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Exercise 1. [1+1+1+1+1 Pts] For all X, Y ∈ L1(ℱ) and all sub-𝜎-algebras 𝒢, ℋ ⊆ ℱ, prove the following
properties of the conditional expectation:

a) Linearity: 𝔼[𝜆X +𝜇Y |𝒢]=𝜆𝔼[X|𝒢]+𝜇𝔼[Y |𝒢]a.s. for all 𝜆,𝜇∈ℝ ;

b) Jensen's inequality: for all convex 𝜑:ℝ→ℝ: 𝔼[𝜑(X)|𝒢]⩾𝜑(𝔼[X|𝒢])a.s. ;

c) Contractivity in Lp: ‖𝔼[X|𝒢]‖p ⩽‖X‖p ;

d) Telescoping: If ℋ is a sub-𝜎-algebra of 𝒢 then 𝔼[𝔼[X|𝒢]|ℋ]=𝔼[X|ℋ]=𝔼[𝔼[X|ℋ]|𝒢] a.s.;

e) If Z is 𝒢−measurable, 𝔼[|X|]<∞ and 𝔼[|XZ |]<+∞ then 𝔼[XZ |𝒢]=Z 𝔼[X|𝒢] a.s.

Exercise 2. [2 Pts] Show that, if X1 =X2 on B∈𝒢 (i.e. X1(𝜔)=X2(𝜔) if 𝜔∈B), then 𝔼[X1|𝒢]=𝔼[X2|𝒢] on
B∈𝒢.

Exercise 3. [2+2 Pts]

a) [Bayes' formula] Define ℙ(A|𝒢)=𝔼[1A|𝒢]. Show that if 𝒢 is a sub-𝜎-algebra of ℱ and A∈ℱ then

ℙ(G|A)= 𝔼[ℙ(A|𝒢)1G]
𝔼[ℙ(A|𝒢)] .

b) Give an example with Ω={a,b,c} to show that in general

𝔼[𝔼[X|ℱ1]|ℱ2]≠𝔼[𝔼[X|ℱ2]|ℱ1].

Exercise 4. [2+2 Pts]

a) Let X1 and X2 two independent r.v. both with law Poisson(𝜆) with 𝜆 > 0. Let Y = X1 + X2. Compute
ℙ(X1= k|Y) for k ⩾0.

b) Let X1 and X2 be independent r.v. such that ℙ(Xi > t)=e−t for t ⩾0. Let Y =X1+X2. Compute 𝔼[X1|Y]
and ℙ(X1<3|Y)

Exercise 5. [2+3 Pts]

a) Assume that two r.v. X, Y satisfy 𝔼[Y |𝒢] = X for some 𝜎-algebra 𝒢 ⊆ ℱ and 𝔼[X2] = 𝔼[Y 2] < ∞.
Deduce that X =Y a.s.

b) Prove the conditional Cauchy-Schwarz inequality:

𝔼[|XY ||𝒢]2 ⩽𝔼[|X|2|𝒢]𝔼[|Y |2|𝒢].
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