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Note 4

Asymptotic behaviour of martingales

see also A. Bovier's script for SS17, Chapter 2 [pdf].

1 Convergence of martingales

Recall that a super-martingale (Xn)n⩾1 is the gain in an unfavorable game where in average we
expect to lose at each hand: 𝔼[ΔXn|ℱn−1]⩽0.

Let a < b two reals and consider the following playing strategy: we wait the first time S1 where
XS1 < a. Then we start to play until the first time T1 > S1 where XT1 > b. At this point we won
XT1 −XS1 >b−a and subsequently we avoid to play until the time S2>T1 where XS2 become again
<a. From this moment on we restart to play our strategy. If we fix a time horizon n < ∞ and we
denote by Un(a,b) how many times (Xk)1⩽k⩽n goes from (−∞,a) to (b, +∞) and by Wn our gain
using the above strategy, then we surely will have W0=0 and

Wn ⩾(b−a)Un(a,b)− (Xn −a)−. (1)

The term (Xn − a)− corresponds to our eventual losses in the last upcrossing before attaining
another time the b threshold.
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Figure 1. Upcrossings. In this example two upcrossings have been completed, while the third is still going
on at time n and in an unfavorable situation, since Xn ⩽XS3 ⩽a. The gain is therefore Wn⩾2(b−a)+(Xn −a).
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Is also easy to see that (Wn)n⩾1 is a sur-martingale since we can write

Wn =W0 +�
k=1

n

Hn ΔXn

with Hn = ∑i=1
∞ 𝕀Si⩽n⩽Ti−1 = 𝕀{n∈∪i⩾1[Si,Ti−1]}. Equivalently we could define (Hn)n⩾1 by the recur-

rence relation:

Hn+1=𝕀Hn=0,Xn<a +𝕀Hn=1,Xn>b .

Then Un(a, b) = ∑i=2
n 𝕀Hn=0,Hn−1=1. We leave to the reader the exercise to show that (Hn)n⩾1 is a

previsible process.

We can show that eq. (1) is satisfied for all n. Define Tn = sup (0 ⩽ k ⩽ n: Hk = 0): this is the
last time when we restart our game strategy and it is not a stopping time. At the time Tn we
have XTn < a, Un(a, b) = UTn(a, b) and Wn − WTn = Xn − XTn since Hk = 1 for all Tn ⩽ k ⩽ n. Now
WTn −W0⩾(b−a)UTn(a,b) since every upcrossing make us gain at least (b−a). Therefore

Wn −W0 =WTn −W0+Xn −XTn ⩾(b−a)UTn(a,b)+Xn −a

=(b−a)Un(a,b)+(Xn −a)+ − (Xn −a)−

⩾(b−a)Un(a,b)− (Xn −a)− .

From the fact that (Hn)n⩾1 is previsible and from 0 ⩽ Hn we have that (Wn)n⩾1 is a super-martin-
gale:

0⩾𝔼[Wn −W0]⩾𝔼[Un(a,b)](b−a)−𝔼[(Xn −a)−]

(recall: in a unfavorable game, no strategy can allow to win in average). We deduce the following
lemma (since 𝔼[(Xn −a)−]⩽𝔼[(Xn −a)−]+𝔼[(Xn −a)+]=𝔼[|Xn −a|])

Lemma 1. (Doob's upcrossing inequality) For all a<b and n⩾1 we have that

𝔼[Un(a,b)]⩽ 𝔼[|Xn −a|]
b−a .

This gives an estimate of the number of upcrossing of the interval [a,b] by the process (Xk)1⩽k⩽n
as a function of an average over its terminal value. An important consequence for super-martin-
gales uniformly bounded in L1 is the following corollary:

Corollary 2. Let (Xn)n⩾1 be a super-martingale uniformly bounded in L1(i.e. supn𝔼[|Xn|]<+∞).
Then if we note U(a,b)=supn⩾1Un(a,b) the number of upcrossings of [a,b] by (Xn)n⩾1, we have

ℙ(U(a,b)=+∞)=0,

for all a<b.

Proof. By Doob's upcrossing inequality we have

𝔼[Un(a,b)]⩽ a+𝔼[|Xn|]
b−a ⩽ a+supn𝔼[|Xn|]

b−a <+∞
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for all a<b and n⩾1. By monotone convergence,

𝔼[U(a,b)]= lim
n→∞

𝔼[Un(a,b)]⩽ a+supn𝔼[|Xn|]
b−a <+∞

and therefore ℙ(U(a,b)=+∞)=0 for all a<b. □

This shows that a super-martingale uniformly bounded in L1 cannot oscillate too much and that
this is linked to the impossibility to find winning strategies on such a super-martingale. Recipro-
cally a similar theorem can show that a sub-martingale uniformly bounded in L1 does not allow an
infinity of downcrossings so that playing over it we cannot loose an unbounded amount of money.

Theorem 3. (Doob's (sub-)martingale convergence theorem) A sub-martingale (Xn)n⩾1 bounded
in L1 converges a.s. towards a limit X∘∘ ∈L1.

Proof. The process (Yn = −Xn)n is a super-martingale bounded in L1. Let L+ = limsupnYn and
L− = liminfnYn. Assume that ℙ(L− < L+) > 0 (i.e. (Yn)n does not converge a.s.). By continuity of
the probability ℙ there exist a<b such that ℙ(L− <a<b<L+)>0. Now

{L− <a<b<L+}⊆{U(a,b)=+∞}

and we obtain that ℙ(U(a, b) = +∞) > 0 in contradiction with the consequences of the uniform
L1 boundedness of (Yn)n⩾1. We must therefore have ℙ(L− < L+) = 0 which gives the almost
sure convergence of (Yn)n towards Y∞ = L− = L+ and therefore of (Xn)n⩾1 towards X∞ = −Y∞.
By Fatou's lemma 𝔼[|X∞|] = 𝔼[liminfn |Xn|] ⩽ liminfn𝔼[|Xn|] < +∞ which gives that X∞ ∈ L1.

□

Of course the above theorem is also true for supermartingales and for martingales. Instead of
requiring boundedness in L1 we could only ask for one-side a.s. boundedness, provided the
process has the right behavior, in particular positive processes which are supermartingales con-
verge as claimed in the following theorem.

Theorem 4. (Doob's super-martingale convergence theorem) A positive super-martingale (Xn)n⩾1
converges a.s. towards a (positive) limit X∞ ∈L1.

Proof. We have that 𝔼[|Xn|]=𝔼[Xn]⩽𝔼[X0] by positivity and by the super-martingale property.
Therefore (−Xn)n⩾1 is a sub-martingale uniformly bounded in L1. By the previous theorem, it
converges towards a limit −X∞ ∈L1. □

Remark 5. Note that even if a sub-martingale uniformly bounded in L1 converges a.s. to a limit
which is still in L1, the convergence do not always takes place in L1. Here's a counterexample.
Let (Zn)n⩾0 an i.i.d. sequence with ℙ(Zn =+1)=1 −ℙ(Zn = −1)= p and let u >1, X0 = x> 0 and
Xn+1=uZn+1 Xn. Assume that p=1/(1+u) in such a way that 𝔼[uZn+1]=1. Then it is easy to verify
that (Xn)n⩾0 is a positive martingale and 𝔼[Xn]=𝔼[X0]=x. By the strong law of large numbers

lim
n→∞

1
n�

k=1

n

Zk =𝔼[Z1]=2 p−1= 1−u
1+u <0,
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and therefore

�Xn
x �

1/n
→u2p−1 <1 a.s.

From this we conclude that Xn →0 a.s., but we already seen that 𝔼[Xn]=x>0. We conclude that
Xn ↛0 in L1.

2 Martingales bounded in L2

Let us start to investigate some additional condition under which we have also convergence in L1

of the martingale, instead that just almost sure convergence.

Theorem 6. Let (Mn)n⩾0 a martingale bounded in L2, i.e. such that 𝛼 = supn⩾0𝔼[Mn
2] < +∞.

Then the sequence (Mn)n converges in L2 and a.s.. to a r.v. M∞ ∈L2 and moreover

Mn =𝔼[M∞|ℱn]

for all n⩾0.

Proof. We write the martingale as sum of its increments: Mn = M0 + ∑k=1
n ΔMk and we remark

that the increments are orthogonal: if n>k,

𝔼[ΔMn ΔMk]=𝔼[𝔼[ΔMnΔMk|ℱn−1]]=𝔼[𝔼[ΔMn|ℱn−1]ΔMk]=0

since ΔMk ∈̂ℱk ⊆ℱn−1. Therefore

𝔼[Mn
2]=𝔼[M0

2]+�
k=1

n

𝔼[(ΔMk)2]

which implies that the sequence (𝔼[Mn
2])n is increasing and that

𝔼[M0
2]+�

k=1

∞

𝔼[(ΔMk)2]=sup
n

𝔼[Mn
2]=𝛼.

Moreover, by a similar computation, for all k′⩾k ⩾n,

𝔼[|Mk′ −Mk|2]= �
ℓ=k+1

k′

𝔼[(ΔMℓ)2]⩽ �
ℓ=n+1

∞

𝔼[(ΔMℓ)2]→0

when n → +∞. From which we deduce that the sequence (Mn)n⩾0 is Cauchy in L2. Let M∞ =
limnMn in L2. Given that the martingale is also bounded in L1⊆L2 then Mn →X a.s. We want also
to show that M∞ = X a.s. By the L2 convergence of Mn towards M∞ we can deduce that there
exists a subsequence (nk)k⩾1 such that Mnk converges a.s. towards M∞. But then M∞=limkMnk =
limn Mn =X a.s..
Now for all m ⩾ n we have Mn = 𝔼[Mm|ℱn] and by the contractivity in L2 of the conditional
expectation:

‖𝔼[M∞|ℱn]−Mn‖2 =‖𝔼[M∞|ℱn]−𝔼[Mm|ℱn]‖2⩽‖Mm −M∞‖2

which tends to 0 as m→∞. Therefore ‖𝔼[M∞|ℱn]−Mn‖2 =0 and Mn =𝔼[M∞|ℱn]. □

Exercise 1. Recall the argument which leads to a.s. convergence for a subsequence of a sequence of random
variables converging in L2.

Exercise 2. Try to prove that M∞ can be chosen to be ℱ∞ =𝜎(ℱn:n ⩾0) measurable.
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