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Note 3

Martingales

see also A. Bovier's script for SS17, Chapter 2 [pdf].

1 Filtrations and stopping times

As usual we fix a given probability space (Ω,ℱ,ℙ). A (discrete time) stochastic process (Xn)n⩾0
is a countable family of random variables indexed by ℕ. Alternatively we can consider it as a
measurable map X:Ω×ℕ→ℝ. For all 𝜔∈Ω, X(𝜔)∈ℝℕ is a sequence of real numbers.

Definition 1. A filtration is a family (ℱn)n⩾0 of sub-𝜎-algebras of ℱ such that ℱn ⊆ ℱn+1 for
all n ⩾ 0. We will always let ℱ−1 = {∅, Ω} and ℱ∞ = 𝜎(ℱn, n ⩾ 0) (ℱ∞ is the smallest 𝜎-algebra
which contains all the ℱn for n ⩾ 0). Let (Xn)n⩾0 a stochastic process, then its natural filtration
(ℱn

X)n⩾0 is the filtration defined by ℱn
X =𝜎(X0,…,Xn).

Definition 2. Let (Xn)n⩾0 a stochastic process and (ℱn)n⩾0 a filtration. We say that (Xn)n⩾0
is adapted (to the filtration (ℱn)n⩾0) iff Xn ∈̂ ℱn for all n ⩾ 0. We say that (Xn)n⩾0 is previsible
(with respect to the filtration (ℱn)n⩾0) iff Xn ∈̂ℱn−1 for all n⩾0. The natural filtration of X is the
smallest filtration which makes X adapted.

A filtration (ℱn)n⩾0 represents information gathered along the flow of time. An adapted process
(Xn)n⩾0 is a process which we discover progressively: at time n⩾0 we dispose only of the infor-
mation in ℱn and therefore only the values of Xk for k ⩽ n (the past of n) are known and not the
values of Xk for k >n (the future of n).

Example 3. (Random walk) Let (Xn)n⩾1 a sequence of i.i.d. random variables and (ℱn)n⩾0 its
natural filtration (i.e. ℱn =𝜎(X1, …,Xn), ℱ0 ={∅,Ω}). We let Sn = S0 +X1 + ⋯+Xn with S0 ∈̂ ℱ0
(a constant). Then (Sn)n⩾0 is a process adapted to (ℱn)n⩾0.

We have also ℱn =𝜎(S1,…,Sn).

Let us now play heads and tails betting ¿1 each time and let Xn represent the gain on the n-th
game: ℙ(Xn = ±1) = 1/2. The process Sn = S0 + X1 + ⋯ + Xn represents then the total gain after
the firsts n games. We allow Sn < 0 : in this case we say that (Sn)− is the money we borrowed to
continue to play.

Obviously in a fair game the average gain is zero: 𝔼[Sn]=S0+n𝔼[X1]=S0.

Let us now allow to quit the game at a time which depends on the outcomes of the game itself.
Otherwise said, quit the game at a random time T :Ω→ ℕ∗ = ℕ∪ {+∞} (T = +∞ means that we
are not actually quitting and we continue to play forever). Is clear that we should not allow any
r.v. T as a stopping strategy. Let us see some examples:

1. I quit as soon as I lose the first time: T1 =inf {n⩾1:Xn =−1};
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2. I quit as soon as I win at least ¿100: T2 =inf {n⩾1:Sn ⩾S0 +100};

3. I quit just before loosing the first time: T3 =inf {n⩾0:Xn+1 =−1}.

The first two strategies are acceptables, while the third not: usually it would require a knowledge
of the future. The first two strategies are examples of stopping times, according the the following
definition.

Definition 4. A r.v. T : Ω → ℕ∗ = ℕ ∪ {+∞} is a stopping time (for the filtration (ℱn)n) iff
{T ⩽ n} ∈ ℱn for all 0 ⩽ n ⩽ +∞. Equivalently, T is a stopping time iff {T = n} ∈ ℱn for all
0⩽n⩽+∞.

Remark 5.

Example 6. Let (Xn)n⩾1 an adapted process and A a Borel set of ℝ, then

TA =inf {n⩾1:Xn ∈ A},

(with inf (∅)=+∞) is a stopping time: for all 0⩽n⩽+∞ we have {T ⩽n}=∪0<k⩽n{Xk ∈ A}∈ℱn.

Exercise 1. Show that T2 is a stopping time and that T3 is not.

If (Xn)n⩾0 is a stochastic process we denote XT :Ω→ℝ the random variable given by

XT(𝜔)=XT(𝜔)(𝜔), 𝜔∈Ω.

Exercise 2. Show that if T is a stopping time and (Xn)n⩾0 an adapted process, then the process Xn
T(𝜔)=Xn∧T (𝜔)(𝜔)

is also adapted. It is called the process stopped in T .

We will need also the notion of all the information available at a given stopping time T .

Definition 7. Let

ℱT ≔{A∈ℱ: A∩{T ⩽n}∈ℱn for all n∈ℕ∗}.

Then ℱT is a 𝜎-algebra.

Proposition 8. Let S,T two stopping times.

a) If S ⩽T then ℱS ⊆ℱT;

b) ℱS∧T =ℱT ∩ℱS, ℱT ∨S =𝜎(ℱT ,ℱS);

c) If (Xn)n is an (ℱn)n-adapted process, then XT ∈̂ℱT.

d) Z ∈̂ℱT if and only if the process (Zn =Z1{T =n})n∈N∗ is adapted, moreover ZT =Z.

Proof. Exercise. □
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If we use a stopping time T in the heads and tail game above we obtain a final gain ST . The the
following result applies.

Theorem 9. (Wald's identity) Let (Xn)n⩾1 an i.i.d. sequence of r.v. such that 𝔼[∣X1∣] < +∞ and
T a stopping time for the filtration generated by X. If 𝔼[T]<+∞ then

𝔼[ST]=𝔼[T]𝔼[X1],

where Sn =X1+⋯+Xn.

Proof. We note that

ST(𝜔)= �
n⩾1

Xn(𝜔)𝕀n⩽T(𝜔), T(𝜔)= �
n=1

T(𝜔)

1= �
n⩾1

𝕀n⩽T(𝜔),

the sums being finite a.s. since 𝔼[T]<+∞ and therefore ℙ(T =+∞)=0. We have

∣ST ∣ ⩽ �
n⩾1

∣Xn∣𝕀n⩽T .

Fubini's theorem gives

𝔼[�
n⩾1

∣Xn∣𝕀n⩽T ]= �
n⩾1

𝔼[∣Xn∣𝕀n⩽T ].

Since T is a stopping time, we have {T ⩾n}={T <n}c ={T ⩽n−1}c ∈ℱn−1 and by the properties
of conditional expectation

�
n⩾1

𝔼[∣Xn∣𝕀n⩽T ]= �
n⩾1

𝔼[𝔼[∣Xn∣𝕀n⩽T�
∈̂ℱn−1

∣ℱn−1] ]= �
n⩾1

𝔼[𝔼[ ∣Xn∣�
⊥ℱn−1

∣ℱn−1]𝕀n⩽T ]

=�
n⩾1

𝔼[∣Xn∣]𝔼[𝕀n⩽T ]=𝔼[∣X1∣]𝔼[�
n⩾1

𝕀n⩽T ]=𝔼[∣X1∣]𝔼[T ]

which shows that the map (𝜔, n) ↦ ∣Xn(𝜔)∣𝕀1⩽n⩽T(𝜔) is integrable w.r.t. the product measure
ℙ ×ℚ on Ω×ℕ where ℚ is the counting measure of ℕ. Then we can use Fubini-Tonelli on the
function (𝜔,n)↦Xn(𝜔)𝕀1⩽n⩽T(𝜔) and by the same reasoning we obtain

𝔼[ST]=𝔼[�
n⩾1

Xn𝕀n⩽T] =
Fubini

�
n⩾1

𝔼[Xn𝕀n⩽T] =
independence

�
n⩾1

𝔼[Xn]𝔼[𝕀n⩽T]=𝔼[X1]𝔼[T].

□

Wald's identity applied to our game of heads and tails give us that as long as our strategy is given
by a stopping time then the average gain is always 0.

Remark 10. The integrability condition on T in Wald's identity is fundamental. Consider the
stopping time T =T2 =inf {n⩾1:Sn ⩾S0+100}. Then by definition T <+∞⇒ST =S0+100 so if
we could apply the identity we would obtain S0 =𝔼[ST]=S0 +100 ! This shows that we need to
have necessarily 𝔼[T]=+∞. (Since if 𝔼[T]<+∞ then T <+∞ a.s. and ST =S0+100 a.s.).
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Remark 11. In general, if the process (Xn)n⩾0 is adapted and integrable (i.e. Xn ∈L1 for all n⩾0)
and T is a bounded stopping time (i.e. there exists an integer N <+∞ such that ℙ(T ⩽N)=1) then
XT ∈L1 since

∣XT ∣ = ∣�
n=1

N

Xn𝕀T =n∣⩽ �
n=1

N

∣Xn∣ 𝕀T =n ∈L1

being finite sum of r.v. in L1.

Given these observations is interesting to study the class ℳ of adapted and integrable stochastic
processes (Xn)n⩾0 such that

𝔼[XT]=X0 for all bounded stopping time T . (1)

The class ℳ intuitively represent the class of processes of gains in fair games that do not admit
a stopping strategy which is profitable in the average. By Wald's identity, all the partial sums of
i.i.d. random variables with zero mean belongs to this class. It is then interesting to investigate
the general properties of proecsses belonging to ℳ.

A property which plays a fundamental role in the caracterisation and study of such a class is the
following.

Lemma 12. An adapted and integrable process (Xn)n⩾0 satisfies (1) iff for all n⩾0,

𝔼[Xn+1∣ℱn]=Xn (2)

Proof. Let us show that (1) ⇒ (2). For all n⩾0 and A∈ℱn consider the stopping time (check that
it is such indeed)

Tn,A(𝜔)={{{{{{{{{{{{{{{{{{{{ n+1 si 𝜔∈ A
n sinon

then the condition 𝔼[XTn,A]−X0 =0 gives

0=𝔼[Xn+1𝕀A +Xn(1−𝕀A)]−X0 =𝔼[(Xn+1 −Xn)𝕀A]+𝔼[Xn]−X0=𝔼[(Xn+1 −Xn)𝕀A]

(since 𝔼[Xn]=X0 by definition of the class ℳ). This last equality holds for all A∈ℱn which gives
that 𝔼[Xn+1 −Xn∣ℱn]=0 a.s.

Let us show now that (2) ⇒ (1). Let T be a bounded stopping time and N an integer such that
T ⩽N . Remark that condition (2) implies for all k >n

𝔼[Xk∣ℱn]=𝔼[𝔼[Xk∣ℱk−1]∣ℱn]=𝔼[Xk−1∣ℱn]=⋯=𝔼[Xn∣ℱn]=Xn,

since ℱk ⊇ ℱn if k ⩾ n. Therefore 𝔼[XN∣ℱn]= Xn for all n ⩽ N and also 𝔼[XN]=X0 by taking the
expectation of both sides with n=0. Thanks to the integrability hypothesis on Xn and boundedness
of T we have

𝔼[XT]= �
n=1

N

𝔼[Xn𝕀n=T] =
eq.(2)

�
n=1

N

𝔼[𝔼[XN∣ℱn]𝕀n=T�
∈̂ℱn

]= �
n=1

N

𝔼[𝔼[XN𝕀n=T ∣ℱn]]

=�
n=1

N

𝔼[XN𝕀n=T]=𝔼[XN]=X0 .
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which gives property (1). □

Eq. (2) can be interpreted in terms of game strategies by saying that in a fair game where Xn+1−Xn
represents the gain in the (n+1) play, then this gain has zero mean conditionally to the past history
of the game. i.e. 𝔼[Xn+1 −Xn∣ℱn]=0.

Remark 13. The previous proof shows also that if the condition 𝔼[Xn+1−Xn∣ℱn]=0 is not always
verified then we can construct a stopping time T such that 𝔼[XT]≠X0.

Indeed assume that there exists n > 0 for which the event A = {𝔼[Xn+1 − Xn∣ℱn] > 0} (a similar
reasoning works for the case <0) has ℙ(A) > 0. Note that A ∈ ℱn (check) which means that at
time n we already know if we happen to be in the event A or not. The stopping strategy is then the
following: if we are in A then we will stop at time n + 1, otherwise we immediately stop (at time
n). The underlying idea is that if we are in A then we know that 𝔼[Xn+1∣ℱn]>Xn and therefore if
we continue to play we will gain something positive on average. We let then

T =(n+1)𝕀A +n𝕀Ac,

which is a stopping time. With this stopping time we obtain

𝔼[XT]=𝔼[Xn+1𝕀A +Xn𝕀Ac]=𝔼[𝔼[Xn+1∣ℱn]𝕀A +Xn𝕀Ac]>𝔼[Xn𝕀A +Xn𝕀Ac]=𝔼[Xn]=X0.

The inequality is strict since the r.v. Q = 𝔼[Xn+1∣ℱn]𝕀A − Xn𝕀A ⩾ 0 and Q > 0 with positive prob-
abilty ℙ(Q > 0) = ℙ(A) > 0. This implies that 𝔼[Q] > 0 and therefore that 𝔼[𝔼[Xn+1∣ℱn]𝕀A] >
𝔼[Xn𝕀A].

We will call martingales the processes satisfying (2) and in the following we will study their
general properties.

2 Martingales

Definition 14. A real, adapted and integrable process (Xn)n⩾0 (i.e. 𝔼[∣Xn∣]<+∞ for all n⩾0) is

i. a martingale iff 𝔼[Xn+1∣ℱn]=Xn for all n⩾0;

ii. a super-martingale iff 𝔼[Xn+1∣ℱn]⩽Xn for all n⩾0;

iii. a sub-martingale iff 𝔼[Xn+1∣ℱn]⩾Xn for all n⩾0.

Interpreting (Xn)n⩾0 as the gain in a game and the filtration (ℱn)n⩾0 as the information available at
any given time, then a martingale correspons to a fair game, a super-martingale to a unfavorable
game and a sub-martingale to a favorable game.

Remark 15. If X is a martingale, then by recurrence we have that 𝔼[Xm∣ℱn]=Xn for all m⩾n⩾0.
A similar property is true for super/sub-martingales. This alternative caracterisation holds also
in continuous time. If we denote ΔXn = Xn − Xn−1 then the (sub-/super-)martingale property is
equivalent to

𝔼[ΔXn+1∣ℱn]=0 (or ⩾, or ⩽) for all n⩾0.
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Example 16. Let Z be a real and integrable random variable. Then (Xn =𝔼[Z ∣ℱn])n is a martin-
gale. If (An)n⩾0 is a real, adapted and increasing (resp. decreasing) process, then it is also a sub-
martingale (resp. super-martingale).

Example 17. Let (Xn)n⩾1 a sequence of r.v. such that 𝔼[Xn] = 0 for all n ⩾ 1. Let Y0 = 0 and
Yn = X1 + ⋯ + Xn for n ⩾ 1. Then (Yn)n⩾0 is a martingale wrt. (ℱn

X)n⩾0 and therefore also wrt.
(ℱn

Y)n⩾0.

Proposition 18. (Doob's decomposition) Let (Xn)n⩾0 an adapted and integrable sequence, then
there exists a unique martingale (Mn)n⩾0 and a unique integrable and previsible process (In)n⩾0
such that I0=0 and

Xn =X0 +Mn + In, n⩾0.

Moreover

a) In =0 for all n⩾0 iff (Xn)n⩾0 is a martingale;

b) (In)n⩾0 is increasing iff (Xn)n⩾0 is a sub-martingale;

c) (In)n⩾0 is decreasing iff (Xn)n⩾0 is a super--martingale.

Proof. First, lets show uniqueness. If M̃, Ĩ give another possible decomposition of X, then we
must have M̃n + Ĩn = Mn + In = Xn − X0 and therefore, letting Nn = M̃n − Mn = In − Ĩn we have that
(Nn)n is both a martingale and an integrable previsible process, which for all n⩾0 implies

Nn =𝔼[Nn+1∣ℱn]=Nn+1,

since Nn+1 ∈̂ ℱn. Therefore (Nn)n is constant in n and Nn = N0 = 0 since I0 = Ĩ0 = 0. We conclude
that In = Ĩn and Mn = M̃n. For the existence part we note that ΔMn = ΔXn − ΔIn and by taking the
conditional expectation we get

0=𝔼[ΔMn+1∣ℱn]=𝔼[ΔXn+1∣ℱn]−𝔼[ΔIn+1∣ℱn]=𝔼[ΔXn+1∣ℱn]−ΔIn+1

since by prevesibility ΔIn+1 ∈̂ℱn. We can set

In =�
i=0

n−1

𝔼[ΔXi+1∣ℱi], I0=0

which indeed gives us an integrable and previsible process. Is also clear that if we let Mn =
Xn −X0 − In then (Mn)n⩾0 is a martingale.

The definition of (In)n gives directly that if (Xn)n⩾0 is a martingale then In = 0 for all n ⩾ 0,
and the reverse implication is also clear. If (Xn)n⩾0 is a super/sub-martingale then for all n:
𝔼[ΔXn+1∣ℱn]⩾Xn (or ⩽) and therefore the process (In)n is decreasing/increasing. □

Proposition 19. Let (Xn)n⩾0 be a martingale (resp. sub-martingale) and Φ:ℝ→ℝ a convex func-
tion (resp. convext and increasing) such that (Φ(Xn))n is an integrable process. Then (Φ(Xn))n
is a sub-martingale.
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Proof. By conditional Jensen's inequality

𝔼[Φ(Xn+1)∣ℱn]⩾Φ(𝔼[Xn+1∣ℱn])=Φ(Xn)

where the last equality follows from the martingale property. If X is a sub-martingale

𝔼[Φ(Xn+1)∣ℱn]⩾Φ(𝔼[Xn+1∣ℱn])⩾Φ(Xn),

since Φ is increasing. □

Proposition 20. Let (Xn)n⩾0 be a square-integrable martingale (i.e. 𝔼[Xn
2] < +∞ for all n ⩾ 0).

then the sub-martingale (Xn
2)n⩾0 has the decomposition

Xn
2 =X0

2+Nn +[X]n

where

Nn =2�
i=1

n

Xi−1ΔXi, [X]n =�
i=1

n

(ΔXi)2.

The process (Nn)n⩾0 is martingale and ([X]n)n⩾0 is an increasing process called the quadratic
variation of X.

Proof. (exercise) □

Remark 21. Note that Doob's decomposition of (Xn
2)n⩾0 is Xn

2 = X0
2 +Mn + //X//n where ( //X//n)n⩾0

is an increasing and previsible process. Then a computation gives

Δ //X//n =𝔼[(ΔXn)2∣ℱn−1]=𝔼[Δ[X]n ∣ℱn−1].

3 Martingale transforms and optional stopping

Definition 22. Let (Xn)n⩾0 an adapted process and (Cn)n⩾1 a previsible one. We define the new
adapted process ((C •X)n)n⩾0 by (C •X)0 =0 and Δ(C •X)n =CnΔXn for all n⩾1. Then

(C •X)n =�
i=1

n

Ci(Xi −Xi−1).

Lemma 23. Let (Cn)n⩾1 a bounded previsible process (i.e. ∣Cn∣⩽K <∞ for all n⩾1 with K ∈ℝ).

i. If (Xn)n⩾0 is a martingale then ((C •X)n)n⩾0 is also a martingale.

ii. If (Xn)n⩾0 is a sub/super-martingale and Cn ⩾ 0 for all n ⩾ 1 then ((C • X)n)n⩾0 is also a
sub/super-martingale.

These properties are also valid without the boundedness condition provided Cn, Xn ∈ L2 for all
n⩾1.
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Proof. The integrability and the adaptedness of ((C •X)n)n⩾0 are left as exercise. We have for all
n⩾1,

𝔼[Δ(C •X)n∣ℱn−1]=𝔼[CnΔXn∣ℱn−1]=Cn𝔼[ΔXn∣ℱn−1]

since (Cn)n⩾1 is previsible, then we can conclude. □

Let T be a stopping time and let

Cn =1n⩽T

then the process (Cn)n⩾1 is previsible and X0 +(C ⋅X)n =Xn
T =XT ∧n and we can conclude that:

Theorem 24. If T is a stopping time and (Xn)n⩾0 is a (super-)martingale, then (Xn
T)n⩾0 is a

(super-)martingale and

𝔼[Xn∧T]⩽𝔼[X0]

in the super-martingale case (with equality for a martingale).

Remark 25. No boundedness of T is required here.

Remark 26. Let (Xn)n⩾0 the simple random walk on ℤ with X0=0. Then (Xn)n⩾0 is a martingale
and for all stopping time T we have 𝔼[Xn∧T]=𝔼[X0]=0. However in general

𝔼[XT]≠0.

Indeed, if T =inf{n>0:Xn =1} one can show (later in the course) that ℙ(T <+∞)=1 and XT =1,
which imply 𝔼[XT]=1. Therefore we conclude that the sequence (XT ∧n)n do not converge to XT
in L1, but only almost surely.

Now an important generalisation of Wald's identity for (super-)martingales.

Theorem 27. (Optional stopping theorem) Let T be a stopping time and (Xn)n⩾0 a (super-)mar-
tingale. Then XT is integrable and 𝔼[XT]⩽𝔼[X0] in the following situations:

i. T is bounded;

ii. (Xn)n is uniformly bounded and T <+∞ a.s.;

iii. 𝔼[T]<+∞ and there exists K >0 such that for all n⩾1,

∣Xn −Xn−1∣⩽K .

iv. Xn ⩾0 for all n⩾0 and T <+∞ a.s.

Proof. We know that 𝔼[Xn∧T −X0]⩽0 for all n⩾1. (i) If T ⩽N is enough to take n=N . (ii) We
can use dominated convergence to show that

0⩾lim
n

𝔼[Xn∧T −X0]=𝔼[lim
n

(Xn∧T −X0)]=𝔼[XT −X0].
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(iii) We have that

∣Xn∧T −X0∣⩽ �
k=1

T ∧n

∣ΔXk∣⩽KT ,

since ∣ΔXk∣ ⩽ K for all k ⩾ 0. Since 𝔼[T] < +∞ we deduce by dominated convergence that
𝔼[XT] ⩽ 𝔼[X0]. (iv) The sequence (Xn∧T)n⩾0 is positive and converges a.s. to XT . By Fatou's
lemma we have that

𝔼[X0]⩾ liminf
n

𝔼[Xn∧T]⩾𝔼[liminf
n

Xn∧T]=𝔼[XT]. □

Lemma 28. Let (Xn)n⩾1 be a martingale (resp. sub-, super-) and T ⩾ S two bounded stopping
times, then

𝔼[XT ∣ℱS]=XS. (resp. ⩾, ⩽). (3)

Proof. Assume X is a martingale. By the boundedness of the stopping times there exists N ∈ ℕ
such that S ⩽T ⩽N . Wew begin by showing that 𝔼[XN∣ℱT]=XT . By the definition of conditional
expectation we need to check that 𝔼[XN 1B] = 𝔼[XT 1B] for all B ∈ ℱT . We have that B ∩ {T =
n}∈ℱn and that

𝔼[XN 1B]= �
n=1

N

𝔼[XN 1B∩{T =n}]= �
n=1

N

𝔼[𝔼[XN∣ℱn]1B∩{T =n}]

=�
n=1

N

𝔼[Xn1B∩{T =n}]= �
n=1

N

𝔼[XT 1B∩{T =n}]=𝔼[XT 1B].

Therefore 𝔼[XT ∣ℱS]=𝔼[𝔼[XN∣ℱT]∣ℱS]=𝔼[XN∣ℱS]=XS car ℱS ⊆ℱT .

If (Xn)n⩾1 a sub-martingale, then by Doob's decomposition there exists a martingale (Mn)n⩾1 and
a previsible non-decreasing process (An)n⩾1 (i.e. An ∈ ℱn−1 and An+1 ⩾ An) such that Xn =
Mn + An. We have

𝔼[XT ∣ℱS]=𝔼[MT ∣ℱS]+𝔼[AT ∣ℱS]=MS +𝔼[AT ∣ℱS]⩾MS +𝔼[AS∣ℱS]=MS + AS =XS

since AT ⩾ AS due to the fact that (An)n⩾1 is non-decreasing and that T ⩾S. For supermartingales
one reason analogously. □

Remark 29. If F is an integrable random variable then (Fn = 𝔼[F∣ℱn])n is a martingale and
the previous lemma implies 𝔼[F∣ℱS] = FS for all bounded stopping times S. Therefore we can
compute the conditional expectation wrt. a 𝜎-algebra ℱS by taking the value at time n = S of the
conditional expectation computed wrt. the filtration (ℱn)n.
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