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Note 6

Martingale CLT and backwards martingales.

see also A. Bovier's script for SS17, Chapter 2 [pdf].

1 Martingale CLT

Theorem 1. Let (Mn)n⩾0 be a martingale with M0=0 and let
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denotes convergence in distribution)

Proof. For convenience let M̃k = M̃k
n = 𝜎n

−1Mk for n ⩾ 0 and k = 0, …, n. For ease of notation we
will leave n implicit in the estimates below and just write �M̃k�k=0,…,n. Is it however important to
remark that the quantities denoted with tilda depends implicitly on n.

To prove convergence in distribution to a normal r.v. it is enough to prove that for all u∈ℝ

𝔼�eiuM̃n�→e−u2/2, as n→∞.

Let us first assume that
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for some finite constant C. We will remove subsequently this limitation. Now let us decompose
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By assumption (3) we have ⟨M̃⟩n →1 in probability and therefore 𝔼��1−e−u2(1−⟨M̃⟩n)/2��→0, using
that x↦�1−e−u2x/2� is bounded and continuous in 0. So it will be enough to prove that ∑k Dk→0.
Now, we have
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2/2−1�|ℱk−1���⩽
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where we used (4) to bound �e iuM̃k−1+u2⟨M̃⟩k−1/2�⩽eu2C/2 and the notation
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Using the elementary Taylor remaind estimates
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From which we conclude that ∑k Dk →0 as n→∞ and subsequently 𝜀→0. In order to complete
the proof we have now to remove the assumption (4). Take C >1, let Am={⟨M̃⟩m⩽C} and observe
that Am ∈ ℱm−1, Am ⊆ Am+1 and that ℙ(An) → 1 as n → ∞ since ⟨M̃⟩n → 1 in probability. Now
define a process (M̂m)m such that M̂0 = 0 and ΔM̂m = 1AmΔM̃m. This is a martingale transform
of �M̃m�m since the process (1Am)m is previsible, therefore (M̂m)m is a martingale and ⟨M̂⟩n =
∑k=1
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n 1Ak𝔼[(ΔM̃)k

2|ℱk−1]⩽1An⟨M̃⟩n ⩽C. We can apply the results above
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⩽ℙ(An

c)→0

→0

and we have proven the required convergence for �M̃n�n. □

2 Backwards martingales

Let ℤ− = {−n: n ∈ ℕ} and (𝒢n)n⩽0 an increasing sequence of 𝜎-algebras indexed by ℤ−. Note
that 𝒢n ⊆ 𝒢m for n ⩽m⩽ 0. A backward martingale (Xn)n⩽0 is a process adapted to (𝒢n)n⩽0 with
X0 ∈L1 and for all n⩽−1 such that

𝔼[Xn+1|𝒢n]=Xn.
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By the tower property we have Xn =𝔼[X0|𝒢n] and therefore Xn ∈L1 automatically and moreover
(Xn)n⩽0 is a uniformly integrable family of random variables.

Theorem 2. Let X be a backwards martingale with X0 ∈ Lp for some p ⩾ 1. Then Xn → X−∞ =
𝔼[X0|𝒢−∞] as n→−∞, almost surely and in Lp. Here 𝒢−∞ =∩n⩽0𝒢n.

Proof. The proof parallel those of the martingale case. In particular it uses a variation of
Doob's upcrossing inequality for backwards martingales. Note that for all N ⩾ 0 we have that
(X−N+k)k=0,…,N is a (forward) martingale wrt the filtration (𝒢−N+k)k=0,…,N so the usual upcrossing
inequality applies to it and is not difficult from that to adapt the proofs of the martingale case
to this setting. (We leave the details to the reader) □

3 Some applications

Recall that the tail 𝜎-algebra 𝒯 of a stochastic process (Xn)n⩾1 is defined as 𝒯 = ∩n⩾1𝒯n where
𝒯n = 𝜎(Xk: k ⩾ n), and it contains all the events which do not depend on any finite subset of
(Xn)n⩾1.

Example 3. The event {𝜔 ∈ Ω: Xn(𝜔) ⩾ λ infinitely often (in n)} = ∩n⩾1∪k⩾n{Xk ⩾ 𝜆} is in 𝒯n
for every n and therefore in the tail algebra 𝒯. Similarly, random variables like limsupn Xn or
liminfnXn are also 𝒯-measurable.

Theorem 4. (Kolmogorov's 0-1 law) Let (Xn)n⩾1 be a family of independent random variables.
Then 𝒯 is trivial, i.e. if A∈𝒯 then ℙ(A)∈{0,1}.

Proof. Take A ∈ 𝒯. Let 𝒢n = 𝜎((Xk)k⩽n) and Zn = 𝔼[1A|𝒢n] for all n ⩾ 0. Then (Zn)n⩽0 a UI
martingale for the filtration (𝒢n)n⩾0 and 𝒢n is independent of 𝒯n+1⊇𝒯. Therefore Zn=ℙ(A) and
at the same time Zn →Z∞ =𝔼[1A|𝒢∞] a.s. but 𝒢∞ ⊇𝒯n ⊇𝒯 for all n⩾0 and as a consequence

ℙ(A)=𝔼[1A|𝒢∞]=1A, a.s.

and we can conclude ℙ(A) ∈ {0, 1}. (In particular observe that if 𝜔 ∈ A then 1A(𝜔) = 1 = P(A)
while if ℙ(A)=0 then for all 𝜔∈ Ac we have 0=1A(𝜔)=ℙ(A)). □

Theorem 5. (Strong law of large numbers) Let (Xn)n⩾1 an i.i.d. sequence with X1 ∈ L1. Let
Sn =X1+⋯+Xn for n⩾1, then Sn/n→𝔼[X1] almost surely and in L1.

Proof. Let 𝒢n = 𝜎(Sn, Xn+1, Xn+2, …) for n ⩾ 1, then 𝒢m ⊆ 𝒢n for n ⩽ m. The process (Zn)n⩽1
defined by Zn = S−n/(−n) is a backwards martingale wrt. the filtration (ℱn = 𝒢−n)n⩽0, indeed for
all n⩾0,

𝔼[Z−n+1|ℱ−n]= 1
n−1𝔼[Sn−1|Sn,Xn+1,Xn+2,…]= 1

n−1𝔼[Sn −Xn|Sn,Xn+1,Xn+2,…]

= 1
n−1�Sn − Sn

n �= Sn
n =Z−n
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since 𝔼[Xn|Sn, Xn+1, Xn+2, …] = 𝔼[Xn|Sn] = 𝔼[Xk|Sn] for all k = 1, …, n by the symmetry under
exchange of the law of (X1,…,Xn), from which we deduce also that

𝔼[Xn|Sn,Xn+1,Xn+2,…]= 𝔼[X1|Sn]+⋯+𝔼[Xn|Sn]
n = 𝔼[Sn|Sn]

n = Sn
n .

Moreover we have Z1 = X1 ∈ L1, therefore the backwards martingale is uniformly integrable. By
the backwards martingale convergence theorem we deduce that Z−n → Z−∞ in L1 and a.s. where
Z−∞=𝔼[X1|ℱ−∞]=𝔼[X1|𝒢∞]. Note that 𝒢∞⊆𝒯=∩n⩾0𝜎(Xk:k ⩾n), therefore by Kolmogorov's
0-1 law the r.v. Z−∞ is almost surely constant and

Z−∞ =𝔼[Z−∞]=𝔼[Z−1]=𝔼[X1]. □

Theorem 6. (Kakutani's product martingale theorem) Let (Xn)n⩾1 a sequence of independent,
positive and mean 1 random variables. Let M0 = 1 and Mn = X1⋯Xn. Then (Mn)n⩾0 is a positive
martingale and Mn →M∞ a.s. as n→∞. Let an =𝔼[Xn

1/2], then an ∈(0,1] and

a) if ∏n an >0 then Mn →M∞ in L1 and 𝔼[M∞]=1;

b) if ∏n an =0 then Mn →0 a.s.

Proof. As (Mn)n⩾0 is a positive super-martingale it converges a.s. to a limit which we denote
M∞ ∈ L1. Cauchy–Schwarz inequality gives 0<an ⩽1. Let Nn =Mn

1/2/(∏k⩽n ak). Then (Nn)n⩾1
is a positive martingale, which again converges a.s. to a limit N∞. In case a) we have

sup
n

𝔼[Nn
2]=sup

n

𝔼[Mn]
(∏k⩽n ak)2 =sup

n

1
(∏k⩽n ak)2 <+∞.

By Doob's inequality supnNn ∈ L2 and therefore supnMn =supn [Nn
2(∏k⩽n ak)2]⩽ (supn Nn)2 ∈L1.

We conclude that (Mn)n⩾1 is UI since Mn ⩽supnMn ∈L1 and therefore it converges a.s. and in L1

and 𝔼[M∞]=𝔼[M1]=1.

In case b) we have M∞ =limn Mn =Nn
2(∏k⩽n ak)2=N∞

2 limn (∏k⩽n ak)2 =0 a.s.. □

Kakutani's theorem is related to the likelyhood ratio test. Assume you have a sequence of i.i.d.
observations (Xn)n⩾1 and you want to test the null hypothesis H0 that these observations are sam-
ples of a given law 𝜇 against the hypothesis H1 that they are drawn from a different law 𝜈 which
one assumes absolutely continuous wrt. 𝜇 with density f , that is d𝜈= f d𝜇. Consider the quantity

Tn =�
i=1

n

log f (Xi)

and note that the process (Mn)n⩾1 defined by Mn = eTn = ∏i=1
n f (Xi) is a martingale wrt. the

probability ℙ under which each Xi has law 𝜇. Moreover 𝔼[Mn] = 1. In this case an = a1 =
𝔼[(log f (X1))1/2] and by Jensen's inequality we have

a1
2 <𝔼[log f (X1)]=1,

as soon as the function log f (X1) is not a.s. constant, that is when 𝜇≠𝜈. Then Kakutani's theorem
allows to conclude that, almost surely Mn →0 which implies that Tn →−∞.
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Consider also the more general situation where (Xn)n⩾1 are independent but not identically dis-
tributed and let ℙ the law under which each of them has distribution 𝜇 while let ℚ the law under
which each of them has law d𝜈n = fnd𝜇 for some sequence of density functions ( fn)n. Then
Kakutani theorem gives sufficient and necessary conditions under which ℚ≪ℙ. Indeed note that

dℚ|ℱn=Zndℙ|ℱn

with Zn =∏k=1
n fk(Xk). If ∏n 𝔼[(log fn(Xn))1/2]>0 the limit Zn →Z∞ exist a.s. and in L1 and we

have Zn =𝔼ℙ[Z∞|ℱn] and therefore, for all A∈ℱn we also have

𝔼ℚ[1A]=𝔼ℙ[1AZn]=𝔼ℙ[1AZ∞]

from which we can conclude (how?) that dℚ = Z∞dℙ. On the other hand if ℚ ≪ ℙ then dℚ =
Z∞dℙ and Zn = 𝔼[Z∞|ℱn] which then implies that Zn → Z∞ a.s. and ∏n 𝔼[(log fn(Xn))1/2] > 0.
So

Corollary 7. (In the conditions above)

ℚ≪ℙ⇔�
n

𝔼[(log fn(Xn))1/2]>0.

4 Densities, Radon-Nikodým derivatives

If f is a measurable non-negative function on the measure space (Ω,ℱ,𝜇) then we can consider
the set function 𝜇f (A)=∫A f d𝜇=∫1Af d𝜇. This function is actually a measure on (Ω,ℱ) which
has the property to be absolutely continuous wrt. 𝜇. We write d𝜇f = f d𝜇.

We say that a measure 𝜈 is absolutely continuous wrt. a measure 𝜇 (and write 𝜈≪𝜇) iff 𝜈(A)=0
whenever 𝜇(A)=0 for A∈ℱ.

Theorem 8. (Radon-Nikodým) If 𝜇,𝜈 are two 𝜎-finite measures on the measure space (Ω,ℱ)
then the following statements are equivalent:

a) 𝜈≪𝜇;

b) d𝜈= f d𝜇 for some non-negative measurable function f unique 𝜇-almost everywhere.

The (equivalence class) function f which realizes the representation above is called the Radon-
Nikodým derivative of 𝜈 wrt. 𝜇 and denoted by f = d𝜈

d𝜇 .

Proof. It is enough to prove that a) ⇒ b). Moreover by an easy partitioning of Ω we can reduce
to prove the statement for finite measures 𝜈, 𝜇 which we can take to be probability measures.
And furthermore we can restrict us further to consider only the case when 𝜈⩽𝜇. This is done by
considering the measure 𝜇̃ = 𝜇 + v for which 𝜈 ⩽ 𝜇̃ and 𝜈 ≪ 𝜇̃. Provided the statement is true in
this case we have d𝜈= gd𝜇̃ and d𝜇 = f d𝜇̃ and therefore since 𝜇( f = 0) = 0 implies 𝜇̃( f = 0) = 0
we also have d𝜇=( f +1f =0)d𝜇̃ and

d𝜈=gd𝜇̃=gd𝜇̃=g( f +1f =0)−1d𝜇.
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Let us therefore consider the case 𝜈 ⩽ 𝜇 and we can certainly assume that 𝜇 ≠ 0. Let ℛ be
the family of partitions 𝒫 of Ω made of measurable sets. This family ℛ is a directed set once
endowed with the order relation 𝒫⩽𝒬 iff 𝜎(𝒫)⊆𝜎(𝒬). For any 𝒫∈ℛ we let

f𝒫 ≔ �
A∈𝒫

𝜈(A)
𝜇(A)1A

where we understand that 𝜈(A)
𝜇(A) = 0 if 𝜇 (A) = 0. We have that f𝒫: Ω → [0, 1] and that 𝜈(A) =

∫A f𝒫d𝜇 for all A∈𝜎(𝒫) and moreover if 𝒫⩽𝒬 we have

�
A

f𝒫d𝜇=�
A

f𝒬d𝜇, ∀A∈𝜎(𝒫). (5)

This property implies that ( f𝒫)𝒫∈ℛ is a martingale indexed by the directed set ℛ. Recall that
ℛ is directed if is a partially ordered set such that for x, y ∈ ℛ there exists always z ∈ ℛ such
that x ≺ z and y ≺ z. In particular partitions of a given set form a naturally directed set wrt. the
refinements. It is not difficult to generalise our results on martingales from ℕ to any directed set
ℛ. We will study martingales later on, but for the moment we are going to need the following
fundamental result: a bounded martingale converges 𝜇-almost surely and in L1(𝜇). If we call g
such a limit and pass to the limit in 𝒬 in the relation (5), then we have

�
A

f𝒫d𝜇=�
A

gd𝜇, ∀A∈𝜎(𝒫).

For any A∈ℱ we can now consider a partition 𝒫 which contains A, then we have

𝜈(A)=�
A

f𝒫d𝜇=�
A

gd𝜇

which therefore implies the claim. Let us show the uniqueness of g. Assume there exists another
function ĝ such that d𝜈= ĝd𝜇, then for any C >0:

�1{C>ĝ>g>−C}(ĝ−g)d𝜇=𝜈({C > ĝ>g>−C})−𝜈({C > ĝ>g>−C})=0

which implies that 1{C>ĝ>g>−C}(ĝ − g) = 0 𝜇 a.-e. and that 𝜇({C > ĝ > g > −C}) = 0. Since this is
true for all C and for exchanging ĝ with g we have 𝜇(ĝ≠g)=0. □

Lemma 9. Let 𝜇, v be 𝜎-finite measures on (Ω, ℱ) such that 𝜈≪ 𝜇. If f is a ℱ-measurable, 𝜈-
integrable function then, for all A∈ℱ:

�
A

f d𝜈=�
A

f d𝜈
d𝜇d𝜇.

Proof. We may assume 𝜇 is finite and f ⩾0. By monotone convergence is also possible to assume
that f is bounded. Then let ℋ be the family of all non-negative bounded ℱ-measurable functions
for which the claim is true. Then ℋ contains 1 by definition of RN derivative, is a vector space
and it is stable by increasing limits thanks to the monotone convergence theorem. Therefore by
the monotone class theorem ℋ contains all the ℱ measurable bounded functions since it is clear
that it contains all the indicators of measurable sets. □
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