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Note 5

Closed martingales.

see also A. Bovier's script for SS17, Chapter 2 [pdf].

Definition 1. A martingale (Xn)n⩾0 of the form Xn =𝔼[Z |ℱn] for some Z ∈L1 is called closed. If
Z ∈Lp for some p⩾1 then the martingale is closed in Lp.

A closed martingale is bounded in L1 but we have already seen that L1-boundedness is not enough
to guarantee closedness. Moreover we have seen that martingales bounded in L2 are closed in L2

(and therefore in L1). We will now investigate general tools to study martingales in Lp with p⩾1
where we do not have at disposal the Hilbert geometry of L2.

1 Doob's inequalities

Theorem 2. (Doob's maximal inequality) Let (Xn)n⩾0 be a positive submartingale and let Xn
∗ =

supk⩽nXk, then for all 𝜆>0 and all n⩾0,

𝜆ℙ(Xn
∗ ⩾𝜆)⩽𝔼[Xn1Xn

∗⩾𝜆]⩽𝔼[Xn].

Proof. Let T =inf {n⩾0:Xn ⩾𝜆}. Then {T ⩽n}={Xn
∗ ⩾𝜆} and T ∧n is a bounded stopping time.

By positivity of Xn,

𝔼[Xn]=𝔼[Xn1T ⩽n +Xn1T ⩾n]⩾𝔼[Xn1T ⩽n]

which gives the second inequality to be proven. Then we observe that {T ⩽ n} ∈ ℱT ∧n (prove it)
and therefore that

𝔼[Xn1T ⩽n]=𝔼[𝔼[Xn|ℱT ∧n]1T ⩽n].

Moreover by the optional stopping theorem applied to the two bounded stopping times n ⩾ T ∧ n
we get 𝔼[Xn|ℱT ∧n]⩾XT ∧n and

𝔼[Xn1T ⩽n]⩾𝔼[XT ∧n1T ⩽n]=𝔼[XT1T ⩽n]⩾𝜆ℙ(T ⩽n)=𝜆ℙ(Xn
∗ ⩾𝜆),

where we used that on the event {T ⩽n} we have XT ∧n =XT ⩾𝜆. □

An interesting use of the Doob's decomposition allow to extend the maximal inequality to all
super- or sub-martingales without positivity assumptions.

Corollary 3. Let (Xn)n⩾0 be a super- or sub-martingale and let |X|n∗=supk⩽n |Xk|, then for all 𝜆>0
and all n⩾0,

𝜆ℙ(|X|n∗ ⩾3𝜆)⩽3𝔼[|X0|]+4𝔼[|Xn|].
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Proof. Left as exercise. Use Doob's decomposition to reduce the proof to Theorem 2. □

Theorem 4. (Doob's Lp inequalities) Let (Xn)n⩾0 a martingale or a positive submartingale. Then
for all p>1, letting Xn

∗ =supk⩽n |Xk| we have

‖Xn
∗‖p ⩽ p

p−1‖Xn‖p, n⩾0.

Proof. If X is a martingale, then (|Xn|)n⩾0 is a positive submartingale, so it suffice to consider the
latter. For any L >0 we have

𝔼[(Xn
∗ ∧L)p] = 𝔼��

0

L∧Xn
∗

pxp−1dx�

= 𝔼��
0

L
pxp−11Xn

∗⩾x dx�

= �
0

L
pxp−1ℙ(Xn

∗ ⩾x)dx (via Fubini)

⩽ �
0

L
pxp−2𝔼[Xn1Xn

∗⩾x]dx (by Theorem 2)

= p
p−1𝔼[Xn(Xn

∗ ∧L)p−2] (via Fubini again)

⩽ p
p−1‖Xn‖p‖Xn

∗ ∧L‖p
p−1 (by Hölder's inequality)

where in the last line we used the Hölder inequality with exponents p,q= p/(p−1). From this we
deduce that

‖Xn
∗ ∧L‖p ⩽ p

p−1‖Xn‖p

and letting L →∞ via monotone convergence we obtain the statement. □

2 Martingales in Lp

Theorem 5. Let (Xn)n⩾0 be a martingale and p>1. Then the following statements are equivalent

a) X is bounded in Lp, i.e. supn ‖Xn‖p <∞;

b) X converges a.s. and in Lp;

c) There exists a random variable X∞ ∈Lp such that Xn =𝔼[X|ℱn] for all n⩾0.

Proof. a)⇒b). Since X is bounded in Lp it is also bounded in L1 and by the martingale conver-
gence theorem there exists a r.v. X∞ ∈L1 such that Xn →X∞ almost surely. By Doob's inequality
Xn

∗ = supk⩽n |Xk| satisfies ‖Xn
∗‖p ≲ ‖Xn‖p and by monotone convergence ‖X∞

∗ ‖p ≲ supn⩾0 ‖Xn‖p, so
|Xn −X∞| ⩽2X∞

∗ ∈Lp and by dominated convergence ‖Xn −X∞‖p →0.

b)⇒c). Let X∞=limnXn (with X∞=0 when the sequence does not converge). Let Zn =𝔼[X∞|ℱn]
and consider

‖Zn −Xn‖p =‖𝔼[X∞|ℱn]−Xn‖p =liminf
m→∞

‖𝔼[X∞ −Xm|ℱn]‖p ⩽liminf
m→∞

‖X∞ −Xm‖p =0
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so we obtain Xn =𝔼[X∞|ℱn].

c)⇒a). Immediate from the conditional Jensen's inequality. □

Corollary 6. Let (Xn)n⩾0 a martingale closed in Lp with Xn =𝔼[Z |ℱn] for some Z ∈Lp. Then

Xn →X∞ =𝔼[Z |ℱ∞]

almost surely and in Lp.

Proof. By Theorem 5 we have Xn → X∞ in Lp and almost surely with Xn = 𝔼[X∞|ℱn]. Let
A∈ℱn ⊆ℱ∞ for some n. Then by definition of conditional expectation

𝔼[X∞1A]=𝔼[Xn1A]=𝔼[Z1A].

Therefore this equality holds also for all A ∈ ∪n⩾0ℱn which is a 𝜋-system which generates ℱ∞,
moreover the family of sets A ∈ ℱ for which the equality is true is easily seen to be a 𝜆-system,
therefore the equality is true for 𝜎(∪n⩾0ℱn)=ℱ∞ and we deduce that 𝔼[Z |ℱ∞]=X∞. □

3 Uniformly integrable martingales

Definition 7. A UI martingale (Xn)n⩾0 is a martingale which is uniformly integrable.

Theorem 8. Let (Xn)n⩾0 be a martingale, then the following statements are equivalent:

a) X is uniformly integrable;

b) Xn →X∞ almost surely and in L1;

c) there exists Z ∈L1 such that Xn =𝔼[Z |ℱn] for all n⩾0, (i.e. X is closed in L1).

Proof. a)⇒b). From UI we deduce that (Xn)n⩾1 is bounded in L1 and by the martingale conver-
gence theorem that, almost surely Xn →X∞ ∈L1. However from UI and almost sure convergence
we deduce that Xn →X∞ also in L1.

b)⇒c). Write Xn =𝔼[Xm|ℱn] for all m⩾n. Since Xm →X∞ in L1 we have

‖Xn −𝔼[X∞|ℱn]‖1 = lim
m→∞

‖𝔼[Xm|ℱn]−𝔼[X∞|ℱn]‖1

⩽liminf
m→∞

‖𝔼[Xm −X∞|ℱn]‖1⩽liminf
m→∞

‖Xm −X∞‖1 =0

and as a consequence Xn =𝔼[X∞|ℱn] with X∞ ∈L1.

c)⇒a). We already have shown that the family (𝔼[Z |𝒢])𝒢 is uniformly integrable if Z ∈ L1,
therefore also the family (Xn =𝔼[Z |ℱn])n is UI and is indeed a martingale. □

Remark 9. If (Xn)n is a UI supermartingale (resp. submartingale) then Xn→X∞ almost surely and
in L1 and 𝔼[X∞|ℱn]⩽Xn (resp. ⩾) for all n⩾0.
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If X is an UI martingale, then is natural to define

XT = �
n⩾0

Xn1T =n +X∞1T =∞

for all stopping times T (not necessarily finite), where X∞ = limnXn and Xn = 𝔼[X∞|ℱn]. The the
following extension of the optional stopping theorem is true.

Theorem 10. (Optional stopping for UI martingales) Let X be a UI martingale and S ⩽ T two
stopping times. Then

𝔼[XT |ℱS]=XS.

Proof. Note that |XT |=∑n⩾0 |Xn|1T =n + |X∞|1T =∞ and

𝔼[|XT |]⩽ �
n⩾0

𝔼[|𝔼[X∞|ℱn]|1T =n]+𝔼[|X∞|1T =∞]

⩽�
n⩾0

𝔼[|X∞|1T =n]+𝔼[|X∞|1T =∞]⩽𝔼[|X∞|].

Moreover for A∈ℱT we have

𝔼[X∞1A]= �
n⩾0

𝔼[X∞1A∩{T =n}]+𝔼[X∞1A∩{T =∞}]

=�
n⩾0

𝔼[Xn1A∩{T =n}]+𝔼[X∞1A∩{T =∞}]=𝔼[XT1A]

therefore 𝔼[X∞|ℱT]=XT and by the tower property we can conclude. □
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