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Note 2
Conditional expectation.

see also A. Bovier's script for SS17, Chapter 2 [pdf].

1 Motivation

Recall the elementary definition of conditional probability of the event {¥Y = y} given the event
{X =x} for a pair of discrete random variables X, Y:

P(Y=y,X=x)

P =ylX=x):= PX=x)

Lif P(X=x)>0. (1)

Conditioning the original probability P on the event {X =x} gives rise to a new probability P (-|X =
x) provided the event {X = x} has a positive probability to happen. We could also consider the
associated conditional expectation of any (bounded, measurable) function f(Y) of Y, and denote
it by

Blf(NIX=x]=) fMPY=yX=x).
.

These elementary definitions cannot be easily generalised to the case where the random variable
X is not discrete, because it could happen that all the events of the form {X = x} are of zero
probability and therefore eq. (1) does not make sense.

The standard way out of the problem is to generalise the notion of conditional expectation and
then derive a notion of conditional probability as a by-product, the generalisation goes via consid-
ering the conditional value not as a deterministic quantity but as a random quantity itself, namely
we will make the conditional expectation depend on the elementary event w € Q itself.

Somehow we would like to see the conditional expectation of f(Y) with respect to X as our best
prediction of f(Y) given the informations contained in the observation of X (without specifying
which value of X has been actually observed). If we note it as

E[f(Y)IX],
it is natural to assume that this quantity depends on the outcome of X, therefore that there exists a

function u: R - R such that E[f(Y)|X]=u(X), in such a way that in the discrete setting we would
have

ulx)=E[f(Y)IX=x].

In order to find a condition on the function u let us observe that in the discrete setting we have

EuX)hX)]= Y  h@u@PX=x)=) h@)f)PY=yX=x) )
x:P(X=x)>0 Xy
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for all 2: R - R measurable and bounded. This equality can be stated in general as

E[r(X) uX) 1=EhRX)f(XY)],  Vh 3)

——

=E[f(Y)IX]

This family of equalities will play the role of our definition of the conditional expectation
E[f(Y)|X]. Indeed note that if g is another function such that E[A(X)g(X)] = E[A(X)f(Y)]
for all 4 bounded and measurable, then letting r(x) = g(x) — u(x) and choosing /(x) = sign r(x)
we have E[|r(X)|] = 0 which implies g(x) = u(x) whenever P (X = x) > 0. Therefore P(g(X) #
u(X)) =0 and the condition (3) identifies #(X) almost surely.

If X: Q- {x1,x7...} is a discrete random variable and Ay = {X = x4} = {w € Q: X(w) = x4}, then
0(X)=0(A1,Ay,...). In this case the conditional expectation Z =E[f(Y)|X] satisfies

—y) E[f(n1
Z(w)=uX(w)) :”(xk)=Zf<y>P(?Pk<’Zk> 2 - [ﬁ;([n: ]Ak]
y k

for all w € Ay such that P(Ay) > 0. Therefore

Z(w)= E Elf)ia] Is(w),  for P-almost all w € Q.
E[ﬂAk]
k:P(Ag) >0

This shows that conditional expectation depends only on ¢ (X) and not on the r.v. X (note that
two random variables could generated the same o-algebra). This observation then gives us the
last motivation for the general definition of conditional expectation wrt. to a sub-o-algebra of % .

Definition 1. Let (Q, % ,P) a probability space and G C F a sub-o-algebra of ¥. Let X a real
integrable random variable (i.e. E[|X|] <oo). The conditional expectation of X given & is a G -
measurable random variable Z such that

E[14X]=E[14Z] VAe¥ 4)
The first properties of any conditional expectation are estabilished as follows.

Proposition 2. If Z is a conditional expectation for X given G, we have E|Z| < E[|X|] < oo and if
Z,Z’ are two conditional expectations for X given G then Z =Z' almost surely.

Proof. Let H=sgn(Z)=17-9— 1z, then by (4)

0<E[IZI1=E[(1z50-1z<0) Z]=E[(1zz0— 1z<0) X] = IE[HX]I< E[IX[] < o0,
since {Z >0},{Z <0} € ¢ and |[H(w)| < 1. If Z,Z' are two conditional expectations, again by
equation (4) we see that Z—Z" is a conditional expectation for 0 given ¥ and as a consequence

E|Z-Z'|=0. Therefore P(Z=2") =1, indeed P(1Z-Z'| > ¢) < e 'E[|Z-Z"]] =0 from which
we deduce that P(Z+Z)=P(u,{|Z-Z|">1/n}) < Zn P(Z-Z">1/n)=0. |

Remark 3. The condition (4) is indeed equivalent (via the monotone class theorem) to

E[HX]=E[HY] VYHE& % bounded (5)



where we introduce the useful notation H € 9B to mean that H is a 9 measurable r.v.

We have still to show that such a conditional expectation Z always exists (see below).

By Prop. 2 we know that if the conditional expectation exists then is unique a.s.. We will denote
some representative of the equivalence class by Z = E[X|¥], and also let E[X|Y] = E[X|o(Y)]
when Y is another random variable. Moreover we will define the conditional probabability given
G by P(A|9) = E[14]¥] for all A € ¥. Note that both conditional expectation and conditional
probability are actually (equivalence classes of) random variables and not numerical quantities.
Note also for the same reason that the map A — P(A|¥%) is not a probability measure, so a condi-
tional probability is not a probability... (more on this later).

Example 4. Let X: Q — {0, 1}, then

o (X)={0, QX' ({0}), X" ({1))}.

Sub o-algebras of a probability space (2, ¥ ) model partial informations about the probabilistic
situation. In this context o (X) is interpreted as the information gained by the observation of the
random variable X. The trivial o-algebra {®, Q} then corresponds to absence of any information
and & to a complete knowledge of the model.

Example 5. Let Q =[0,1], et ¥ =3B([0,1]). let
F1=0([0,1/2],(1/2,11)={[0,1/2],(1/2,1],[0,1],D}.

Then %) encodes the information whether w is at the left or the right of 1 /2. In particular, if
X1 = 1[0’1/2], then %1 =0(X;). Let now X, = ﬂ[0’1/4] + ﬂ(1/2’3/4], and %, =0 (X1,X5). Then

Fo=0([0,1/4],(1/4,1/2],(1/2,3/4],(3/4,1]),

but o (X3) # 0 (X1,X>). Knowledge of the value of X;(w) put w at left or right of 1 /2. Knowledge
of Xo(w) put w eitherin [0,1/4]u (1/2,3/4] or in its complement. Knowledge of X|(w),X>(w)
allow to put w in one of the sets [0,1/4],(1/4,1/2],(1/2,3/4],(3/4,1]. En passant we remark
that if we consider the uniform probability P on [0, 1] then the random variables X and X, are
independent and Bernoulli with parameter 1/2.

Example 6. For the trivial o-algebra ¢ = {@, Q} we have E[X|9] = E[X]: is enough to verify
that this guess satisfies the definition (4).

Theorem 7. Let X a random variable with values in the measurable space (®, 36) and Y a
another r.v. with values in another measurable space (Y, %), such that it is also o(X) measur-
able. Then there exists a mesurable function h: (®, 36) —» (Y, %) such that Y = h(X).

(Q,0(X) = (®9%)

YN ¢ hoX
(1, %)



Thanks to Theorem 7, if we condition wrt. the o-algebra generated by a random variable X we
have some more information on the structure of the conditional expectation:

Proposition 8. If Z € L' and X is another real random variable, then there exists a measurable
function h: R - R such that E[Z|X]=h(X) almost surely.

2 Existence

Let & a o-algebra contained in F, X € L>(F) and let Y = E[X|¥]. Assume that ¥ € L? (it is not
difficult to prove it, we will do it later), then by an explicit computation it holds that

E[IX-Z*]=E[X-YPl+E[)Y-Z?],
for any Z € L*(%) and therefore

E[IX-Y]?]= inf E[X-Z. (6)
ZelX(%)

This shows that a conditional expectation of an L*(¥) random variable is the best ¢-measurable
estimator for X, according to a quadratic risk. Eq. (6) then gives us a strategy to prove the exis-
tence of the conditional expectation in the L setting.

Recall that L*(Q, F,P) = L?(F) is the completion of the family of simple functions by the norm
I-l2 = (E[|-1?])'/2. Elements of L*(F) are equivalence classes of square-integrable measurable
functions according to the equivalence relation X ~Y ©P(X+#Y)=0.

Corollary 9. If B C F is a sub-c-algebra of F then L*(B) is a closed vector subspace of
L*(F) and for all X € L*(F) there exists a unique Y € L*(B) such that:

a) E[IX-Y?] =infze2 5 E[IX-ZI%] ;
b) X-YLL*(B).

We call Y the orthogonal projection of X on L*(%).

Proof. The set L2(%B) is complete with the L? norm, so it is also closed in L2(¥). Let A =
ianELz(%)IE[|X—Z|2] and (Y,), a minimizing sequence: E[|X - Y,|?] = A when n— co. We have

E[IX-Y*1+BElIX-Y,["1=2E[IX = (Y, + Y,) /2171 + E[|Y, - Y,s]?] /2
(use E[|A + B|*] + E[|JA-B|*] =2E[A?] + 2E[B?]). But (Y, +Y,,) /2 € L*(%B) which gives that
E[1Y, = Yul*1/2<E[IX = Y,12] + E[1X - Y,u/*]-2A - 0,

for n,m— oco. Therefore the sequence (Y},), is Cauchy. Let Y =L%—1im,Y, € L*(%). We have that
IX=Y|,<IX=Y,l2+ Y, =Yl and then that | X =Y, = \/K since ||Y,— Y|~ 0.



Forall r€ R and Z € L*(%B) consider Y +1Z € L*(%) and observe that
OSE[X-Y-tZ|*]-E[IX-Y?=-2tE[(X-Y)Z]+t*E[Z?].

The polynomial P(¢) = at>+ bt satisfy P(z) >0 for all # >0 which implies =0, and in particular
E[(X-Y)Z]=0forall ZeL?*(%). The converse implication is easy to show. To show uniqueness
of the orthogonal projection assume that Y” is another projection. We have E[(Y-Y")Z]=0 for
all Z € L*(%) and therefore also for Z=Y -Y’,butthen E[(Y-Y")2]=0=>Y-Y'=0(as.). O

Theorem 10. For all X € L'(F) and o-algebra G C F the conditional expectation E[X|9 ]
exists.

Proof. The orthogonal projection Y of X on L*(¥) satisfait E[XZ] = E[YZ] for all Z € L>(¥)
and in particular for all bounded % -mesurable Z. Therefore ¥ = E[X|¥] a.s. which shows the
existence of the conditional expectation when X € L>(F).

To prove existence for all X € L'(%) we proceed by approximation. Let X >0 and in L'. Let
X, =min (X,n) and Y, the orthogonal projection of X, onto L*(%). Then, for n>m we have that
O0<E[1a(X;,— Xn)] = E[14(Y, - Y,)] for all A € ¢ which implies that Y, > Y, a.s. (check) and
that it exists a null set N € & off which the sequence (Y, (w)), is increasing for all w € N¢. Let
Y =sup,Y,. Wehave E[14Y]=sup,E[14Y,]=sup,E[14X,]=E[14X] by monotone convergence
and therefore, we have also Y € L'(¢) and Y = E[X|¥]. For a generic X € L' we decompose
X =X, - X_with X;, X_ >0 and in L' and we let Y, =E[X,|%B] and Y = Y, — Y_. We obtain
Y e L'(%B) such that E[14,X]=E[14Y] for all A € B as required. O

3 Properties

Proposition 11. For all X,Y € L'(¥) and all sub-c-algebras G, 3% C F we have the following
properties of the conditional expectation:

1. Linearity: E[AX+ pY|§ 1= AE[X|9 ]+ uE[Y|¥9] forall 2, ueR;

2. Positivity: X 20a.5s.=E[X|¥]20a.s. ;

3. Monotone convergence: 0< X, 7 Xa.s.=> E[X,|¢] 7E[X|¥]a.s. ;

4. Jensen's inequality: for all convex p:R - R: E[¢p(X)|9]2 ¢ (E[X|¥)]) ;
5. Contractivity in LP: |E[X|G ]|, < X||, for all p [1, 0],

6. Telescoping: If 36 is a sub-o-algebra of G then
E[E[XI9]196] = E[X|96] = E[E[X|96]I¥];
7.1fZE€ %, E[|IX|] <o and E[|XZ|] < +co then E[XZ|9]1=ZE[X|¥].

Proof.

1. Exercise.



2. Wenote thatif E[X|¥]<e<0onAe @ suchthat P(A)>0then0<E[X14]=E[E[X|¥]14] <
eP(A) <0 which is impossible.

3. Let Y,=E[X,,|%]. By positivity of conditional expectation we have that (}},), is an increasing
sequence. More precisely, there exist a probability 1 event A Let Y = limsup,Y,, then Y € %
and the monotone convergence theorem allows us to pass to the limit in E[X,14] = E[Y;14]
to obtain E[X14]=E[Y 14] forall A€ ¥. Therefore Y = E[X|¥] a.s.

4. Exercise.
5. Use property (4). Exercice.
6. Exercise.

7. Exercise. (Easy for simple functions and then use monotone limits for X,Z >0). O
The following lemma will be useful later on in the study of martingales.
Lemma 12. Let X € L', then the family (E[X|91: € C & is a o-algebra) is uniformly integrable.

Proof. Let X¢ = E[X|%]. We need to prove that for all £ >0 there exists K >0 such that

EllX¢|lx,>x]< ¢,
for all ¢. Observe that

Bl X<l x, >kl < EIE[IXII9 ] Lixy>k] = E[E[IX|1x,>x1€ 1] = E[IX|11xy>k]

and we can choose K large enough so that since P(|Xg¢| > K) < KL 'E[IX<|]] < K'E[IX]] < 8
uniformly in & for some prescribed § >0. As a consequence, since X is uniformly integrable, we
have E[|X|1x,>k] < ¢ for all ¥ and we conclude. O

4 Relations with independence

Recall the basic notion of independence: two events A, B € ¥ are independent (wrt. the given
probability measure P) if

P(AnB)=P(A)P(B).

There are obvious generalisation to families of o-algebras and to families of random variables.

Definition 13.

a) We say that a family (AA;);c; of sub-o-algebras of ¥ is independent iff P(N;cjA;) =
[1,c, P(A;) for all choices of J C1and A;€ A, i€ J.

b) We say that X is a random variable independent of the o-algebra G if o(X) is independent
of G, namely if P(AnB)=P(A)P(B) forall A€ o(X) and BE'S.

c) A family of random variables (X;)icy is independent if is so the family of respective o-alge-
bras.



Proposition 14.

a) If X is independent of the -algebra G, then E[X|¥ ] is almost surely constant and
E[X|9]1=EX), a.s.
b) If 3 and G are independent, X is G-mesurable and ¢’ C'G, then
E[X|19¢,%'1=E[X|¢"].
) If X1, ..., X, is a family of independent r.v. and f(X\,...,X,) € L' then
E[f(X1,....X»)1X1]= ¢ (X1)
where ¢ (x):=E[f(x,X2,....Xn)].

Proof. a) Easy.

b) Let us assume that X >0 and is in L'. Let G ¥’ and H & 9. By assumption X 15 € ¥ and
1y € 96 are independent, therefore E[X 15 1y]=E[X1s] E[1y] and if we denote Y = E[X|¢ ]
we also have E[Y 15 1] = E[Y 15]E[1g] which tells us that E[X 15 1g]=E[Y1s1y]. Asa
consequence, the measures

pux(F)=E[X1f] and py(F)=E[X1F],
defined on ¢ (%', 36) have the same mass and verify pux(GNH) = uy(GnH) for all G€ ¢’ and

H € 94. But the family of events of the form Gn H is a sr-system and therefore we can conclude
that the measures coincide on (%, 96).

¢) Use Fubini's theorem on the joint law of (X, X5, ...,X,). O

Remark 15. Note that in case c¢) above we do not have
(p(X]) # E[f(X]7X27 ---an)]-

There is no simple way to write down explicitly ¢ (X;), the correct expression
pXi(@)= [ FXI(0).Xa(@), . X)) P(de”)
make use of two different variables w,w” where the second is integrated over wrt. P.

5 Regular conditional probabilities

Given a g-algebra & € ¥ we can consider the random variables
AcFP(AI9)=E[14¥9]1€L1(Q,¥¢,P)

which are such that (check)

a) P(0|%9)=0, P(A%9)=1-P(A1%);



b) P(U,A,l%) =), P(A,|%) for all countable families (A,),C ¥ of pairwise disjoint events.

However is in general not possible to guarantee that for fixed w € Q the set-function A € ¥ -
P(A|¥)(w) €0, 1] is a bona-fide probability measure on (Q, % ). The difficulty lies in the fact
that property b) above holds P-a.s., namely outside an exceptional set of probability 0. Given that
there exists uncountably many families (A,), C ¥ in b), we cannot guarantee that the additivity
holds with probability one, i.e. that we can find a common exceptional set for the property b).

This discussion motivates the introduction of the concept of regular conditional probability. A
regular conditional probability given the o-algebra & C ¥ is the assignment P¢: Q - P (Q, F)
where & (Q, ¥) is the space of probability measures on the measure space (€, %), such that for
allAeF the map w ~ Py (w,A) is §-measurable and is a version of the conditional probability
P(A|9).

Existence of a regular conditional probability P« for & ensures that the conditional expectation
is indeed the expectation wrt. a standard probability measure: a monotone class argument allows
to prove that for all Xel'(Q,%,P) we have

E[X|9]( f X(w')Pg(w,dw’), for P-almostall w e Q.

Remark 16. Existence of a regular conditional probability can be guaranteed when (Q, %) is
a Polish space (complete, metrisable space) endowed with the Borel o-algebra. This is another
pleasant feature of the Polish setting.

6 Some examples

Example 17. Let (X;)<;<, a vector of i.i.d. random variables and let X = ZiXi’ then

BIXX]=2 E[XIXi]= (1~ DE[X] + X,

In order to prove these equalities one has to remark first that we have
E[Xi1X]=E[XolX] == E[X\X]=h(X)
for some measurable function #: R — R. Indeed since the variables are i.i.d. we have
E[f (X1, ... X)) 1= E[f (Xo(1)s s Xo ()]

for any bounded measurable function f: R"” —» R, which implies that for any bounded measurable
function X we have (think why)

E[Xih(X)]=E[Xh(X)] == E[X,h(X)]

and therefore one can conclude using the definition of conditional expectation. By linearity we
have

X=E[XIX]=E[X] + -+ XalX] = [X11X] + E[X2X] + - + E[X,X] = nh(X)



and we conclude
X
E[Xi1X]= p

The other equation follows more easily.

Example 18. Let (X, u)n.m>0 a double suite of i.i.d. r.v. with values in R,. Let Zg = 1 and
Zy, = Xp1 + -+ + Xnz,, for n > 1. Using the conditional expectation one can show that the
generating function f,,(6) = E[6%"] satisfies

f0(9)=1 fn:fn—l(f(g)) forn>1.

Forany 6 €[0,1] let f(0) = E[6X1]1=E[6%"] =f1(0). Then observe that Z,,_; is independent of
(X,.1)k since it is measurable wrt the o-algebra generated by (X x)e<n—1.4 Which is independent of
that generated by (X, x)x. Therefore

fu(0)=B[o7]=E[6™ " %] = E[B[0™" "0 11Z,1]] = E[@ (Zy-1)]
where

p(2)=E[g ]
by independence. We can compute ¢ (z) again using independece of the vector (X, x)x as

9 (2) =E[0%1...0%] = E[0%1]---E[0%"<] = (0)--£(0) = £ (0)*
g

z times

using also the fact that (X, ;) have the same law, namely that of X ;. We conclude therefore that

[2(0) =El9(Zy-D]1=E[£(0)']= fu-1(£(6)).
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