

Note 5

Closed martingales.

see also A. Bovier's script for SS17, Chapter 2 [pdf].

Definition 1. A martingale $(X_n)_{n\geqslant 0}$ of the form $X_n = \mathbb{E}[Z|\mathcal{F}_n]$ for some $Z \in L^1$ is called closed. If $Z \in L^p$ for some $p\geqslant 1$ then the martingale is closed in L^p .

A closed martingale is bounded in L^1 but we have already seen that L^1 -boundedness is not enough to guarantee closedness. Moreover we have seen that martingales bounded in L^2 are closed in L^2 (and therefore in L^1). We will now investigate general tools to study martingales in L^p with $p \ge 1$ where we do not have at disposal the Hilbert geometry of L^2 .

1 Doob's inequalities

Theorem 2. (Doob's maximal inequality) Let $(X_n)_{n\geq 0}$ be a positive submartingale and let $X_n^* = \sup_{k\leq n} X_k$, then for all $k \geq 0$ and all $k \geq 0$,

$$\lambda \mathbb{P}(X_n^* \geqslant \lambda) \leqslant \mathbb{E}[X_n \mathbb{1}_{X_n^* \geqslant \lambda}] \leqslant \mathbb{E}[X_n].$$

Proof. Let $T = \inf\{n \ge 0: X_n \ge \lambda\}$. Then $\{T \le n\} = \{X_n^* \ge \lambda\}$ and $T \land n$ is a bounded stopping time. By positivity of X_n ,

$$\mathbb{E}[X_n] = \mathbb{E}[X_n \mathbb{1}_{T \le n} + X_n \mathbb{1}_{T \ge n}] \geqslant \mathbb{E}[X_n \mathbb{1}_{T \le n}]$$

which gives the second inequality to be proven. Then we observe that $\{T \leq n\} \in \mathscr{F}_{T \wedge n}$ (prove it) and therefore that

$$\mathbb{E}[X_n \mathbb{1}_{T \leq n}] = \mathbb{E}[\mathbb{E}[X_n | \mathscr{F}_{T \wedge n}] \mathbb{1}_{T \leq n}].$$

Moreover by the optional stopping theorem applied to the two bounded stopping times $n \ge T \land n$ we get $\mathbb{E}[X_n | \mathscr{F}_{T \land n}] \ge X_{T \land n}$ and

$$\mathbb{E}[X_n\mathbbm{1}_{T\leqslant n}]\geqslant \mathbb{E}[X_{T\wedge n}\mathbbm{1}_{T\leqslant n}]=\mathbb{E}[X_T\mathbbm{1}_{T\leqslant n}]\geqslant \lambda\,\mathbb{P}(T\leqslant n)=\lambda\,\mathbb{P}(X_n^*\geqslant \lambda),$$

where we used that on the event $\{T \le n\}$ we have $X_{T \land n} = X_T \ge \lambda$.

An interesting use of the Doob's decomposition allow to extend the maximal inequality to all super- or sub-martingales without positivity assumptions.

Corollary 3. Let $(X_n)_{n\geqslant 0}$ be a super- or sub-martingale and let $|X|_n^* = \sup_{k\leqslant n} |X_k|$, then for all $\lambda > 0$ and all $n\geqslant 0$,

$$\lambda \mathbb{P}(|X|_n^* \ge 3\lambda) \le 3\mathbb{E}[|X_0|] + 4\mathbb{E}[|X_n|].$$

Proof. Left as exercise. Use Doob's decomposition to reduce the proof to Theorem 2.

Theorem 4. (Doob's L^p inequalities) Let $(X_n)_{n\geqslant 0}$ a martingale or a positive submartingale. Then for all p>1, letting $X_n^*=\sup_{k\leqslant n}|X_k|$ we have

$$||X_n^*||_p \le \frac{p}{p-1} ||X_n||_p, \quad n \ge 0.$$

Proof. If *X* is a martingale, then $(|X_n|)_{n\geqslant 0}$ is a positive submartingale, so it suffice to consider the latter. For any L>0 we have

$$\mathbb{E}[(X_n^* \wedge L)^p] = \mathbb{E}\left[\int_0^{L \wedge X_n^*} p x^{p-1} dx\right]$$

$$= \mathbb{E}\left[\int_0^L p x^{p-1} \mathbb{1}_{X_n^* \geqslant x} dx\right]$$

$$= \int_0^L p x^{p-1} \mathbb{P}(X_n^* \geqslant x) dx \quad \text{(via Fubini)}$$

$$\leqslant \int_0^L p x^{p-2} \mathbb{E}[X_n \mathbb{1}_{X_n^* \geqslant x}] dx \quad \text{(by Theorem 2)}$$

$$= \frac{p}{p-1} \mathbb{E}[X_n (X_n^* \wedge L)^{p-2}] \quad \text{(via Fubini again)}$$

$$\leqslant \frac{p}{p-1} \|X_n\|_p \|X_n^* \wedge L\|_p^{p-1} \quad \text{(by H\"older's inequality)}$$

where in the last line we used the Hölder inequality with exponents p, q = p/(p-1). From this we deduce that

$$||X_n^* \wedge L||_p \leqslant \frac{p}{p-1} ||X_n||_p$$

and letting $L \to \infty$ via monotone convergence we obtain the statement.

2 Martingales in L^p

Theorem 5. Let $(X_n)_{n\geq 0}$ be a martingale and p>1. Then the following statements are equivalent

- a) X is bounded in L^p , i.e. $\sup_n ||X_n||_p < \infty$;
- b) X converges a.s. and in L^p ;
- c) There exists a random variable $X_{\infty} \in L^p$ such that $X_n = \mathbb{E}[X|\mathcal{F}_n]$ for all $n \ge 0$.

Proof. a) \Rightarrow b). Since X is bounded in L^p it is also bounded in L^1 and by the martingale convergence theorem there exists a r.v. $X_{\infty} \in L^1$ such that $X_n \to X_{\infty}$ almost surely. By Doob's inequality $X_n^* = \sup_{k \le n} |X_k|$ satisfies $||X_n^*||_p \le ||X_n|||_p$ and by monotone convergence $||X_\infty^*||_p \le \sup_{n \ge 0} ||X_n|||_p$, so $||X_n - X_\infty|| \le 2X_\infty^* \in L^p$ and by dominated convergence $||X_n - X_\infty||_p \to 0$.

b) \Rightarrow c). Let $X_{\infty} = \lim_{n} X_n$ (with $X_{\infty} = 0$ when the sequence does not converge). Let $Z_n = \mathbb{E}[X_{\infty} | \mathcal{F}_n]$ and consider

$$\|Z_n-X_n\|_p=\|\mathbb{E}\left[X_\infty|\mathcal{F}_n\right]-X_n\|_p=\liminf_{m\to\infty}\|\mathbb{E}\left[X_\infty-X_m|\mathcal{F}_n\right]\|_p\leqslant \liminf_{m\to\infty}\|X_\infty-X_m\|_p=0$$

so we obtain $X_n = \mathbb{E}[X_{\infty}|\mathcal{F}_n]$.

 $c)\Rightarrow a$). Immediate from the conditional Jensen's inequality.

Corollary 6. Let $(X_n)_{n\geqslant 0}$ a martingale closed in L^p with $X_n = \mathbb{E}[Z|\mathcal{F}_n]$ for some $Z \in L^p$. Then

$$X_n \to X_\infty = \mathbb{E}[Z|\mathscr{F}_\infty]$$

almost surely and in L^p .

Proof. By Theorem 5 we have $X_n \to X_\infty$ in L^p and almost surely with $X_n = \mathbb{E}[X_\infty | \mathcal{F}_n]$. Let $A \in \mathcal{F}_n \subseteq \mathcal{F}_\infty$ for some n. Then by definition of conditional expectation

$$\mathbb{E}[X_{\infty}\mathbb{1}_A] = \mathbb{E}[X_n\mathbb{1}_A] = \mathbb{E}[Z\mathbb{1}_A].$$

Therefore this equality holds also for all $A \in \bigcup_{n \geqslant 0} \mathscr{F}_n$ which is a π -system which generates \mathscr{F}_{∞} , moreover the family of sets $A \in \mathscr{F}$ for which the equality is true is easily seen to be a λ -system, therefore the equality is true for $\sigma(\bigcup_{n \geqslant 0} \mathscr{F}_n) = \mathscr{F}_{\infty}$ and we deduce that $\mathbb{E}[Z|\mathscr{F}_{\infty}] = X_{\infty}$.

3 Uniformly integrable martingales

Definition 7. A UI martingale $(X_n)_{n\geq 0}$ is a martingale which is uniformly integrable.

Theorem 8. Let $(X_n)_{n\geq 0}$ be a martingale, then the following statements are equivalent:

- *a) X is uniformly integrable;*
- b) $X_n \to X_\infty$ almost surely and in L^1 ;
- c) there exists $Z \in L^1$ such that $X_n = \mathbb{E}[Z|\mathcal{F}_n]$ for all $n \ge 0$, (i.e. X is closed in L^1).

Proof. a) \Rightarrow b). From UI we deduce that $(X_n)_{n\geqslant 1}$ is bounded in L^1 and by the martingale convergence theorem that, almost surely $X_n \to X_\infty \in L^1$. However from UI and almost sure convergence we deduce that $X_n \to X_\infty$ also in L^1 .

b) \Rightarrow c). Write $X_n = \mathbb{E}[X_m | \mathcal{F}_n]$ for all $m \ge n$. Since $X_m \to X_\infty$ in L^1 we have

$$\|X_n - \mathbb{E}[X_{\infty}|\mathscr{F}_n]\|_1 = \lim_{m \to \infty} \|\mathbb{E}[X_m|\mathscr{F}_n] - \mathbb{E}[X_{\infty}|\mathscr{F}_n]\|_1$$

$$\leq \liminf_{m \to \infty} \|\mathbb{E}[X_m - X_\infty | \mathcal{F}_n]\|_1 \leq \liminf_{m \to \infty} \|X_m - X_\infty\|_1 = 0$$

and as a consequence $X_n = \mathbb{E}[X_{\infty}|\mathcal{F}_n]$ with $X_{\infty} \in L^1$.

c) \Rightarrow a). We already have shown that the family $(\mathbb{E}[Z|\mathcal{G}])_{\mathcal{G}}$ is uniformly integrable if $Z \in L^1$, therefore also the family $(X_n = \mathbb{E}[Z|\mathcal{F}_n])_n$ is UI and is indeed a martingale.

Remark 9. If $(X_n)_n$ is a UI supermartingale (resp. submartingale) then $X_n \to X_\infty$ almost surely and in L^1 and $\mathbb{E}[X_\infty | \mathscr{F}_n] \leq X_n$ (resp. \geqslant) for all $n \geqslant 0$.

If *X* is an UI martingale, then is natural to define

$$X_T = \sum_{n \ge 0} X_n \mathbb{1}_{T=n} + X_\infty \mathbb{1}_{T=\infty}$$

for all stopping times T (not necessarily finite), where $X_{\infty} = \lim_{n} X_n$ and $X_n = \mathbb{E}[X_{\infty} | \mathcal{F}_n]$. The the following extension of the optional stopping theorem is true.

Theorem 10. (Optional stopping for UI martingales) Let X be a UI martingale and $S \leq T$ two stopping times. Then

$$\mathbb{E}[X_T|\mathscr{F}_S] = X_S.$$

Proof. Note that $|X_T| = \sum_{n \ge 0} |X_n| \mathbbm{1}_{T=n} + |X_\infty| \mathbbm{1}_{T=\infty}$ and

$$\mathbb{E}[|X_T|] \leq \sum_{n \geq 0} \mathbb{E}[|\mathbb{E}[X_\infty|\mathcal{F}_n]|\mathbb{1}_{T=n}] + \mathbb{E}[|X_\infty|\mathbb{1}_{T=\infty}]$$

$$\leq \sum_{n \geq 0} \mathbb{E}[|X_{\infty}|\mathbbm{1}_{T=n}] + \mathbb{E}[|X_{\infty}|\mathbbm{1}_{T=\infty}] \leq \mathbb{E}[|X_{\infty}|].$$

Moreover for $A \in \mathcal{F}_T$ we have

$$\mathbb{E}[X_{\infty}\mathbb{1}_A] = \sum_{n \geq 0} \mathbb{E}[X_{\infty}\mathbb{1}_{A \cap \{T=n\}}] + \mathbb{E}[X_{\infty}\mathbb{1}_{A \cap \{T=\infty\}}]$$

$$= \sum_{n \geq 0} \mathbb{E}[X_n \mathbb{1}_{A \cap \{T=n\}}] + \mathbb{E}[X_\infty \mathbb{1}_{A \cap \{T=\infty\}}] = \mathbb{E}[X_T \mathbb{1}_A]$$

therefore $\mathbb{E}[X_{\infty}|\mathcal{F}_T] = X_T$ and by the tower property we can conclude.