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Exercise 1. [2 Pts] Show that each o-finite measure p on some measurable space (€2, ¥ ) has a representation

of the form p = Zn>0 an iy, where for all n, a,, 20 and p,, is a probability measure on (Q, ¥%).

Exercise 2. [2+1+1+1 Pts] Let % and % two families of random variables.
a) Show that & is uniformly integrable iff supxc  E[|IX|1x;>x] =0 as K — +o0;
b) Show that '+ % ={X+Y:Xe€ X,Y € %} is uniformly integrable if &', % are;

c) Let g: R, - R, such that g(x) /x - co as x - +oo. Show that if supxecxE[g(|X])] < co then & is
uniformly integrable;

d) Show that if E[supyxeg |X|] < oo then & is uniformly integrable.

Exercise 3. [5 Pts] Let (QQ, ¥) a measure space and X, Y: Q — R two measurable functions. We write
o (X) for the o-algebra generated by the function X, namely the o-algebra generated by the sets of the form
{w € Q: X(w) < t}. Prove that if Y is measurable wrt. ¢(X) then there exists a measurable function ¢:
(R,B(R)) - (R, %B(R)) such that ¥ = ¢ (X).

Hint: First reduce the problem to considering bounded Y. Then apply the monotone class theorem.

Exercise 4. [3 Pts] Let (A,), a countable partition of Q. Let ¢ = g (Ay,...) the o-algebra generated by this
partition. Prove that
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Exercise 5. [5 Pts] Let (X, Y) a pair of random variables with values in R" x R™ and joint density fx y(x,y).
Compute the conditional probability E[g(Y)|X] for g(Y) e L'



