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Exercise 1. [Pts 1+2+2+1] Let (Yn)n an i.i.d. sequence with Yn⩾0 and 𝔼[Yn]=1. Let Xn=∏k=1
n Yk for all n⩾1

and X0=1.

a) Show that (Xn)n is a martingale wrt. the natural filtration of (Yn)n.

b) Assume that Yn ⩾𝛿 for some 𝛿>0. Show that 𝔼[logY1]<∞ and use the law of large numbers to show
that if ℙ(Y1=1)<1 then Xn →0 almost surely.

c) Let Zn = max (𝛿, Yn). Show that there exists 𝛿 > 0 such that 𝔼[log Zn] < ∞ and conclude that, if
ℙ(Y1=1)<1 then Xn →0 almost surely, without additional hypothesis on Y .

d) Conclude that, in general, the convergence Xn → X∞ in Doob's martingale convergence theorem is not
in L1 but only almost surely.

Exercise 2. [Pts 4] Let (Xn)n⩾0 be a super- or sub-martingale and let |X|n∗=sup0⩽k⩽n |Xk|, prove that there exists
a constant C >0 such that for all 𝜆>0 and all n⩾0,

𝜆ℙ(|X|n∗ ⩾𝜆)⩽C𝔼[|X0| + |Xn|].

(Hint: use the maximal inequality and Doob's decomposition)

Exercise 3. [Pts 2+2+3+3] (Polya's urn) At time 0 we have a urn which contains one red and one green ball.
At every instant n = 1, 2, … we draw at random a ball from the urn and we put it back adding another ball of
the same color. Let Sn the number and Xn =Sn/(n+2) the proportion of red balls in the urn at time n.

a) Show that (Xn)n is a martingale with respect to its natural filtration and compute 𝔼[Xn].

b) Show that Xn →X∞ almost surely and in L1.

c) For all k ⩾1 let

Zn
(k) = Sn(Sn +1)⋯(Sn +k −1)

(n+2)…(n+k +1) .

Show that (Zn
(k))n⩾0 is a martingale for all k ⩾1 and compute 𝔼[Zn

(k)].

d) Show that

𝔼[X∞
k ]=𝔼�Z0

(k)�= 1
k +1

and deduce that X∞ is distributed uniformly on [0,1].
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