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opposite to the maths library. Please clearly specify your names and your tutorial group on top of your homework.

Exercise 1. [Pts 2+2+2+4] Let (Xn)n⩾1 an i.i.d. sequence uniformly distributed on the alphabet 𝒜 = {A, B,
C, …, Z} (with #𝒜 = 26). Let (ℱn)n⩾0 the natural filtration of X with ℱ0 = {∅, Ω}. Let TAB the first time we
observe the sequence AB, namely TAB =inf {n⩾2:Xn =B,Xn−1= A}.

a) Let Yn =∑k=2
n 2621Xk=B,Xk−1=A +261Xn=A for n⩾1. Show that Mn =Yn −n is a martingale.

b) Show that 𝔼[TAB]=𝔼[YTAB]=262. (Use optional stopping for (Mn)n)

c) Now show that 𝔼[TBB]=262 +26.

d) And finally that 𝔼[TABRACADABRA] = 2611 + 264 + 26. TABRACADABRA is the first time we see the
sequence “ABRACADABRA”.

Exercise 2. [Pts 2+2] Let (Xn)n⩾0 be a martingale. Show that these two statements are equivalent:

a) There exists positive martingales (Xn
+)n⩾0 and (Xn

−)n⩾0 such that Xn =Xn
+ −Xn

−;

b) X is bounded in L1.

(Hint: consider limn𝔼[Xm+n
+ ∣ℱm] for m⩾0)

Exercise 3. [Pts 3+3] (Robbins–Monroe algorithm) Let (Xn)n⩾1 be an i.i.d. sequence with repartition function
F(t) = ℙ(X1 ⩽ t) and let (ℱn)n⩾0 the natural filtration of X with ℱ0 = {∅, Ω}. We will assume that F is
continuous, striclty increasing and for all 𝛼∈(0,1) we let q𝛼 the unique solution to F(q𝛼)=𝛼 (the 𝛼-th quantile
of F). Let (Yn)n⩾1 the sequence defined by induction via

Yn+1=Yn −𝛾n(1Xn+1⩽Yn −𝛼), n⩾0, (1)

with Y0 a fixed, arbitrary constant and 𝛼∈(0,1). The sequence (𝛾n)n⩾0 is positive and decreasing and such that
∑n 𝛾n

2 < ∞, ∑ 𝛾n = +∞. The recurrence (1) is a statistical algorithm to approximate the 𝛼-th quantile q𝛼 via
observations involving only the random variables (1Xn⩽ℓn)n for a sequence of random levels (ℓn)n. It is called
the Robbins-Monroe algorithm. We want to show that Yn →q𝛼 almost surely.

a) Let (Zn)n the sequence defined by Zn =(Yn − q𝛼)2. Compute 𝔼[Zn+1∣ℱn] and show that there exists an
increasing and bounded sequence (Un)n⩾1 such that Wn =Zn −Un satisfy

0⩽𝛾n(Yn −q𝛼)(F(Yn)−𝛼)⩽Wn −𝔼[Wn+1∣ℱn].

b) Show that (Wn)n converges almost surely and that the series

�
n

𝛾n(Yn −q𝛼)(F(Yn)−𝛼)

converges in L1 and almost surely, and that from this we can deduce Yn →q𝛼 almost surely.
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