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Note 2

Conditional expectation.

see also A. Bovier's script for SS17, Chapter 2 [pdf].

1 Motivation

Recall the elementary definition of conditional probability of the event {Y = y} given the event
{X =x} for a pair of discrete random variables X,Y :

ℙ(Y = y|X = x)≔ ℙ(Y = y,X =x)
ℙ(X = x) , if ℙ(X = x)>0. (1)

Conditioning the original probability ℙ on the event {X =x} gives rise to a new probability ℙ(⋅|X=
x) provided the event {X = x} has a positive probability to happen. We could also consider the
associated conditional expectation of any (bounded, measurable) function f (Y) of Y , and denote
it by

𝔼[ f (Y)|X = x]=�
y

f (y)ℙ(Y = y|X = x).

These elementary definitions cannot be easily generalised to the case where the random variable
X is not discrete, because it could happen that all the events of the form {X = x} are of zero
probability and therefore eq. (1) does not make sense.

The standard way out of the problem is to generalise the notion of conditional expectation and
then derive a notion of conditional probability as a by-product, the generalisation goes via consid-
ering the conditional value not as a deterministic quantity but as a random quantity itself, namely
we will make the conditional expectation depend on the elementary event 𝜔∈Ω itself.

Somehow we would like to see the conditional expectation of f (Y) with respect to X as our best
prediction of f (Y) given the informations contained in the observation of X (without specifying
which value of X has been actually observed). If we note it as

𝔼[ f (Y)|X],

it is natural to assume that this quantity depends on the outcome of X, therefore that there exists a
function u:ℝ→ℝ such that 𝔼[ f (Y)|X]=u(X), in such a way that in the discrete setting we would
have

u(x)=𝔼[ f (Y)|X =x].

In order to find a condition on the function u let us observe that in the discrete setting we have

𝔼[u(X)h(X)]= �
x:ℙ(X=x)>0

h(x)u(x)ℙ(X =x)=�
x,y

h(x) f (y)ℙ(Y =y,X = x) (2)
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for all h:ℝ→ℝ measurable and bounded. This equality can be stated in general as

𝔼[h(X) u(X)�
=𝔼[ f (Y)|X]

]=E[h(X) f (Y)], ∀h. (3)

This family of equalities will play the role of our definition of the conditional expectation
𝔼[ f (Y)|X]. Indeed note that if g is another function such that 𝔼[h(X)g(X)] = 𝔼[h(X) f (Y)]
for all h bounded and measurable, then letting r(x) = g(x) − u(x) and choosing h(x) = sign r(x)
we have 𝔼[|r(X)|] = 0 which implies g(x) = u(x) whenever ℙ(X = x) > 0. Therefore ℙ(g(X) ≠
u(X))=0 and the condition (3) identifies u(X) almost surely.

If X: Ω → {x1, x2,…} is a discrete random variable and Ak = {X = xk} = {𝜔 ∈ Ω: X(𝜔) = xk}, then
𝜎(X)=𝜎(A1, A2,…). In this case the conditional expectation Z =𝔼[ f (Y)|X] satisfies

Z(𝜔)=u(X(𝜔))=u(xk)=�
y

f (y)ℙ(Ak,Y =y)
ℙ(Ak)

=𝔼[ f (Y)1Ak]
𝔼[1Ak]

for all 𝜔∈ Ak such that ℙ(Ak)>0. Therefore

Z(𝜔)= �
k:ℙ(Ak)>0

𝔼[ f (Y)1Ak]
𝔼[1Ak]

1Ak(𝜔), for ℙ-almost all 𝜔∈Ω.

This shows that conditional expectation depends only on 𝜎(X) and not on the r.v. X (note that
two random variables could generated the same 𝜎-algebra). This observation then gives us the
last motivation for the general definition of conditional expectation wrt. to a sub-𝜎-algebra of ℱ.

Definition 1. Let (Ω,ℱ,ℙ) a probability space and 𝒢⊆ℱ a sub-𝜎-algebra of ℱ. Let X a real
integrable random variable (i.e. 𝔼[|X|]<∞). The conditional expectation of X given 𝒢 is a 𝒢-
measurable random variable Z such that

𝔼[1AX]=𝔼[1AZ] ∀A∈𝒢 (4)

The first properties of any conditional expectation are estabilished as follows.

Proposition 2. If Z is a conditional expectation for X given 𝒢, we have 𝔼|Z |⩽𝔼[|X|]<∞ and if
Z ,Z ′ are two conditional expectations for X given 𝒢 then Z =Z ′ almost surely.

Proof. Let H =sgn(Z)=1Z⩾0 −1Z<0, then by (4)

0⩽𝔼[|Z |]=𝔼[(1Z⩾0−1Z<0)Z]=𝔼[(1Z⩾0−1Z<0)X]= |𝔼[HX]|⩽𝔼[|X|]<∞,

since {Z ⩾ 0}, {Z < 0} ∈ 𝒢 and |H(𝜔)| ⩽ 1. If Z , Z ′ are two conditional expectations, again by
equation (4) we see that Z − Z ′ is a conditional expectation for 0 given 𝒢 and as a consequence
𝔼|Z − Z ′| = 0. Therefore ℙ(Z = Z ′) = 1, indeed ℙ(|Z − Z ′| ⩾ 𝜀) ⩽ 𝜀−1𝔼[|Z − Z ′|] = 0 from which
we deduce that ℙ(Z ≠Z ′)=ℙ(∪n{|Z −Z |′⩾1/n})⩽∑n ℙ(|Z −Z |′⩾1/n)=0. □

Remark 3. The condition (4) is indeed equivalent (via the monotone class theorem) to

𝔼[HX]=𝔼[HY] ∀H ∈̂ℬ bounded (5)
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where we introduce the useful notation H ∈̂ℬ to mean that H is a ℬ measurable r.v.

We have still to show that such a conditional expectation Z always exists (see below).

By Prop. 2 we know that if the conditional expectation exists then is unique a.s.. We will denote
some representative of the equivalence class by Z = 𝔼[X|𝒢], and also let 𝔼[X|Y] = 𝔼[X|𝜎(Y)]
when Y is another random variable. Moreover we will define the conditional probabability given
𝒢 by ℙ(A|𝒢) = 𝔼[1A|𝒢] for all A ∈ ℱ. Note that both conditional expectation and conditional
probability are actually (equivalence classes of) random variables and not numerical quantities.
Note also for the same reason that the map A ↦P(A|𝒢) is not a probability measure, so a condi-
tional probability is not a probability... (more on this later).

Example 4. Let X:Ω→{0,1}, then

𝜎(X)={∅,Ω,X−1({0}),X−1({1})}.

Sub 𝜎-algebras of a probability space (Ω, ℱ) model partial informations about the probabilistic
situation. In this context 𝜎(X) is interpreted as the information gained by the observation of the
random variable X. The trivial 𝜎-algebra {∅,Ω} then corresponds to absence of any information
and ℱ to a complete knowledge of the model.

Example 5. Let Ω=[0,1], et ℱ=ℬ([0, 1]). let

ℱ1=𝜎([0,1/2], (1/2,1])={[0, 1/2], (1/2, 1], [0, 1],∅}.

Then ℱ1 encodes the information whether 𝜔 is at the left or the right of 1 /2. In particular, if
X1 =1[0,1/2], then ℱ1=𝜎(X1). Let now X2 =1[0,1/4] +1(1/2,3/4], and ℱ2 =𝜎(X1,X2). Then

ℱ2 =𝜎([0, 1/4], (1/4, 1/2], (1/2, 3/4], (3/4, 1]),

but 𝜎(X2)≠𝜎(X1,X2). Knowledge of the value of X1(𝜔) put 𝜔 at left or right of 1/2. Knowledge
of X2(𝜔) put 𝜔 either in [0,1/4]∪(1/2,3/4] or in its complement. Knowledge of X1(𝜔),X2(𝜔)
allow to put 𝜔 in one of the sets [0,1/4],(1/4,1/2], (1/2,3/4], (3/4,1]. En passant we remark
that if we consider the uniform probability ℙ on [0, 1] then the random variables X1 and X2 are
independent and Bernoulli with parameter 1/2.

Example 6. For the trivial 𝜎-algebra 𝒢 = {∅, Ω} we have 𝔼[X|𝒢] = 𝔼[X]: is enough to verify
that this guess satisfies the definition (4).

Theorem 7. Let X a random variable with values in the measurable space (Θ, ℋ) and Y a
another r.v. with values in another measurable space (Υ, 𝒢), such that it is also 𝜎(X) measur-
able. Then there exists a mesurable function h: (Θ,ℋ)→(Υ,𝒢) such that Y =h(X).

(Ω,𝜎(X)) ⟶
X

(Θ,ℋ)
Y↘ ↙h∘X

(Υ,𝒢)
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Thanks to Theorem 7, if we condition wrt. the 𝜎-algebra generated by a random variable X we
have some more information on the structure of the conditional expectation:

Proposition 8. If Z ∈ L1 and X is another real random variable, then there exists a measurable
function h:ℝ→ℝ such that 𝔼[Z |X]=h(X) almost surely.

2 Existence

Let 𝒢 a 𝜎-algebra contained in ℱ, X ∈L2(ℱ) and let Y =𝔼[X|𝒢]. Assume that Y ∈L2 (it is not
difficult to prove it, we will do it later), then by an explicit computation it holds that

𝔼[|X −Z |2]=𝔼[|X −Y |2]+𝔼[|Y −Z |2],

for any Z ∈L2(𝒢) and therefore

𝔼[|X −Y |2]= inf
Z∈L2(𝒢)

𝔼[|X −Z |2]. (6)

This shows that a conditional expectation of an L2(ℱ) random variable is the best 𝒢-measurable
estimator for X, according to a quadratic risk. Eq. (6) then gives us a strategy to prove the exis-
tence of the conditional expectation in the L2 setting.

Recall that L2(Ω,ℱ,ℙ)=L2(ℱ) is the completion of the family of simple functions by the norm
‖⋅‖2 = (𝔼[| ⋅ |2])1/2. Elements of L2(ℱ) are equivalence classes of square-integrable measurable
functions according to the equivalence relation X ∼Y ⇔ℙ(X ≠Y)=0.

Corollary 9. If ℬ ⊆ ℱ is a sub-𝜎-algebra of ℱ then L2(ℬ) is a closed vector subspace of
L2(ℱ) and for all X ∈L2(ℱ) there exists a unique Y ∈L2(ℬ) such that:

a) 𝔼[|X −Y |2]= infZ∈L2(ℬ)𝔼[|X −Z |2] ;

b) X −Y⊥L2(ℬ).

We call Y the orthogonal projection of X on L2(𝒢).

Proof. The set L2(ℬ) is complete with the L2 norm, so it is also closed in L2(ℱ). Let Δ =
infZ∈L2(ℬ)𝔼[|X −Z |2] and (Yn)n a minimizing sequence: 𝔼[|X −Yn|2]→Δ when n→∞. We have

𝔼[|X −Yn|2]+𝔼[|X −Ym|2]=2𝔼[|X − (Yn +Ym)/2|2]+𝔼[|Yn −Ym|2]/2

(use 𝔼[|A+B|2]+𝔼[|A−B|2]=2𝔼[A2]+2𝔼[B2]). But (Yn +Ym)/2∈L2(ℬ) which gives that

𝔼[|Yn −Ym|2]/2⩽𝔼[|X −Yn|2]+𝔼[|X −Ym|2]−2Δ→0,

for n,m→∞. Therefore the sequence (Yn)n is Cauchy. Let Y =L2− limnYn ∈L2(ℬ). We have that
‖X −Y‖2 ⩽‖X −Yn‖2+‖Yn −Y‖2 and then that ‖X −Y‖2 = Δ� since ‖Yn −Y‖2→0.
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For all t ∈ℝ and Z ∈L2(ℬ) consider Y + t Z ∈L2(ℬ) and observe that

0⩽𝔼[|X −Y − tZ |2]−𝔼[|X −Y |2]=−2 t𝔼[(X −Y)Z]+ t2𝔼[Z 2].

The polynomial P(t)= at2 +b t satisfy P(t)⩾0 for all t ⩾0 which implies b =0, and in particular
𝔼[(X −Y)Z]=0 for all Z ∈L2(ℬ). The converse implication is easy to show. To show uniqueness
of the orthogonal projection assume that Y ′ is another projection. We have 𝔼[(Y −Y ′)Z]=0 for
all Z ∈L2(𝒢) and therefore also for Z =Y −Y ′, but then 𝔼[(Y −Y ′)2]=0⇒Y −Y ′=0 (a.s.). □

Theorem 10. For all X ∈ L1(ℱ) and 𝜎-algebra 𝒢 ⊆ ℱ the conditional expectation 𝔼[X|𝒢]
exists.

Proof. The orthogonal projection Y of X on L2(𝒢) satisfait 𝔼[XZ] = 𝔼[YZ] for all Z ∈ L2(𝒢)
and in particular for all bounded 𝒢-mesurable Z . Therefore Y = 𝔼[X|𝒢] a.s. which shows the
existence of the conditional expectation when X ∈L2(ℱ).

To prove existence for all X ∈ L1(ℱ) we proceed by approximation. Let X ⩾ 0 and in L1. Let
Xn = min(X, n) and Yn the orthogonal projection of Xn onto L2(𝒢). Then, for n ⩾ m we have that
0 ⩽ 𝔼[1A(Xn − Xm)] = 𝔼[1A(Yn − Ym)] for all A ∈ 𝒢 which implies that Yn ⩾ Ym a.s. (check) and
that it exists a null set N ∈ 𝒢 off which the sequence (Yn(𝜔))n is increasing for all 𝜔 ∈ N c. Let
Y =supnYn. We have 𝔼[1AY]=supn𝔼[1AYn]=supn𝔼[1AXn]=𝔼[1AX] by monotone convergence
and therefore, we have also Y ∈ L1(𝒢) and Y = 𝔼[X|𝒢]. For a generic X ∈ L1 we decompose
X = X+ − X− with X+, X− ⩾ 0 and in L1 and we let Y± = 𝔼[X±|ℬ] and Y = Y+ − Y−. We obtain
Y ∈L1(ℬ) such that 𝔼[1AX]=𝔼[1AY] for all A∈ℬ as required. □

3 Properties

Proposition 11. For all X, Y ∈ L1(ℱ) and all sub-𝜎-algebras 𝒢, ℋ ⊆ ℱ we have the following
properties of the conditional expectation:

1. Linearity: 𝔼[𝜆X +𝜇Y |𝒢]=𝜆𝔼[X|𝒢]+𝜇𝔼[Y |𝒢] for all 𝜆,𝜇∈ℝ;

2. Positivity: X ⩾0a.s.⇒𝔼[X|𝒢]⩾0a.s. ;

3. Monotone convergence: 0⩽Xn ↗Xa.s.⇒𝔼[Xn|𝒢]↗𝔼[X|𝒢]a.s. ;

4. Jensen's inequality: for all convex 𝜑:ℝ→ℝ: 𝔼[𝜑(X)|𝒢]⩾𝜑(𝔼[X|𝒢]) ;

5. Contractivity in Lp: ‖𝔼[X|𝒢]‖p ⩽‖X‖p for all p∈[1,∞],

6. Telescoping: If ℋ is a sub-𝜎-algebra of 𝒢 then

𝔼[𝔼[X|𝒢]|ℋ]=𝔼[X|ℋ]=𝔼[𝔼[X|ℋ]|𝒢];

7. If Z ∈̂𝒢, 𝔼[|X|]<∞ and 𝔼[|XZ |]<+∞ then 𝔼[XZ |𝒢]=Z 𝔼[X|𝒢].

Proof.

1. Exercise.
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2. We note that if 𝔼[X|𝒢]⩽𝜀<0 on A∈𝒢 such that ℙ(A)>0 then 0<𝔼[X1A]=𝔼[𝔼[X|𝒢]1A]⩽
𝜀ℙ(A)<0 which is impossible.

3. Let Yn =𝔼[Xn|𝒢]. By positivity of conditional expectation we have that (Yn)n is an increasing
sequence. More precisely, there exist a probability 1 event A Let Y = limsupnYn, then Y ∈̂ 𝒢
and the monotone convergence theorem allows us to pass to the limit in 𝔼[Xn1A] = 𝔼[Yn1A]
to obtain 𝔼[X1A]=𝔼[Y1A] for all A∈𝒢. Therefore Y =𝔼[X|𝒢] a.s.

4. Exercise.

5. Use property (4). Exercice.

6. Exercise.

7. Exercise. (Easy for simple functions and then use monotone limits for X,Z ⩾0). □

The following lemma will be useful later on in the study of martingales.

Lemma 12. Let X ∈L1, then the family (𝔼[X|𝒢]:𝒢⊆ℱ is a 𝜎-algebra) is uniformly integrable.

Proof. Let X𝒢=𝔼[X|𝒢]. We need to prove that for all 𝜀>0 there exists K >0 such that

𝔼[|X𝒢|1|X𝒢|>K]⩽𝜀,

for all 𝒢. Observe that

𝔼[|X𝒢|1|X𝒢|>K]⩽𝔼[𝔼[|X||𝒢]1|X𝒢|>K]=𝔼[𝔼[|X|1|X𝒢|>K|𝒢]]=𝔼[|X|1|X𝒢|>K]

and we can choose K large enough so that since ℙ(|X𝒢| > K) ⩽ KL−1𝔼[|X𝒢|] ⩽ K−1𝔼[|X|] ⩽ 𝛿
uniformly in 𝒢 for some prescribed 𝛿>0. As a consequence, since X is uniformly integrable, we
have 𝔼[|X|1|X𝒢|>K]⩽𝜀 for all 𝒢 and we conclude. □

4 Relations with independence

Recall the basic notion of independence: two events A, B ∈ ℱ are independent (wrt. the given
probability measure ℙ) if

ℙ(A∩B)=ℙ(A)ℙ(B).

There are obvious generalisation to families of 𝜎-algebras and to families of random variables.

Definition 13.

a) We say that a family (𝒜i)i∈I of sub-𝜎-algebras of ℱ is independent iff ℙ(∩i∈JAi) =
∏i∈J ℙ(Ai) for all choices of J ⊆ I and Ai ∈𝒜i, i∈J.

b) We say that X is a random variable independent of the 𝜎-algebra 𝒢 if 𝜎(X) is independent
of 𝒢, namely if ℙ(A∩B)=ℙ(A)ℙ(B) for all A∈𝜎(X) and B∈𝒢.

c) A family of random variables (Xi)i∈I is independent if is so the family of respective 𝜎-alge-
bras.
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Proposition 14.

a) If X is independent of the 𝜎-algebra 𝒢, then 𝔼[X|𝒢] is almost surely constant and

𝔼[X|𝒢]=𝔼(X), a.s.

b) If ℋ and 𝒢 are independent, X is 𝒢-mesurable and 𝒢′⊆𝒢, then

𝔼[X|ℋ,𝒢′]=𝔼[X|𝒢′].

c) If X1,…,Xn is a family of independent r.v. and f (X1,…,Xn)∈L1 then

𝔼[ f (X1,…,Xn)|X1]=𝜑(X1)

where 𝜑(x)≔𝔼[ f (x,X2,…,Xn)].

Proof. a) Easy.

b) Let us assume that X ⩾ 0 and is in L1. Let G ∈̂ 𝒢′ and H ∈̂ ℋ. By assumption X1G ∈̂ 𝒢 and
1H ∈ ℋ are independent, therefore 𝔼[X1G1H]= 𝔼[X1G]𝔼[1H] and if we denote Y = 𝔼[X|𝒢′]
we also have 𝔼[Y1G 1H] = 𝔼[Y1G]𝔼[1H] which tells us that 𝔼[X1G 1H] = 𝔼[Y1G 1H]. As a
consequence, the measures

𝜇X(F)=𝔼[X1F] and 𝜇Y(F)=𝔼[X1F],

defined on 𝜎(𝒢′,ℋ) have the same mass and verify 𝜇X(G∩H)=𝜇Y(G∩H) for all G∈𝒢′ and
H ∈ℋ. But the family of events of the form G∩H is a 𝜋-system and therefore we can conclude
that the measures coincide on 𝜎(𝒢′,ℋ).

c) Use Fubini's theorem on the joint law of (X1,X2,…,Xn). □

Remark 15. Note that in case c) above we do not have

𝜑(X1)≠𝔼[ f (X1,X2,…,Xn)].

There is no simple way to write down explicitly 𝜑(X1), the correct expression

𝜑(X1(𝜔))=�
Ω

f (X1(𝜔),X2(𝜔′),…,Xn(𝜔′))ℙ(d𝜔′)

make use of two different variables 𝜔,𝜔′ where the second is integrated over wrt. ℙ.

5 Regular conditional probabilities

Given a 𝜎-algebra 𝒢⊆ℱ we can consider the random variables

A∈ℱ↦ℙ(A|𝒢)=𝔼[1A|𝒢]∈L1(Ω,𝒢,ℙ)

which are such that (check)

a) ℙ(∅|𝒢)=0, ℙ(Ac|𝒢)=1−ℙ(A|𝒢);
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b) ℙ(∪nAn|𝒢)=∑n ℙ(An|𝒢) for all countable families (An)n ⊆ℱ of pairwise disjoint events.

However is in general not possible to guarantee that for fixed 𝜔 ∈ Ω the set-function A ∈ ℱ ↦
ℙ(A|𝒢)(𝜔) ∈ [0, 1] is a bona-fide probability measure on (Ω, ℱ). The difficulty lies in the fact
that property b) above holds ℙ-a.s., namely outside an exceptional set of probability 0. Given that
there exists uncountably many families (An)n ⊆ ℱ in b), we cannot guarantee that the additivity
holds with probability one, i.e. that we can find a common exceptional set for the property b).

This discussion motivates the introduction of the concept of regular conditional probability. A
regular conditional probability given the 𝜎-algebra 𝒢 ⊆ ℱ is the assignment ℙ𝒢: Ω → 𝒫(Ω, ℱ)
where 𝒫(Ω,ℱ) is the space of probability measures on the measure space (Ω,ℱ), such that for
all A∈ℱ the map 𝜔↦ℙ𝒢(𝜔, A) is 𝒢-measurable and is a version of the conditional probability
ℙ(A|𝒢).

Existence of a regular conditional probability ℙ𝒢 for 𝒢 ensures that the conditional expectation
is indeed the expectation wrt. a standard probability measure: a monotone class argument allows
to prove that for all X ∈L1(Ω,ℱ,ℙ) we have

𝔼[X|𝒢](𝜔)=�
Ω

X(𝜔′)ℙ𝒢(𝜔,d𝜔′), for ℙ-almost all 𝜔∈Ω.

Remark 16. Existence of a regular conditional probability can be guaranteed when (Ω, ℱ) is
a Polish space (complete, metrisable space) endowed with the Borel 𝜎-algebra. This is another
pleasant feature of the Polish setting.

6 Some examples

Example 17. Let (Xi)1⩽i⩽n a vector of i.i.d. random variables and let X =∑i Xi, then

𝔼[X1|X]= X
n , 𝔼[X|X1]=(n−1)𝔼[X1]+X1.

In order to prove these equalities one has to remark first that we have

𝔼[X1|X]=𝔼[X2|X]=⋯=𝔼[Xn|X]=h(X)

for some measurable function h:ℝ→ℝ. Indeed since the variables are i.i.d. we have

𝔼[ f (X1,…,Xn)]=𝔼[ f (X𝜎(1),…,X𝜎(n))]

for any bounded measurable function f :ℝn →ℝ, which implies that for any bounded measurable
function X we have (think why)

𝔼[X1h(X)]=𝔼[X2h(X)]=⋯=𝔼[Xnh(X)]

and therefore one can conclude using the definition of conditional expectation. By linearity we
have

X =𝔼[X|X]=𝔼[X1+⋯+Xn|X]=[X1|X]+𝔼[X2|X]+⋯+𝔼[Xn|X]=nh(X)
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and we conclude

𝔼[X1|X]= X
n .

The other equation follows more easily.

Example 18. Let (Xn,m)n,m⩾0 a double suite of i.i.d. r.v. with values in ℝ+. Let Z0 = 1 and
Zn = Xn,1 + ⋯ + Xn,Zn−1 for n ⩾ 1. Using the conditional expectation one can show that the
generating function fn(𝜃)=𝔼[𝜃Zn] satisfies

f0(𝜃)=1 fn = fn−1( f (𝜃)) for n⩾1.

For any 𝜃∈[0, 1] let f (𝜃)=𝔼[𝜃X1,1]=𝔼[𝜃Z1]= f1(𝜃). Then observe that Zn−1 is independent of
(Xn,k)k since it is measurable wrt the 𝜎-algebra generated by (Xℓ,k)ℓ⩽n−1,k which is independent of
that generated by (Xn,k)k. Therefore

fn(𝜃)=𝔼[𝜃Zn]=𝔼�𝜃Xn,1+⋯+Xn,Zn−1�=𝔼�𝔼�𝜃Xn,1+⋯+Xn,Zn−1|Zn−1��=𝔼[𝜑(Zn−1)]

where

𝜑(z)=𝔼[𝜃Xn,1+⋯+Xn,z]

by independence. We can compute 𝜑(z) again using independece of the vector (Xn,k)k as

𝜑(z)=𝔼[𝜃Xn,1⋯𝜃Xn,z]=𝔼[𝜃Xn,1]⋯𝔼[𝜃Xn,z]= f (𝜃)⋯ f (𝜃)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
z times

= f (𝜃)z

using also the fact that (Xn,k)k have the same law, namely that of X1,1. We conclude therefore that

fn(𝜃)=𝔼[𝜑(Zn−1)]=𝔼[ f (𝜃)Zn−1]= fn−1( f (𝜃)).
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