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Note 8

Markov processes in discrete time (Markov chains)

1 Random recurrences

Let (Un)n⩾1 be a sequence of i.i.d. uniform random variables taking values in [0, 1] and 𝜙n:
E ×[0,1]→E a given family indexed by integers n⩾1 of measurable maps, where (E,ℰ) is a fixed
measurable space. Let us fix also a probability distribution 𝜈 on (E, ℰ) and consider a family of
random variables (Xn)n⩾0 defined as follows: X0 is taken independent of the family (Un)n⩾1 and
with law 𝜈 and for any n⩾1 we let recursively

Xn =𝜙n(Xn−1,Un).

In this way we define a random recurrence with initial law 𝜈 and transition functions 𝜙n:E ×[0,
1] → E. Note that, instead of introducing the random variables (Un)n⩾1 and the deterministic
functions (𝜙n)n we could have directly considered the random functions (Φn = 𝜙n(⋅, Un): E →
E)n which forms an independent family. A random recurrence is the random counterpart of a
deterministic (discrete) dynamical system over the space (E, ℰ) where instead of a family of
deterministic maps we consider random maps (Φn)n⩾1. When each 𝜙n is constant then the process
(Xn)n⩾1 is easily seen to constitute a family of independent random variables. While if each 𝜙n
is (functionally) independent in its second variable, then the sequence (Xn)n⩾0 is deterministic
conditionally on the value of X0. In between these two extreme situations: complete independence
and complete dependence, lie a family of processes with interesting probabilistic properties.

This setup admits a natural filtration (ℱn)n⩾0 which is the filtration generated by the (Un)n⩾1
together with X0, namely ℱn =𝜎(X0,U1,…,Un) for all n⩾0.

Lemma 1. The random recurrence (Xn)n⩾0 satisfies the Markov property wrt. the filtration
(ℱn)n⩾0, i.e.

𝔼[ f (Xn+1)|ℱn]=𝔼[ f (Xn+1)|Xn] (1)

for all measureable and bounded f :E →ℝ.

Proof. (exercise) □

Corollary 2. The Markov property (1) implies that for all F bounded and measurable wrt. the
future 𝜎-algebra 𝒢n+1 =𝜎(Xk:k ⩾n) we also have

𝔼[F|ℱn]=𝔼[F|Xn].

Proof. The claim follows once we prove it for functions of the form F = f (Xn+1,…,Xn+k) for all
k ⩾1 since by the monotone class theorem it will then follow that it holds for any bounded function
which is measurable wrt. the 𝜎-algebra generated by ∪k⩾1𝜎(Xn+1,…,Xn+k) which is indeed 𝒢n+1.
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However the Markov property (1) implies that for all k ⩾ 1 and all measureable and bounded f :
Ek →E we indeed have

𝔼[ f (Xn+1,…,Xn+k)|ℱn]=𝔼[ f (Xn+1,…,Xn+k)|Xn].

This can be obtained by induction. It is true for k = 1 and assuming it is true for k − 1 then by
another monotone class argument we can restrict ourselves to consider functions of the form
f (xn+1,…,xn+k)=g(xn+1)h(xn+2,…,xn+k) and observe that

𝔼[ f (Xn+1,…,Xn+k)|ℱn]=𝔼[g(Xn+1)𝔼[h(Xn+2,…,Xn+k)|ℱn+1]|ℱn] (conditioning)

=𝔼[g(Xn+1)𝔼[h(Xn+2,…,Xn+k)|Xn+1]|ℱn] (inductive assumption)

=𝔼[g(Xn+1)𝔼[h(Xn+2,…,Xn+k)|Xn+1]|Xn] (Markov prop.)

=𝔼[𝔼[g(Xn+1)h(Xn+2,…,Xn+k)|ℱn+1]|Xn] (conditioning)

=𝔼[g(Xn+1)h(Xn+2,…,Xn+k)|Xn].

□

The Markov property then means that for the process (Xn)n⩾0 the past 𝜎-algebra ℱn and the future
𝜎-algebra 𝒢n are independent conditionally on Xn (the present).

For recurrences we can consider the family of probability kernels Pn:E ×ℰ→[0,1] given by

Pn(x, A)=ℙ[𝜙n(x,U1)∈ A], x∈E, A∈ℰ,n⩾1,

which are called transition kernels. Then it is not difficult to show that the transition kernel allows
to obtain a regular conditional law for Xn+1 given ℱn, namely

𝔼[ f (Xn+1)|ℱn]=𝔼[ f (Xn+1)|Xn]=(Pn+1f )(Xn),

where on the r.h.s. we introduce the notation Tf :E →E to denote the natural action of the proba-
bility kernel T :E ×ℰ→[0,1] on the space of bounded measureable functions on E:

(Tf )(x)≔�
E

f (y)T(x, dy), x∈E.

Note that if 𝜇 is a measure on E then we can also define a new measure 𝜇T on E by

(𝜇T)(A):=𝜇(T(⋅, A))=�
E

T(x, A)𝜇(dx), A∈ℰ.

2 Markov chains

The law of the random recurrence (Xn)n⩾0 is completely determined by the family of kernels
(Pn:E →𝜋(E))n⩾1 and the initial law 𝜈∈Π(E) by the formula

𝔼[ f (X0,…,Xn)]=�
En+1

f (x0,…,xn)𝜈(dx0)P1(x0, dx1)P2(x1, dx2)⋯Pn(xn−1, dxn). (2)
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Remark 3. The integral in the r.h.s. is defined by on product functions of the form f (x0, …,
xn+1)= f0(x0)⋯ fn(xn) by the formula

𝜈( f0P1( f1P2( f2(⋯Pn( fn)⋯))))

extended as usual to all measurable functions on (En,ℰ⊗n).

Let us pause a moment to precise this statement. The law 𝜇 of the process (Xn)n⩾0 is a measure
on the infinite product space (Eℕ, ℰ⊗ℕ) where ℰ⊗ℕ is defined as the smalles 𝜎-algebra which
makes all the projections 𝜋j: x∈ Eℕ ↦xj ∈ E for j ⩾ 0 measurable. What we are assuming above
is that this law is determined by its finite dimensional projections. For any I ⊂ℕ let 𝜋I :Eℕ→E I

be the projection 𝜋I(x) = (xi)i∈I . A cylinder set in ℰ⊗ℕ is defined to be of the form 𝜋I
−1(A) for

some A∈ℰI and I ⊂ℕ finite. Cylinder sets generate ℰ⊗ℕ and they are a 𝜋-system, therefore by
the 𝜋−𝜆 lemma if two measures on (Eℕ,ℰ⊗ℕ) coincide on cylinder sets they are equal.

Note also that existence of the transition kernel is a bit stronger property than the Markov prop-
erty (1) (this is linked to the existence or not of regular conditional probabilities). In order to
abstract the natural properties of random recurrences one defines the class of Markov processes
as follows.

Definition 4. A process (Xn)n⩾0 indexed by ℕ (or ℤ) is a (discrete time) Markov process on
(E, ℰ) wrt. a filtration (ℱn)n if for all n ∈ ℕ (or ℤ) it satisfies the Markov property (1) with a
given family of transition kernels (Pn)n⩾1, namely

𝔼[ f (Xn+1)|ℱn]=(Pn+1f )(Xn), n⩾1.

In discrete time Markov processes are usually called Markov chains. We will consider mainly
discrete time processes for now, but the notion of Markov process makes sense also in continuous
time.

Random recurrences are Markov chains and they are paradigmal examples of such processes. On
the other hand, on very general grounds any Markov process can be associated to some random
recurrence.

In the following we will abstract from the specific setting of random recurrences and study the
general properties of Markov chains.

The space (E, ℰ) is called state space. As for random recurrences, the law of a Markov process
is completely determined by the initial law 𝜈 and the family of kernels (Pn)n⩾1 by the formula (2)
and a monotone class argument to extend it to the full 𝜎-algebra 𝜎(Xk:k ⩾0).

3 Canonical realisation and the strong Markov property

We would like now to go in the opposite direction and from an initial law and a family of transition
kernels (Pn)n⩾1 construct a probability space (Ω̂, ℱ̂) and a Markov process (Xn)n⩾0 on it with
such data.

There exists a canonical probability space on which to realise a Markov chain with state space E
and it is given by Ω̂=Eℕ endowed the product 𝜎-algebra ℰ⊗ℕ which, as we already remarked, is
defined as the smallest 𝜎-algebra which makes measurables all the coordinate projections (X̂n)n⩾0
defined naturally as X̂n(𝜔)=𝜔n.
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On this space we can realise all the Markov chains with initial laws given by 𝛿x for all x∈E. We
denote by ℙ̂x such probabilities, by 𝔼̂x the associate expectations. The measure ℙ̂x is caracterised
by the property that for all measurable and bounded f :En+1→ℝ we have

�
Ω̂

f (𝜔0,…,𝜔n)ℙ̂x(d𝜔)=�
En+1

f (x0,…,xn)𝜇n(dx) (3)

where 𝜇n is the measure defined by

𝜇n(dx)=𝛿x(dx0)P1(x0, dx1)⋯Pn(xn−1, dxn)

as above. The existence of the measure ℙ̂x satisfying the property (3) will be for the moment taken
as assumption. This is a nontrivial fact which will be further investigated in a later lecture. Once
existence is given, uniqueness follows from the 𝜋−𝜆 argument as above.

However let us stress that existence of ℙ̂x is a nontrivial fact and that the measures (𝜇n)n form a
projective systems of measures, i.e. they are such that 𝜇n+1(A×E)= 𝜇n(A) for all A ∈ ℰ⊗ℕ and
for all n⩾0. Morever the measure ℙ̂x is such that ℙ̂x(A×Eℕ)=𝜇n(A) for all A∈ℰ⊗ℕ.

Note also that the map x↦ℙ̂x:E →Π(Eℕ,ℰ⊗ℕ) is measurable and therefore one can consider it
as a probability kernel from E to Eℕ, obtained as the “lifting” of the family of transition kernels
(Pn)n⩾1.

The construction of the family of laws (ℙ̂x)x∈Eof laws allows to express the consequences of
the Markov property in full generality. On Ω̂ define the shift 𝜃n: Ω̂ → Ω̂ as (𝜃n𝜔)k = 𝜔k+n and
ℱ̂n ≔𝜎(X̂k:0⩽k ⩽n). Then we have

𝔼̂x�F ∘𝜃n|ℱ̂n�=𝔼̂Xn[F], (4)

for any initial state x∈E and any bounded measurable function F: Ω̂→ℝ. Note that, on a general
probability space is not clear how to define the shift 𝜃n, this is one of the reason one would like to
consider the canonical realisation (Ω̂,ℰ⊗ℕ, (ℙx)x∈E).

Theorem 5. (Strong Markov property) Let T be a finite stopping time wrt the canonical filtration
�ℱ̂n�n⩾0. Then we have

𝔼̂x[F ∘𝜃T |ℱ̂T]=𝔼̂XT[F].

Proof. Take A∈ℱ̂T and consider this sequence of equalities

𝔼̂x[F ∘𝜃T1A]=�
k=0

∞

𝔼̂x[F ∘𝜃T1A,T =k]=�
k=0

∞

𝔼̂x�𝔼̂x�F ∘𝜃k|ℱ̂k�1A,T =k�

=�
k=0

∞

𝔼̂x�𝔼̂Xk[F]1A,T =k�=�
k=0

∞

𝔼̂x�𝔼̂XT[F]1A,T =k�=𝔼̂x�𝔼̂XT[F]1A�

valid for all bounded and measurable F: Ω̂→ℝ which allows to conclude the claim. □
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When the kernel Pn does not depends on n we denote it simply by P and we say that the Markov
chain has time homogeneous transition probabilities, or that it is an (time) homogenous Markov
chain. In this case we let P(n)=P⋯P (n-fold composition of kernels) so that we can write the law
of the r.v. Xn as P(n)(X0, ⋅). We have the Chapman–Kolmogorov equation

P(n+m)(X0, dz)=�
E

P(n)(X0,dy)P(m)f (y, dz). (5)

which states that the family (P(n))n⩾0 is a semigroup of probability kernels.

From now on, unless stated otherwise, we will assume that all the Markov chain are time homo-
geneous.

Example 6. (Random walk on ℝn). Let E = ℝn and consider the (homogeneous) Markov chain
given by letting X0=x∈ℝn and Xn+1=Xn+Zn where (Zn)n⩾1 is a family of i.i.d. random variables
on ℝn with given law 𝜌. Then the kernel P is given by P(x, dy) = (𝜌 ∗ 𝛿x)(dy) where ∗ denotes
the convolution of measures on ℝn. More explicitly

Pf (x)=�
ℝn

f (x+ y)𝜌(dy), x∈ℝn

and P(n)(x,y)=(𝛿x ∗𝜌∗n)(dy) for all n⩾1.

4 Martingale problems
Martingales are powerful tools also in the study of Markov processes. Let us consider a proba-
bility space (Ω,ℱ,ℙ) endowed with a filtration (ℱn)n⩾0.

Definition 7. Let ℒ be a linear operator defined on the bounded measurable real-valued functions
over E. We say that an adapted process (Xn)n⩾0 taking values on (E, ℰ) satisfies the martin-
gale problem wrt. ℒ with initial law 𝜈 if for every bounded and measurable f : E → ℝ we have
that the process �Mn

f �n⩾0 defined by

Mn
f = f (Xn)− f (X0)− �

k=0

n−1

ℒf (Xk) (6)

is a martingale wrt. the filtration (ℱn)n⩾0 and X0∼𝜈.

Note that this in particular implies that f (Xn+1)= f (Xn)+ΔMn+1
f +ℒf (Xn) and therefore

𝔼[ f (Xn+1)|ℱn]=𝔼�ΔMn+1
f + f (Xn)+ℒf (Xn)|ℱn�=( f +ℒf )(Xn), ℙ−a.s.

As a consequence of this formula we have that the operator T =Id+ℒ satisfies

Tf (Xn)=( f +ℒf )(Xn)=𝔼[( f +ℒf )(Xn)|Xn]=𝔼[𝔼[ f (Xn+1)|ℱn]|Xn]=𝔼[ f (Xn+1)|Xn]. (7)

This is not enough to say something more about T . In particular we would like to conclude that
there exists a unique transition kernel P such that Pf =Tf for all bounded functions f :E →ℝ. A
sufficient condition for this is that the martingale problem is not only solved by a single measure
ℙ but that there exists on (Ω, ℱ) a family of measure (ℙx)x∈E such that under ℙx the process
(Xn)n solves the martingale problem for ℒ with initial law 𝛿x. In this case we have for all x ∈ E
that eq. (7) is satisfied when n=0 ℙx almost surely and this means that

Tf (x)=Tf (X0)(𝜔)=𝔼x[ f (X1)|X0](𝜔)=𝔼x[ f (X1)], for ℙx-almost all 𝜔∈Ω,
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since one has ℙx(X0 = x) = 1 and so the conditional probability can be simplified. And from this
we can conclude that Tf (x)=𝔼x[ f (X1)], that is T is indeed given by a proability kernel P which is
nothing else that the law of X1 under the measure ℙx. So in this case every solution of a martingale
problem is a Markov process with transition kernel P=𝕀+ℒ.

Conversely if (Xn)n⩾0 is a Markov process with kernel P then it follows easily that it also a solu-
tion of the martingale problem with generator ℒ=P−𝕀, indeed

𝔼�ΔMn+1
f |ℱn�=𝔼[ f (Xn+1)− f (Xn)−ℒf (Xn)|ℱn]=𝔼[ f (Xn+1)|ℱn]− (Pf )(Xn)=0

and therefore �Mn
f �n⩾0 is a martingale for all f .

Since both the maringale problem and the Markov property can be formulated taking into account
properties of a given proces (Xn)n⩾0 one can simply consider the canonical process (Xn)n⩾0 on
the space space (Ω̂, ℱ) = (Eℕ, ℰ⊗ℕ) and say that a measure ℚ on (Ω̂, ℱ) is a Markov process
(resp. a solution of the martingale problem) if the canonical process is a Markov process. (resp.
a solution to the martingale problem). We can then formulate the following result

Theorem 8. A family of laws (ℙx)x∈E for which ℙx(X0 = x) = 1 for all x ∈ E is a (homogeneous)
Markov process with transition kernel P iff it solves the martingale problem for the generator
ℒ=P−𝕀.

An immediate consequence of this identification is that the solution of the martingale problem is
unique in law, namely two families (ℙx)x∈E and (ℙ̃x)x∈E which solve the martingale problem for
ℒ must be equal.

We call ℒ=P−𝕀 the generator of the Markov chain.

Note that eq. (6) gives Doob's decomposition of the process ( f (Xn))n⩾0 as the sum of a martin-
gales and a previsible process (and an initial value).

Special classes of functions are those for which ( f (Xn))n⩾0 is a martingale itself, or a supermartin-
gale or a submartingales from every possible starting point X0. Respectively they are given by
the condition ℒf (x) = 0, ℒf (x) ⩽ 0 or ℒf (x) ⩾ 0 for all x ∈ E. A function for which ℒf = 0 is
called harmonic (for ℒ), similarly the functions for which ℒf ⩽ 0 are superharmonic (since the
corresponds to supermartingales) and those for which ℒf ⩾0 are subharmonic.

The generator of a Markov chain satisfies the following property:

Theorem 9. (Maximum principle) Let D ∈ ℰ and TDc = inf {n ⩾ 0: Xn ∈ Dc}. Assume that TDc is
finite almost surely, then if f :E →ℝ is a bounded function which is subharmonic for ℒ in D (i.e.
ℒ f (x)⩾0 for all x∈D) we have

sup
x∈D

f (x)⩽ sup
x∈Dc

f (x).

Proof. Consider the submartingale ( f (Xn))n⩾0 under the measure ℙx. By the submartingale prop-
erty, the optional stopping theorem and dominated convergence, that

f (x)=𝔼x[ f (X0)]⩽𝔼x[ f (Xn∧TDc)] →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
n→∞

𝔼x[ f (XTDc)]⩽ sup
z∈Dc

f (z),
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for all x∈D. □

5 Computations of probabilities related to a Markov chain

For many reasons we are interested to compute certain probabilities related to a Markov chain, for
example: the probability to reach some given set before reaching another set, the expected time to
exit some given region, the average of certain additive functionals of the trajectory of the chain.
In these situations the Markov property provides a drastric simplication of the orginal problem by
relating it to the solution of certain linear equations.

Let us give some examples.

Let (Xn)n⩾0 the canonical realisation of a Markov chain on (E,ℰ) and let A,B∈ℰ with A∩B=∅.
Assume we want to compute ℙx(X reaches A before reaching B). We can let TA = inf {n ⩾ 0:
Xn ∈ A} and similarly for TB. Then ℙx(X reaches A before reaching B) = ℙx(TA < TB). Now by
definition if x∈ A then u(x)=1 while if x∈B then u(x)=0. If x∈ A∪B we can reason as follows:
the chain has do at least one step to reach A or B and we have 1TA<TB =1TA<TB ∘ 𝜃1 on X0 ∈ A ∪ B
(think to why). In this case we can condition on the value of this first step and by the Markov
property we have

ℙx(TA <TB)=𝔼x[1TA<TB ∘𝜃1]=𝔼x[𝔼x[1TA<TB ∘𝜃1|ℱ1]]=𝔼x[𝔼X1[1TA<TB]]

(pay attention to the meaning of this last expression). If we define u(x) = ℙx(TA < TB) we have
established that u(x)=𝔼x[u(X1)]=(Pu)(x) for x∈(A∪B)c. Using the language of the generator:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{

(ℒu)(x) = 0, x∈(A∪B)c,
u(x) = 1, x∈ A,
u(x) = 0, x∈B.

(8)

Therefore u is harmonic in (A∪B)c with prescribed values in A∪B. In many situation this family
of equations allows to completely detemine the function u among all the positive functions. In
general however there could be multiple solutions to the system (8) which do not give our initial
probability u. Assume v ⩾ 0 is another such solutions, then by definition the process (v(Xn))n

is a martingale until it stays away from A ∪ B, namely the stopped process (v(Xn
TA∧TB))n is a

martingale. Therefore by the martingale property, for all n⩾0,

v(x)=𝔼x[v(X0
TA∧TB)]=𝔼x[v(Xn

TA∧TB)]

=𝔼x[v(Xn
TA∧TB)1TA<TB]+𝔼x[v(Xn

TA∧TB)1TA=TB=∞]+𝔼x[v(Xn
TA∧TB)1TA>TB]

⩾𝔼x[v(Xn
TA∧TB)1TA<TB]+𝔼x[v(Xn

TA∧TB)1TA>TB].

Letting n→∞ this quantity converges to

𝔼x[v(Xn
TA∧TB)1TA<TB]+𝔼x[v(Xn

TA∧TB)1TA>TB]→𝔼x[v(XTA)1TA<TB]+𝔼x[v(XTB)1TA>TB]

=𝔼x[1TA<TB]=u(x)

Therefore we have proved that v(x) ⩾ u(x) for any positive solution to (8) and moreover we can
also show that if TA∧TB<+∞ a.s. then v(x)=u(x) namely, there exisys only one positive solution
to the above system.
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Remark 10. This line of reasoning draws a strong link between the asymptotic behaviour of
certain Markov processes and the solutions of a wide class of linear equations. In continuous time
the generator of continuous Markov processes corresponds to second order differential equation
and this link become a powerful tool to study elliptic and parabolic equations, especially when the
coefficients or the domain are not very regular.

Probabilities are not the only quantities amenable to this kind of approach. Let us consider for
example the average time u(x)= 𝔼x[TA] to reach a given set A ∈ ℰ starting from the point x ∈ A.
In this case if x∈ Ac we have TA =TA ∘𝜃1+1 and the Markov property gives

u(x)=𝔼x[TA ∘𝜃1]=𝔼x[1+𝔼X1[TA]]=1+𝔼x[u(x)]=1+(Pu)(x)

while if x∈ A then u(x)=0. Therefore the equation for u now reads

{{{{{{{{{{{{{{{{{{{{ (ℒu)(x) = −1, x∈ Ac,
u(x) = 0, x∈ A, (9)

and again 𝔼x[TA] is the smallest positive solution to this equation, indeed, if v is another solution
the process Mn =v(Xn

TA)+(n∧TA) is a martingale and then

v(x)=𝔼x[M0]=𝔼x[Mn]=𝔼x[v(Xn
TA)]+𝔼x[(n∧TA)]⩾𝔼x[n∧TA]

and by monotone convergence, as n→∞ we have 𝜈(x)⩾𝔼x[TA]=u(x).

Note that we have TA = ∑k=0
TA−1 1. Therefore the same reasoning can be applied to more general

quantities of the form

u(x)=𝔼x[[[[[[[[[[[[[[[[[�
k=0

TA−1

g(Xk)+q(XTA)1TA<∞]]]]]]]]]]]]]]]]]

for given (positive) functions g, q:E → ℝ+ and set A ∈ ℰ. In this case the equation satisfied by u
is of the general form

{{{{{{{{{{{{{{{{{{{{ (ℒu)(x) = −g(x), x∈ Ac,
u(x) = q(x), x∈ A.

And is not difficult to prove that for any solution v of this system

Mn =v(Xn)+ �
k=0

TA−1

g(Xk)

is a positive martingale and that v⩾u.
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