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Exercise 1. [3+2+2 Pts] Let (
; F ; �) a �-�nite measure space and de�ne the outer measure ��:
P(
)! [0;1] as in the lecture while the inner measure ��:P(
)! [0;1] as

��(A)= sup f�(F ):F 2F :A�F g:

a) LetM(�)=fA2P(
): forallB 2F with �(B)<1; ��(A\B)= ��(A\B)g. Prove thatM(�)
is a �-algebra which contains all the sets with outer measure zero and F .

b) Prove that � is a measure onM(�). The measure space (
;M(�); �) is called the completion
of the original measure space.

c) Let � be a probability measure and assume that there exists G2P(
) such that ��(G)=1. Let
G=�(G\F :F 2F). Prove that (G; G ; ��) is a probability space.

Exercise 2. [2+3 Pts]

a) Let P and Q be probability measures on (R;B(R)) that agree on all intervals of the form (x; y],
where ¡16x6y<1. Prove that the two probability measures are equal.

b) Let (
i; Fi; Pi)i=1;2 two probability spaces. Let 
 = 
1 � 
2 and F be the �-algebra on 

generated by events of the form A�B with A 2 F1 and B 2F2. Prove that there is only one
measure � on (
;F) such that P(A�B)=P1(A)P2(B).

Exercise 3. [3 Pts] Let (
; F ; �) be a �-�nite measure space and f : (
; F)! (R+; B(R+)) be a
measurable function. Denote by � the Lebesgue measure on R: Use Fubini's theorem to prove that for
any 16 p<1 Z

f pd�=

Z
0

1
ptp¡1�(f > t)�(dt):
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