving that, writing Kn(𝜔)= supt∈[0,1] �∑k=0

2n−1−1 Zn,k(𝜔)en
k(t)�, we

have ∑n=0
∞ Kn<+∞ almost surely.

Using the fact that for fixed n the functions en
k(t) have disjoint support, and exploiting the bound

supt∈[0,1] |en
k(t)|≤2−n−1

2 , we have that

Kn(𝜔)≤2
−n−1

2 sup
k
|Zn,k(𝜔)|.

We want to prove that there exists a positive random variable C:Ω→ℝ, almost surely finite, such
that

sup
k
|Zn,k(𝜔)|≤nC(𝜔).

Define Bn = {𝜔|supk |Zn,k(𝜔)| > n} then C(𝜔) < +∞ whenever 𝜔 ∈ limsupn Bn. If we are
able to prove that ℙ(limsupn Bn) = 0 then C(𝜔) < +∞ almost surely. In order to prove that
ℙ(limsupn Bn)=0, we use Borel-Cantelli Lemma and the fact that ∑n ℙ(Bn)<+∞.
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Indeed

ℙ(Bn)≤ �
k=0

2n−1−1

ℙ(|Zn,k(𝜔)|>n)≤ 2n

n 2𝜋�
exp((((((((((−n2

2 ))))))))))

where we used the fact that Zn,k∼N(0,1). This implies that

�
n
ℙ(Bn)≤�

n

2n

n 2𝜋�
exp((((((((((−n2

2 ))))))))))<+∞

which means that C < +∞ almost surely. On the other hand we have that Kn(𝜔) ≤
2−n−1

2 supk|Zn,k(𝜔)| and so

�
n

Kn(𝜔)≤�
n
2−n−1

2 sup
k
|Zn,k(𝜔)|≤C(𝜔)�

n
n2−n−1

2 <+∞.

Thus the sequence Bt
N(𝜔) is almost surely convergent in C0([0, 1],ℝ).

Let Bt denote the limit of Bt
N when Bt

N is convergent and 0 otherwise. We have that Bt satisfies
the condition 1 and 3 of Definition 1. In order to prove that Bt satisfies property 2 of Definition
1 we prove that Bt is a Gaussian process such that 𝔼[Bt] = 0 and cov(Bt,Bs) =min (s, t). Using
Corollary 6, this is equivalent to prove that Bt is a Brownian motion.

First we prove that for any t ∈ [0, 1] the sequence of random variables Bt
N converges to Bt in

L2(Ω). Since Bt
N converges to Bt almost surely it is sufficient to prove that Bt

N forms a Cauchy
sequence in L2(Ω). We have that

𝔼[(Bt
N −Bt

M)2] = 𝔼[[[[[[[[[[[[[[[[[
[[[
[
[
(((((((((((((((((
(((
(
(�

n=M

N

(((((((((((((((((
(((
(
( �

k=0

2n−1−1

Zn,k(𝜔)en
k(t))))))))))))))))))
)))
)
)
)))))))))))))))))
)))
)
)2
]]]]]]]]]]]]]]]]]
]]]
]
]

= �
n=M

N

(en
k(t))2

when M≤N and using the fact that Zn,k are i.i.d. normal random variables with variance 1. On the
other hand, by Lemma 8, the series ∑n=0

+∞ (en
k(t))2= t <+∞ is absolutely convergent, this means

that

lim
M→∞

�
n=M

N

(en
k(t))2=0,

which implies that Bt
N is a Cauchy sequence in L2(Ω).

The fact that (Bt1
N,…,Btn

N) converges to (Bt1,…,Btn) in L2(Ω) implies that Bt is a normal stochastic
process (being the L2 limit of a normal stochastic process), with 𝔼[Bt]= limN𝔼[Bt

N] and cov(Bt,
Bs)= limN cov(Bt

N,Bs
N). On the other hand we have that limN𝔼[Bt

N]= limN 0=0 and, by Lemma
8,

lim
N

cov(Bt
N,Bs

N)= lim
N

𝔼[Bt
NBs

N]= lim
N

�
n=0

N

(((((((((((((((((
(((
(
( �

k=0

2n−1−1

en
k(t)en

k (s))))))))))))))))))
)))
)
)=min(t, s). □
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3 Regularity properties of Brownian motion

3.1 Non differentiability of Brownian motion

Let M⊂Ω be the measurable set

M={𝜔∈Ω, there exists𝜏∈[0, 1]such that t⟼Bt(𝜔) isdifferentiable in𝜏}.

We want to prove that ℙ(M) = 0. This implies that the function t ⟼ Bt(𝜔) is everywhere non
differentiable for almost every 𝜔∈Ω.

Theorem 10. Using the previous notation, if Bt is a Brownian motion then ℙ(M)=0.

Proof. We introduce the set

N =�𝜔∈Ω,thereare t∈[0,1]andL,k∈ℕsuchthat |Bt(𝜔)−Bs(𝜔)|<L|t − s| forany s∈�t, t+ 1
k��.

Obviously M⊂N , so if we are able to prove that ℙ(N)=0 we have proved ℙ(M)=0.

If n>4k we can find i∈{1,2,…,n} such that � j
n ,

j+1
n �⊂�t, t+ 1

k� for j= i, i+1, i+2. If 𝜔∈N we
have

�B j
n
(𝜔)−B j+1

n
(𝜔)�≤ �B j

n
(𝜔)−Bt(𝜔)�+ �Bt(𝜔)−B j+1

n
(𝜔)�≤ 8L

n . (6)

Let ÑL,k be the set defined as follows

ÑL,k= �
n>4k

�
i=1

n
��B j

n
(𝜔)−B j+1

n
(𝜔)�≤ 8L

n , for j= i, i+1, i+2�.

We have that

ℙ���B j
n
(𝜔)−B j+1

n
(𝜔)�≤ 8L

n , for j= i, i+1, i+2��≤ℙ�|Z |≤ 8L
n√ �≤ 163L3

n3/2 (2𝜋)3�

where Z ∼N(0, 1). This means that

ℙ�ÑL,k�≤ inf
n∈ℕ

n ⋅ℙ���B j
n
(𝜔)−B j+1

n
(𝜔)�≤ 8L

n , for j= i, i+1, i+2��≤ inf
n∈ℕ

163L3

n1/2 (2𝜋)3�
=0.

Since, by inequality (6), N ⊂∪k,L∈ℕÑL,k, we have that ℙ(N)≤∑L,k∈ℕℙ�ÑL,k�=0. □

3.2 Hölder continuity of Brownian motion

Definition 11. A function f ∈C0([0, 1],ℝ) is called Hölder continuous of index 𝛼∈(0,1) if

sup
0≤s<t≤1

| f (t)− f (s)|
|t − s|𝛼 <+∞.
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In this case we use the notation f ∈C𝛼([0,1],ℝ).

Theorem 12. If Bt is a Brownian motion we have that the function t⟼Bt(𝜔) is Hölder continuous
of index 𝛼 for any 𝛼∈�0, 12� and for almost every 𝜔∈Ω.

Proof. From Theorem 9, we have that the series ∑n=0
∞ �∑k=0

2n−1−1 Zn,k(𝜔)en
k(t)� is uniformly and

absolutely convergent to the Brownian motion Bt(𝜔) almost surely. Let 𝜔 be an element of Ω for
which the previous series is convergent, then we have that

|Bt(𝜔)−Bs(𝜔)|≤�
n=0

∞

�
k=0

2n−1−1

|Zn,k(𝜔)||en
k(t)−en

k(s)|.

Using the proof of Theorem 9, we have that there exists an almost surely finite and positive
random variable C(𝜔) such that supk |Zn,k(𝜔)| ≤ n ⋅ C(𝜔). Furthermore, by the definition of
Schauder functions, we have that

|en
k(t)−en

k(s)| ≤ 2
n−1
2 |t − s|

|en
k(t)−en

k(s)| ≤ 2−n−3
2 .

Fix 0≤ s< t≤1 and let N ∈ℕ be such that

2−N <|t − s| ≤2−(N−1).

Using the fact that in the sum ∑k=0
2n−1−1 |en

k(t) − en
k(s)| only at most two addends are non zero, we

obtain

|Bt(𝜔)−Bs(𝜔)|≤2C(𝜔)(((((((((((((((((1+�
n=1

N

n2
n−1
2 |t − s|+ �

n=N+1

+∞

n2−n−3
2 ))))))))))))))))).

On the other hand we have that

�
n=1

N

n2
n−1
2 |t − s|≤ |t − s|𝛼�

n=1

N

n2
n−1
2 2−(1−𝛼)(N−1)≤ |t − s|𝛼�

n=1

N

n2−�12−𝛼�(n−1).

Furthermore we obtain

�
n=N+1

+∞

n2−n−3
2 = �

n=N+1

+∞ n2−n−3
2 |t − s|𝛼

|t − s|𝛼 ≤|t − s|𝛼 �
n=N+1

+∞

n2−n−3
2 2𝛼N ≤2|t − s|𝛼 �

n=N+1

+∞

n2−�12−𝛼�n−1
2

This implies that

|Bt(𝜔)−Bs(𝜔)|
|t − s|𝛼 ≤4C(𝜔)(((((((((((((((((1+�

n=1

N

n2−�12−𝛼�n−1
2 )))))))))))))))))<+∞

almost surely. Taking the sup over 0≤ s< t≤1 the thesis follows. □
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3.3 The law of iterated logarithm

Khintchine's version of the law of the iterated logarithm is a more precise statement on the local
regularity of a typical Brownian path at a fixed time. It implies in particular that almost every
Brownian path is not Hölder continuous with parameter 𝛼≥ 1

2 .

Theorem 13. For s≥0, the following statements hold almost surely

limsup
t↓0

|Bt+s−Bs|

2t log�log�1t ���
=1 liminf

t↓0

|Bt+s −Bs|

2t log�log�1t ���
=−1.

4 Donsker's Theorem

In this section we show how it is possible to approximate a Brownian motion through a random
walk. Let X1,…,Xn,… be a sequence of random variables independent and identically distributed.
We introduce the random walk Sn as the stochastic process defined as follows

Sn=�
i=1

n

Xi.

It is possible to extend the discrete time process Sn to a continuous time process St, pathwise
continuous, as follows

St={{{{{{{{{{{{{{{{{{{{ Sn if t=n∈ℕ
Sn−1+(t −n+1)(Sn −Sn−1) if n−1< t<n .

If the random variables Xi are in L2(Ω) with mean 0 and variance 𝔼[Xi
2] = 𝜎2 we define the

following stochastic process

S̃t
n= 1

𝜎2n�
Snt.

Definition 14. A stochastic process Y : [0, 1]×Ω→ℝ is said to be defined on C0([0, 1],ℝ) if the
functions t⟼Yt(𝜔) are continuous for almost every 𝜔∈Ω.

Definition 15. Let Yt,Yt
1,…,Yt

n,… be a sequence of continuous time t∈[0,1] stochastic processes
defined on C0([0, 1],ℝ). We say that the sequence of stochastic processes Yt

n converges to Y in
distribution on C0([0, 1],ℝ) if for any bounded and continuous functional F:C0([0, 1],ℝ)→ℝ
(where C0([0,1],ℝ) is equipped with the topology induced by the uniform convergence) we have
that

𝔼[F(Y n)]→𝔼[F(Y)]

as n→+∞.
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Remark 16. It is important to note that the convergence in distribution of the finite dimensional
marginals �Yt1

i ,…,Ytk
i�, of the sequence of processes Yt

i, to the finite dimensional marginal (Yt1,…,
Ytk) of the process Y , is only a necessary but not sufficient condition for the convergence in distri-
bution on C0([0,1],ℝ) of Yt

i to Y .

In the rest of the section we want to prove the following theorem.

Theorem 17. (Donsker's Theorem) Suppose that Xi∈L4(Ω), then we have that S̃t
n converges to

a Brownian motion Bt on C0([0,1],ℝ).

Remark 18. The actual Donsker theorem requires only that Xi∈L2(Ω). We assume Xi∈L4(Ω)
in order to simplify the proof.

4.1 Convergence of finite dimensional distribution

Lemma 19. Under the hypotheses of Theorem 17, let 0 ≤ t1 ≤ … ≤ tk ≤ 1 then �S̃t1
n, S̃t2

n , …, S̃tk
n�

converges in distribution, asℝk random variables, to (Bt1,…,Btk), where Bt is a Brownian motion.

Proof. We give the proof only for the case k=2, being the general case a simple generalization.

For k=2, the thesis of the lemma is equivalent to prove that (S̃t1
n,S̃t2

n − S̃t1
n) converges in distribution

to a pair of independent random variables with Gaussian distribution and variance t1 and t2 − t1,
respectively.

First of all we note that S̃t1
n − 1

𝜎2n�
S⌊nt1⌋ and S̃t2

n − S̃t1
n − 1

𝜎2n�
(S⌊nt2⌋ − S⌈nt1⌉) converges to 0 in L2.

Indeed 𝔼��S̃t1
n − 1

𝜎2n�
S⌊nt1⌋�

2
�= 1

𝜎2n�
𝔼��t1− ⌊nt1⌋

n �2X⌈t1n⌉
2 �≤ 𝜎2

𝜎2n�
→0, and a similar relation holds

for S̃t2
n − S̃t1

n − (S⌊nt2⌋−S⌈nt1⌉).

This implies that if � 1
𝜎2n�

S⌊nt1⌋,
1
𝜎2n�

(S⌊nt2⌋−S⌈nt1⌉)� converges in distribution to a pair of indepen-

dent random variables with Gaussian distribution and variance t1 and t2− t1, the lemma is proven.

By the Central Limit Theorem, we have that

1
𝜎2n�

S⌊nt1⌋=
⌊nt1⌋

n� ⋅(((((((((((((((((
1

𝜎2� ⌊nt1⌋((((((((((((((
(((�k=1
⌊nt1⌋

Xi))))))))))))))))))))))))))))))))))⟶dN(0, t1).

In a similar way it is possible to prove that 1
𝜎2n�

(S⌊nt2⌋−S⌈nt1⌉)⟶dN(0, t2− t1). Furthermore since
1
𝜎2n�

S⌊nt1⌋ is independent of 1
𝜎2n�

(S⌊nt2⌋ − S⌈nt1⌉), the limit of these two random variables is a pair

of independent random variables. □

4.2 Convergence in distribution on C0([0, 1],ℝ)

Definition 20. A sequence of stochastic processes Yt
n defined on C0([0, 1],ℝ) is tight if, for any

𝜀>0, there exists a compact set K⊂C0([0,1],ℝ) (with respect to the topology induced by uniform
convergence) such that ℙ(Y n∈K)≥1−𝜀 uniformly on n∈ℕ.
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Theorem 21. (Prokhorov's theorem) Let Y ,Yt
1,…,Yt

n,… be a sequence of stochastic processes
defined on C0([0, 1], ℝ), then the sequence Yt

1, …, Yt
n, … converges to Y in distribution on

C0([0,1],ℝ) if and only if the finite dimensional marginals �Yt1
i ,…,Ytk

i�, of the sequence {Yt
i}i∈ℕ,

converge to the finite dimensional marginals (Yt1,…,Ytk) of the process Y and the sequence Y i is
tight.

Definition 22. Consider K ⊂C0([0, 1], ℝ), we say that the functions in K are equibounded and
equicontinuous if there exists a M >0 such that for any f ∈K supt∈[0,1] | f (t)| ≤M and for any 𝜀
there exists a 𝛿>0 such that sup|t−s|<𝛿,t,s∈[0,1] | f (t)− f (s)|<𝜀.

Theorem 23. (Arzelà-Ascoli Theorem) A set K⊂C0([0, 1],ℝ) is compact (with respect to the
topology induced by uniform convergence) if and only if K is closed and the functions defined on
K are equibounded and equicontinuous.

We introduce the following notation, for f ∈C0([0,1],ℝ) and 𝛿>0 we write

wf (𝛿)= sup
|t−s|<𝛿,t,s∈[0,1]

| f (t)− f (s)|.

We also write, for any t∈[1,1−𝛿],

w̃f ,t(𝛿)= sup
s∈[t,t+𝛿]

| f (s)− f (t)|.

Lemma 24. Let Yt
1,…,Yt

n,… be a sequence of stochastic processes defined on C0([0,1],ℝ) such
that Y0n=0. If, for any 𝜀>0, we have

lim
𝛿→0

�limsup
n→+∞

ℙ(wY n(𝛿)>𝜀)�=0 (7)

then Yt
1,…,Yt

n,… is tight.

Proof. If the limit (7) holds, then for any sequence 𝜀k→0, as k→∞, and for any 𝜂>0 there exist
two sequences 𝛿k→0 and nk∈ℕ such that

ℙ(wY N(𝛿k)>𝜀k)≤2−k𝜂

when N ≥nk. Consider the sets Ak⊂C0([0,1],ℝ) defined as

Ak={ f , f (0)=0andwf (𝛿k)≤𝜀k}.

We have that Ak are closed, and thus the set A=∩k∈ℕAk is closed. Furthermore the functions in
A are equibounded. Indeed if f ∈ A we have that

sup
t∈[0,1]

| f (t)|=�
i=0

� 1
𝛿1
�

sup
t∈� i

𝛿1
, i+1𝛿1

∧1�
� f (t)− f� i

𝛿1
��≤� i

𝛿1
�𝜀1.
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By construction A is formed by equicontinuous functions. Thus, by Arzelà-Ascoli Theorem, A is
compact. On the other hand

ℙ(Y n∈ A)≥1−�
k
ℙ(Y n∈Ak

c)=1−�
k
ℙ(wY N(𝛿k)>𝜀k)≥1−𝜂.

Since 𝜂 is arbitrary the sequence Yt
1,…,Yt

n,… is tight. □

Lemma 25. Let Yt
1,…,Yt

n,… be a sequence of stochastic processes defined on C0([0,1],ℝ) such
that Y0n=0. If, for any 𝜀>0, we have

lim
𝛿→0((((((((((((limsupn→+∞ (((((((((((( 1𝛿 sup

t∈[0,1−𝛿]
ℙ(w̃Y n,t(𝛿)>𝜀)))))))))))))))))))))))))=0 (8)

then Yt
1,…,Yt

n,… is tight.

Proof. We want to prove that

ℙ(wY n(𝛿)>3𝜀)≤� 1𝛿� sup
t∈[0,1−𝛿]

ℙ(w̃Y n,t(𝛿)>𝜀).

Fix 𝛿>0 and 𝜀>0, and consider the set

Bt={ f , f (0)=0 and w̃f ,t(𝛿)>𝜀}

and consider

B= �
i<𝛿−1

Bi⋅𝛿

then we have that { f ,wf (𝛿) > 3𝜀} ⊂ B. Indeed suppose that s ≤ t ∈ [0, 1] realizes the sup of for
wf (𝛿), then there are two i1, i2 ∈ℕ (equal or one next to the other) such that t ∈ � i1

𝛿 ,
i1+1
𝛿 � and

s∈� i2
𝛿 ,

i2+1
𝛿 �. Then we have that

� f (t)− f� i1
𝛿��+ � f (s)− f� i2

𝛿��+ � f� i2
𝛿�− f� i1

𝛿��≥ | f (t)− f (s)|≥3𝜀

which implies that one term among � f (t)− f � i1
𝛿��, � f (s)− f � i2

𝛿��, and � f � i2
𝛿�− f � i1

𝛿�� is greater than
𝜀, which means that { f ,wf (𝛿)>3𝜀}⊂B.

On the other hand we have

ℙ(Y n∈Bi⋅𝛿)≤ sup
t∈[0,1−𝛿]

ℙ(w̃Y n,t(𝛿)>𝜀).

Thus we obtain

ℙ(wY n(𝛿)>𝜀)≤ �
i≤𝛿−1

ℙ(Y n∈Bi⋅𝛿)≤ �
i≤𝛿−1

sup
t∈[0,1−𝛿]

ℙ(w̃Y n,t(𝛿)>𝜀)≤�
1
𝛿� sup

t∈[0,1−𝛿]
ℙ(w̃Y n,t(𝛿)>𝜀)

and, using Lemma 24, the lemma is proved. □
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4.3 Proof of Donsker's Theorem

Proof of Theorem 17. By Prokhorov's Theorem we have to prove that the finite dimensional mar-
ginals converge and that the sequence S̃1, …, S̃n is tight. The convergence of finite dimensional
marginals is proven in Lemma 19. For proving the tightness of the sequence S̃1, …, S̃n we use
Lemma 25.

First of all we note that for any t∈[0,1−𝛿]

w̃S̃n,t(𝛿)≤
1
𝜎2n� � sup

k∈{⌊nt⌋,…,⌈n(t+𝛿)⌉}
|Sk −S⌊nt⌋|�,

since the St is the straight line interpolation between {Sk}k∈ℕ. This means that

ℙ(w̃S̃n,t(𝛿)>𝜖)≤ℙ(((((((((((( sup
k∈{⌊nt⌋,…,⌈n(t+𝛿)⌉}

|Sk −S⌊nt⌋|> 𝜎2n� ⋅𝜀)))))))))))).
Since Xi are i.i.d. we have that

ℙ(((((((((((( sup
k∈{⌊nt⌋,…,⌈n(t+𝛿)⌉}

|Sk −S⌊nt⌋| > 𝜎2n� ⋅𝜀))))))))))))=ℙ(((((((((((( sup
k∈{1,…,⌈n𝛿⌉}

|Sk| > 𝜎2n� ⋅𝜀)))))))))))).

The sequence S1,…, Sn,… is a martingale with respect to its natural filtration, since it is the sum
of i.i.d. random variables with zero mean. Thus, by Doob inequality for martingales, we have

ℙ(((((((((((( sup
k∈{1,…,⌈n𝛿⌉}

|Sk|> 𝜎2n� ⋅𝜀))))))))))))≤
𝔼[S⌈n𝛿⌉4 ]
𝜎4n2𝜖4

.

On the other hand, since Xi are i.i.d. random variables with zero mean we have

𝔼[Sk
4]= �

i, j≤k
𝔼[Xi

2Xj
2]≤k2𝔼[X1

4].

This implies that

ℙ(((((((((((( sup
k∈{1,…,⌈n𝛿⌉}

|Sk| > 𝜎2n� ⋅𝜀))))))))))))≤ ⌈n𝛿⌉2𝔼[X1
4]

𝜎4n2𝜖4
.

Thus

lim
𝛿→0((((((((((((limsupn→+∞ (((((((((((( 1𝛿 sup

t∈[0,1−𝛿]
ℙ(w̃S̃n,t(𝛿)>𝜀)))))))))))))))))))))))))

≤ lim
𝛿→0((((((((((((limsupn→+∞ (((((((((((( 1𝛿ℙ(((((((((((( sup

k∈{1,…,⌈n𝛿⌉}
|Sk|> 𝜎2n� ⋅𝜀))))))))))))))))))))))))))))))))))))

≤ lim
𝛿→0((((((((((((limsupn→+∞ (((((((((((( 1𝛿 ⌈n𝛿⌉2𝔼[X1

4]
𝜎4n2𝜖4 ))))))))))))))))))))))))

= 0.

So, by using Lemma 25, the thesis follows. □
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