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Note 7
Optimal stopping with finite horizon

The problem we would like to analyse in this part is the following. Consider an adapted process
(Y,),>1 and try to optimize the value of E[Y7] among all possible stopping times 7 for the given
filtration. One could interpret this situation as a game. We imagine that ¥,(w) is the gain which
we obtain if we decide to stop at time n and that we try to find a stopping strategy to maximize the
average gain. Stopping times are of course the natural class of admissible stopping strategies.

We will consider only problems in finite horizon, namely we fix N € N, we let Ty the set of all

stopping times bounded by N and we look for the optimal average gain Jy with horizon N:

Jy=sup E[Yr].
TeIy
We say that 7* < N is an optimal stopping time if E[Y7.] =Jy.
Notation: We let infyA =inf A for all AC R with A+ @ and infy® =N.

As with many optimisation problems, the solution of the optimal stopping problem above goes
via the determination of a suitable value function (Z,), associated to the choices still available at
time n. The value function represents the average gain conditional on the information gained up
to time 7, namely conditionally on %,. It must satisfy the following properties:

a) (Z,), is an adapted process. We must be able to determine it only as a function of the infor-
mation available at time n.

b) Z, > Y,: at time n what I hope to gain cannot be less that what I would gain stopping immedi-
ately at n.

c) Z,2 E[Z,.11%,] : my current position has a value which cannot be inferior to what I expect
to gain if I would continue one step further (given that I already know %,,).

Indeed at each step n <N I have two options: either stop or continue. At the final step N I do not
have anymore the option to continue, I must stop and gain Yy. Therefore Zy = Yy and we can
define a value function by the backward equation:

Zy=Yy, Zp=sup (Y, E[Z,1|Fn]) pourl<n<N ()
From this definition we see that Z is a supermartingale which bound from above Y. In particular

we will show that it is the Snell's envelope of Y, i.e. the smallest supermartingale Q such that
Y, <0, forallO<n<N.

Theorem 1. Let (Y,),>1 be an adapted process such that E|Y,| < oo pour tout n > 1. Define (Z,),
by eq.(1)and let T* =inf{k < N:Y,=Z;}. Then the sequence (Z, 7+)n>1 is a martingale and

E[Z\]=E[Zr-1=E[Yr-1=Jn.

The stopping time T" is optimal and Z is the Snell envelope of Y.



Proof. By definition Z, > E[Z, 1|%,] and Z,,>Y,. On the event {T" >n} we have Z,=E[Z,,1|%,],
therefore the process (Zn = Zn,\T*)n is a martingale wrt. (%,),>1. Indeed E[14Z+1)a7"] =
E[1aZ,x7+] for all A € %,. As a consequence, if we consider the two stopping times n A T
and T°, we have n AT" < T" and IE[ZT |Funr+] = Z,,,\T which implies E[Z7:|Fa7-] = ZuatT-
Taking the expectation of this last equation, we have, for all T <N:

E[Yrl<m ElZr]1<@ ElZi]1=3)ElZr-]1=@4) E[Y7r-]

where the bound (1) is due to the fact that ¥, < Z,, for all n € [0, N] and therefore for all stopping
time T<N. The bound (2) is the supermartingale property of Z, the equality (3) is due to the
martingale property of the stopped process Z, and finally the equality (4) is due to the fact that
Yr-=Zr- as a consequence of the definition of 7. Since this is true for any stopping time 7T <N
we have that E[Y7-] = Jy and therefore that 7" is an optimal stopping time for Y. The optimal
gain is given by Jy=[E[Z;]. We show now that Z is the Snell envelope of Y. Indeed let Q another
supermartingale which bounds from above Y: at the final time we need to have Qy > Yy = Zy.
Moreover if we have Q,, > Z, for all n such that N > n >k then Oy = E[Qi+11%k] = E[Zi 11 %]
and Qg > Y, therefore we have also Oy > Z; and we establish the domination also at time k. By a
backward induction we have domination for all 1 <k <N and as a consequence Z is indeed the
smallest supermartingale above Y. O

Corollary 2. The stopping time T" is the smallest optimal stopping time: if S is another optimal
stopping time, then T” < S almost surely.

Proof. Assume that P(7T* > S) > 0. Then for w € Q such that 7" (w) > S(w) we have Ys(w) <
Zs(w) since T*(w) is the first k for which Y, (w) = Z;(w). Given that the event {T* > S} has a
positive probability, on obtain that E[Ys] < E[Zs] striclty. But, by the supermartingale property
of Z, we deduce that E[Ys] < E[Zs] < E[Z] =Jy and this is in contradiction with the hypothesis
that S is optimal (i.e. E[Ys]=suprE[Yr]=Jpn). O

Remark 3. Observe that an equivalent definition of 7" is

T =inf{(k<N:Y,>E[Zi 1| F] ).

Corollary 4. The stopping time T* =inf {k <N: Y > E[Z,1| %} is the largest optimal stopping
time: if S is an optimal stopping time, then S <T*# almost surely.

Proof. Assume that P(7%<S)>0. We note that Z,=Z, , (r#+1) is @ martingale (indeed if n < T#
then Y, < E[Z,+1|%,] and therefore Z, = E[Z,+1|%,]). On the one hand we have E[Z¢| %] = Zg
due to the martingale property of Z. We note that {T% > S} € s and therefore that

YS HT#>S<ZS HT#>S—ZS HT#>S— E[ T HT#>S|-/S] E[ZT# HT#>S|yS]- (2)

On the other hand, if we let Zy.1=Zy then (Z,),=1,.._n+1 is still a supermartingale and therefore
E[Zgy 7t 1)) Fre111<Z7s, (by the supermartingale inequality with the two stopping times T#+
1<SV(T#+1)<N +1). From {T#<S} € %+ and Ys< Zs we have

[(Zs1pecsl= ]E[ZSV(T#H) Lrics]= E[E[ZSV(T”H)'yThl] L7 ]

3
(Zys, 1 Ly = E[B[Zys, || Fre) Lsog] <EVys Lys o) E[Zps Lyoogl. O

<E
<E



Here we used the fact that, by the definition of 7% we have Y+ > E[Zy+, | %7:]. Eq. (2) and eq.
(3) give that

E[Ys]=E[Ys HT";S] + E[Ys ﬂT‘*<S] < E[ZTu ﬂT”;S] + ]E[ZT# ﬂT”<S] = E[ZTu] = ]E[Yru]

which is in contradition with the hypothesis of the optimality of S. O

Remark 5. Give a detailed proof of Y;:>E[Z:, ;| %;:]. Start by showing that if F'is an integrable
random variable and T is a stopping time, then E[F|%7]17-, = E[F|F,]17r=, = E[F 17, %,].
Then write Y+ = Zf:’:l Y,1,:_, and close the argument.

1 Markovian problems

In many optimal stopping problems the following assumptions are satisfied: there exists an adapted
process (X,,)n>0 taking values in a measure space (E, &) for which

a) For any bounded measurable function f: E - R we have, for any n>0

]E[f(XnH)LO}dn] = E[f(Xn+1)|Xn] = (Pn+1f)(Xn)
for some probability kernel P,,,1: Ex & — [0, 1].
b) The gain Y, can be expressed as Y, = ¢,(X,,) for some measurable ¢,: E - R.

Then is not difficult to prove that the Snell envelope (Z,),c(1,...ny Of (¥3)neq1,....ny has the form

Z, = V,(X,) where (V,: E - R),c(1,...n; is the sequence of functions given by the backwards
recurrence:

.....

{ Vv=on
Vnzsup((pna(Pn+1Vn+l)) nef{l,...,.N-1}

here (P,+1f)(x) := f E f(y)Py+1(x, dy) denotes the action of the kernel P, on the function f by
integration.

Exercise 1. Prove it.
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