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Exercise 1. [3 pts] Let (E,ℰ) be a discrete space endowed with the full 𝜎-algebra of its subsets. Prove that any
Markov chain on E can be realised as a random recurrence. Namely that there is a random recurrence which
has the same law as the given Markov chain.

Exercise 2. [1+1+1+1 pts] Consider throwing a dice repeatedly and determine whether the following processes
are Markov chains and in that case describe their transition kernel.

a) At the n-th throws, Xn is the biggest result obtained.

b) At the n-th throws, Nn is the number of 6s obtained.

c) At the n-th throws, Cn is the number of dice thrown after the last 6 observed (e.g. Cn =0 if we observe
6 at time n and Cn =4 if the last numbers we observed are ⋯,6,3, 4,2, 2).

d) Bn =∑k=0
n Nk.

Exercise 3. [1+1+2 pts] Let (Xn)n⩾0 be an homogeneous Markov chain on (E, ℰ) with transition kernel P:
E × ℰ → [0, 1]. Determine whether the following processes are Markov chains and in that case describe their
transition kernel.

a) Wn =Xn+k, n⩾0, for some fixed k ⩾1.

b) Yn =X2n, n⩾0.

c) Zn =XTn, n⩾0. Here T0=0 and Tn =S1+⋯+Sn where (Sn)n⩾1 is a sequence of i.i.d. random variables
taking values in ℕ+1 and independent of (Xn)n⩾0.

Exercise 4. (FEYNMAN–KAC FORMULA) [2+3 pts] Let (Xn)n be a Markov chain on (E,ℰ) with generator ℒ.
Let w:E →ℝ+ a non-negative function:

a) For which function v is the process

Mn =exp[−�
k=0

n−1

w(Xk)]v(Xn), n⩾0,

a martingale?

b) Let D∈ℰ such that T =TDc=inf{n⩾0:Xn∈Dc}<∞ ℙx-a.s. for all x∈E and let v be a bounded solution
of the boundary value problem

{{{{{{{{{{{{{{{{{{{{{{{{{{{{ ℒv(x) = (ew(x) −1)v(x), x∈D
v(x) = f (x), x∈Dc.

where f :ℰ→ℝ is a bounded function. Show using (a) that

v(x)=𝔼x[[[[[[[[[[[[[[[[[exp(((((((((((((((((−�
k=0

T −1

w(Xk)))))))))))))))))) f (XT)]]]]]]]]]]]]]]]]].
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Exercise 5. [2+2+2 pts] Let (Xn)n be a Markov chain on a countable state space E, realised on the canonical
space with shift (𝜃n)n. Let ℙx the law of the Markov chain with X0=x a.s. For A⊆E and TA

+≔inf{n>0:Xn∈ A},
TA

n+1=TA
+∘𝜃TA

n the return times to A and for x∈E let Tx
n =T{x}

n . Assume that all the stopping times considered
here are almost surely finite.

a) Fix x∈E and prove that the interarrival times (𝜏x
n ≔Tx

n −Tx
n−1)n⩾1 at x are i.i.d.

b) Show that the number Nx =#{n⩾0:Xn = x} of visits of x is almost surely infinite.

c) Fix A ⊆ E and prove that for any x ∈ A, the process (Yn = XTA
n)n⩾0 under ℙx is a Markov chain on the

state space A. Compute its transition kernel.

Exercise 6. [1+2+2+2+1 pts] Two players A and B bet repeatedly ¿1 against each other. Each time the
probability that A wins is p ∈ (0, 1) and successive games are independent. Let Xn be the wealth of A after n
games. We assume that their total wealth is L ⩾1. Therefore if initially X0 =x∈{0,…,L} then the wealth of B
is L − x. The game ends when one of the two player goes broke, so when Xn = 0 or Xn = L. Let T = inf {n ⩾ 0:
Xn ∈{0,L}} be such a random time. Let u(x) be the probability that A wins given that X0=x (and B starts with
L − x), i.e. u(x)=ℙ(XT =L,T <∞|X0= x).

a) Show that (Xn)n⩾0 is a Markov chain and give its transition kernel

b) Show that u solves a linear equation and solve it.

c) Consider also v(x)=ℙ(XT =0,T <∞|X0=x) and deduce that ℙ(T <∞|X0=x)=1 for all x∈{0,…,L}.

d) Let m(x)=𝔼[T |X0=x] the average duration of the game when the player A starts at x. Find an equation
for m, show it has a unique solution and solve it.

e) Deduce that playing a fair game against the Casino (L →+∞, X0= x fixed) one is sure to get broke but
that in average this will require an infinite amount of time.
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