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Note 9

Discrete Markov chains and ergodicity. Doob's h-transform.

1 Markov chains on discrete spaces

We will restrict now our considerations to the case where the state space E of the homogeneous
Markov chain is discrete (maybe infinite). In this case the transition kernel P: E → Π(E, ℰ) is
equivalent to the transition matrix P: E × E → ℝ given by P(x, y) = P(x, {y}) for all x, y ∈ E. This
matrix is stochastic, i.e. ∑y∈E P(x,y)=1 for all x∈E and P(x,y)∈[0,1] for all x,y∈E. We will
denote also Tx =T{x} the return time to x∈E.

Moreover we will assume that the Markov chain is irreducible, that is there exists positive proba-
bility to go from any state to any other, i.e. ℙx(Ty <∞)>0 for all x,y∈E. Said differently: for all
x, y ∈ E there exists n = n(x, y) such that Pn(x, y)> 0 where Pn is the n-fold matrix product of the
transition matrix P (equivalent to the n-fold composition of the transition kernels).

In this context we say that the chain is

• transient if ℙx(Tx <∞)<1 for all x∈E;

• recurrent if ℙx(Tx <∞)=1 for all x∈E;

• positive recurrent if 𝔼x[Tx]<∞ for all x∈E.

Remark 1. Similar notions can be attached to the single states of the chain. By irreducibility
is not difficult to show that they are properties which are common to all the states of the chain.
Moreover they can be extended to non-irreducible chains introducing the notions of communica-
tion classes and noting that a general chain can be decomposed in irreducible components and a
set of transient states. We will not concern ourselves here with the general theory which does not
present any additional substantial difficulty.

Theorem 2. For all x∈E:

ℙx(Xn =x infinitely often)=0⇔𝔼x[[[[[[[�
n⩾1

1Xn=x]]]]]]]<+∞⇔ℙx(Tx <∞)<1,

ℙx(Xn = x infinitely often)=1⇔𝔼x��
n⩾1

1Xn=x�=+∞⇔ℙx(Tx <∞)=1.

Moreover if the chain is irreducible then for any x,y∈E

𝔼x[[[[[[[�
n⩾1

1Xn=x]]]]]]]<+∞⟺𝔼y[[[[[[[�
n⩾1

1Xn=y]]]]]]]<+∞.
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Proof. Let 𝜆>0. By the strong Markov property we have

𝔼x[[[[[[[[[[[[�
n>0

e−𝜆n1Xn=x]]]]]]]]]]]]=𝔼x[[[[[[[[[[[[e−𝜆Tx + e−𝜆Tx𝔼[[[[[[[[[[[[ �
n−Tx>0

e−𝜆(n−Tx)1Xn=x|||||||||||||||ℱTx]]]]]]]]]]]]]]]]]]]]]]]]

=𝔼x[e−𝜆Tx]+𝔼x[[[[[[[[[[[[e−𝜆Tx𝔼XTx[[[[[[[[[[[[�
n>0

e−𝜆n1Xn=x]]]]]]]]]]]]]]]]]]]]]]]]=𝔼x[e−𝜆Tx]((((((((((((1+𝔼x[[[[[[[[[[[[�
n>0

e−𝜆n1Xn=x]]]]]]]]]]]]))))))))))))

and therefore

𝔼x[[[[[[[[[[[[�
n>0

e−𝜆n1Xn=x]]]]]]]]]]]]= 𝔼x[e−𝜆Tx]
1−𝔼x[e−𝜆Tx]

.

Assume ℙx(Tx <∞)<1, then as 𝜆↓0 we have

𝔼x[[[[[[[[[[[[�
n>0

1Xn=x]]]]]]]]]]]]=lim
𝜆↓0

𝔼x[[[[[[[[[[[[�
n>0

e−𝜆n1Xn=x]]]]]]]]]]]]=lim
𝜆↓0

𝔼x[e−𝜆Tx]
1−𝔼x[e−𝜆Tx]

= ℙx(Tx <∞)
1−ℙx(Tx <∞) <∞

and therefore ∑n>0 1Xn=x < ∞ ℙx-a.e. and ℙx(Xn = x infinitely often) = 0. On the other hand if
ℙx(Xn=x infinitely often)>0 then also 𝔼x[∑n>01Xn=x]=+∞ and the same limit necessarily gives
ℙx(Tx <∞)=1. Then it is easy to conclude using the strong Markov property that

ℙx(Tx <∞)=1⇒ℙx(Xn = x infinitely often)=1.

From this we can deduce all the remaining implications in the first two claims. For the last,
observe that, given two states x, y ∈ E by irreducibility there exists m1, m2 such that Pm1(x,
y)>0 and Pm2(y,x)>0, therefore

Pm1+m2+k(y,y)⩾Pm2(y,x)Pk(x,x)Pm1(x,y)

and

�
n⩾1

Pn(y,y)⩾Pm2(y,x)Pm1(x,y)�
n⩾1

Pn(x,x)

from which we conclude since 𝔼x[∑n⩾1 1Xn=x]=∑n⩾1 Pn(x,x). □

In particular, for any irreducible chain the tail event {Xn =x infinitely often} is trivial.

We are going now to study the asymptotic behaviour of irreducible chains. A measure 𝜇 on (E,ℰ)
(not necessarily a probability) is invariant for the transition kernel P iff it is nontrivial and

𝜇P=𝜇.

Similarly a probability measure 𝜋∈ Π(E, ℰ) is invariant for a Markov chain with kernel P iff 𝜋
is invariant wrt. P. In this case, if we choose the initial state of the chain according to 𝜋 then the
law of the chain is invariant under time shift, namely, defining ℙ𝜋 =∫ℙx𝜋(dx) we have

𝔼𝜋(F ∘𝜃n)=𝔼𝜋[F]
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for all bounded measurable F:Eℕ →ℝ and all n⩾0.

Let us settle the question of uniqueness of invariant measures for discrete chains.

Lemma 3. If a discrete chain is irreducible, then any invariant measure 𝜌 is everywhere strictly
positive and finite, i.e. 𝜌(y)∈(0,+∞) for all y∈E.

Proof. Let 𝜌 be a non-trivial invariant measure, then there must be x∈E such that 𝜌(x)∈(0,+∞).
By irreducibility for any y ∈ E there exists n > 0 such that P(n)(x, y) > 0, now we also have by
invariance

𝜌(y)=(𝜌P)(y)=⋯=(𝜌P⋯P�
n

)(y)=(𝜌P(n))(y)= �
z∈E

𝜌(z)P(n)(z,y)⩾𝜌(x)P(n)(x,y)>0

so we conclude that 𝜌(y) > 0 for all y ∈ E. By exchaning the role of x and y we also deduce that
𝜌(y)<+∞ for all y∈E. □

Lemma 4. If a discrete chain is irreducible, then any two invariant measures 𝜌,𝜇 such that there
exists x∗ ∈E for which

𝜌(x)
𝜇(x) ⩾ 𝜌(x∗)

𝜇(x∗)
, x∈E

differ by a multiplicative constant.

Proof. Using invariance of 𝜌 we have for all n⩾1

𝜌(x∗)=𝜌Pn(x∗)= �
y∈E

𝜌(y)Pn(y,x∗)⩾ 𝜌(x∗)
𝜇(x∗)

�
y∈E

𝜇(y)Pn(y,x∗)⩾ 𝜌(x∗)
𝜇(x∗)

𝜇(x∗)=𝜌(x∗)

which implies that the equality in the middle inequality, that is

𝜌(y)= 𝜌(x∗)
𝜇(x∗)

𝜇(y)

for any y∈E connected to x∗. By irreducibility this holds for any y∈E which proves the claim. □

Corollary 5. An irreducible and finite chain has only one invariant probability (and all the
invariant measures are proportional to it).

Proof. The uniqueness is clear from Lemma 4 since for any two invariant probabily the ratio of
their values at points must have a minimum, since the state space is finite. The existence can be
proven in various ways. In particular is not difficult to see that the chain must be recurrent and
then we can use the construction below of an invariant measure. □

Remark 6. Note that it could exists an invariant measure but not an invariant probability, think
to the case of the simple random walk on ℤ where any constant measure is invariant.
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If the chain is recurrent, for any x∈E we can define the measure 𝜈x as

𝜈x(y)=𝔼x[[[[[[[[[[[[[[[[[�
n=1

Tx

1Xn=y]]]]]]]]]]]]]]]]], y∈E.

Theorem 7. If the chain is irreducible and recurrent then 𝜈x is an invariant measure. Moreover
any other invariant measure is proportional to it and therefore also 𝜈y =Cx,y𝜈x.

Proof. Let 𝜈x(y)=𝔼x�∑n=1
Tx 1Xn=y�. We show that 𝜈x is an invariant measure, namely that 𝜈xP=

𝜈x:

𝜈x(y)=𝔼x[[[[[[[[[[[[[[[[[�
n=1

Tx

1Xn=y]]]]]]]]]]]]]]]]]= �
z∈E

𝔼x[[[[[[[[[[[[[[[[[�
n=1

Tx

1Xn=y,Xn−1=z]]]]]]]]]]]]]]]]]

=�
z∈E

𝔼x[[[[[[[[[[[[�
n⩾1

1Tx⩾n𝔼x[1Xn=y,Xn−1=z|ℱn−1]]]]]]]]]]]]]

=�
z∈E

𝔼x[[[[[[[[[[[[�
n⩾1

1Tx⩾n1Xn−1=z]]]]]]]]]]]]P(z,y)= �
z∈E

𝔼x[[[[[[[[[[[[�
n⩾1

1Tx⩾n1Xn=z]]]]]]]]]]]]P(z,y)

=�
z∈E

𝜈x(z)P(z,y)=(𝜈xP)(y)

where we used the Markov property and the fact that, by recurrence, X0 = XTx = x to rewrite the
summation over n. As a consequence 𝜇x is an invariant probability for the chain.

Let 𝜌 be another invariant measure, then

𝜌(y)=𝜌P(y)=𝜌(x)P(x,y)+�
z≠x

𝜌(z)P(z,y).

By iterating this equation we have

𝜌(y)⩾𝜌(x)[[[[[[[[[[[[P(x,y)+�
z≠x

P(x, z)P(z,y)+ �
z1,z2≠x

P(x, z1)P(z1, z2)P(z2,y)+⋯]]]]]]]]]]]].

Now note that

P(x,y)+�
z≠x

P(x, z)P(z,y)+ �
z1,z2≠x

P(x, z1)P(z1, z2)P(z2,y)+⋯

=�
k⩾1

ℙ(X1≠ y,X2 ≠y,…,Xk =y)=𝔼x[[[[[[[[[[[[[[[[[�
k=1

Tx−1

1Xk=y]]]]]]]]]]]]]]]]]=𝜈x(y)= 𝜈x(y)
𝜈x(x)

so

𝜌(y)
𝜈x(y) ⩾ 𝜌(x)

𝜈x(x)
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and therefore by Lemma 4 we conclude that

𝜌(y)
𝜌(x) =𝜈x(y).

□

Remark 8. Note that if the chain is not assumed recurrent then the only thing we can deduce is
that 𝜈x(y)⩾(𝜈xP)(y).

As a result we must have 𝜈x =Cx,y𝜈y for some constant Cx,y. However note that

𝜈x(E)=𝔼x[𝕋x], 𝜈x(x)=1, x∈E,

since ∑n=1
Tx 1Xn=x = 1, ℙx-a.s. Therefore if the chain is positive recurrent then Cx,y = 𝔼x[Tx] /

𝔼y[Ty] and 𝜇x =𝜈x/𝔼x[Tx] is a probability measure for which

𝜇x(y)=𝜇y(y)= 1
𝔼y[Ty]

,

so it does not depend on x and calling it simply 𝜇 we have 𝜇(y)=(𝔼y[Ty])−1. We record this result
in the following

Corollary 9. If the chain is positive recurrent and irreducible then the probability measure

𝜇(x)=1/𝔼x(Tx), x∈E,

is the only invariant measure of the chain.

Theorem 10. If 𝜇 is a finite invariant measure for an irreducible chain, then the chain is positive
recurrent and 𝜋=𝜇/𝜇(E) is the only invariant probability.

Proof. Assume the chain is transient and irreducible then for any x, y there exists n such that
Pn(y,x)> 0 and at the same time 0 = ℙy(Xn = y i.o.)⩾ Pn(y, x)ℙx(Xn = y i.o.). Therefore for all x,
y∈E we have ℙx(Xn =y i.o.)=0. But then we must also have by dominated convergence

lim
n→∞

ℙx(Xn =y)= lim
n→∞

𝔼x[1Xn=y1{Xn=y i.o.}c]=𝔼x� lim
n→∞

(1Xn=y1{Xn=y i.o.}c)�=0

since 1Xn=y(𝜔) → 0 for all 𝜔 ∈ {Xn = y i.o.}. Moreover, since the measure is finite, again by
dominated convergence we have

lim
n→∞

�
x∈E

𝜇(x)ℙx(Xn =y)=0.

But this is not possible since by invariance ∑x∈E 𝜇(x)ℙx(Xn = y) = (𝜇Pn)(y) = 𝜇(y) for all n
and this implies 𝜇 ≡ 0. Therefore the chain is recurrent and we can consider the measure 𝜈x. By
irreducibility we deduce that 𝜈x =C𝜇. Summing over all E we obtain 𝔼x[Tx]=𝜈x(E)=C𝜇(E)<
∞ whenever the measure 𝜇 is finite and the chain is positive recurrent. We conclude that 𝜋 is the
unique invariant probability. □
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Example 11. Let E a finite connected directed graph and let P the transition kernel given by

P(x,y)= 1
d(x)1x∼y

where d(x) is the degree of the vertex x, i.e the number of vertices y∈E connected to x (we write
y∼x). Then the measure 𝜇(x)=d(x) is stationary

𝜇P(x)=�
y∼x

d(y)P(y,x)=�
y∼x

1=d(x)=𝜇(x)

and therefore the unique invariant probability is given by

𝜋(x)= 𝜇(x)
2N

where N =∑x d(x) is the number of edges. So we can compute the return time to x as

𝔼x[Tx]= 1
𝜋(x) = 2N

d(x).

2 Doob's h-transform

We work here on the canonical space of a Markov process (Xn)n⩾0 with the probability ℙx0.
Let h be a positive harmonic function such that h(x0) = 1 for some x0 ∈ E. Then (h(Xn))n⩾0 is a
martingale with average 1 under ℙx0. On ℱn we can define the probability ℚn by

𝔼ℚn[F]=𝔼x0[h(Xn)F].

The family (ℚn)n⩾0 is a consistent family of probabilities defined on the increasing family of 𝜎-
algebras (ℱn)n⩾0, indeed by the martingale property of (h(Xn))n⩾0, for all F ∈ℱn and for all n⩽m
we have

𝔼ℚn[F]=𝔼x0[h(Xn)F]=𝔼x0[h(Xm)F]=𝔼ℚm[F].

Therefore it defines a unique probability measure ℚ on ℱ = ∨n⩾0ℱn by Caratheodory extension
theorem. The measure ℚ is called Doob's h-transform of ℙ. We have

dℚ
dℙ �

ℱn
=h(Xn), n⩾0.

Note that the ℚ probability that (Xn)n⩾0 visits the set Z ={x:h(x)=0} is zero. Indeed

ℚ(TZ <∞)= lim
n→∞

𝔼[h(Xn)1TZ⩽n]= lim
n→∞

𝔼�𝔼[h(Xn)|ℱTZ]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0

1TZ⩽n�=0.

Moreover since (h(Xn))n⩾0 is a positive martingale, if we have h(Xn)=0 for some n then h(Xm)=0
for all m⩾0 and therefore h(Xn)=h(Xn∧TZ).
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Under the measure ℚ the process (Xn)n⩾0 is a Markov process with generator

ℒhf =h−1(ℒ(hf ))

We have that for all f =h−1g bounded and measurables

M̂n
f =(h−1g)(Xn)− (h−1g)(X0)−�

k=0

n−1

(ℒhf )(Xk)

is a martingale under ℚ: for all n⩾0 and all A∈ℱn

𝔼ℚ�ΔM̂n+1
f 1A�=𝔼x�h(Xn+1)ΔMn+1

f 1A�

=𝔼x[h(Xn+1)((h−1g)(Xn+1)− (h−1g)(Xn)−ℒhf (Xn))1A]

=𝔼x[(g(Xn+1)−g(Xn)−h(Xn)ℒf (Xn))1A]=𝔼x[(Pg(Xn)−g(Xn)− (hℒhf )(Xn))1A]=0.

The h-transform is a useful tool to describe Markov processes conditioned upon certain events.

For example consider the event that the Markov process never touch a given set A∈ℰ and assume
that ℙx0(TA =+∞)>0. Then let

h(x)= ℙx(TA =+∞)
ℙx0(TA =+∞), x∈E.

By construction the function h is a positive harmonic function in Ac with h(x0) = 1 and h(x) = 0
on A. This is not quite what we had before but indeed all we used is the availability of a positive
martingale with average 1. In this case we can construct the h-transformed measure ℚ using the
positive martingale (h(Xn∧TA))n.

For all event B∈ℱn

ℙx0(B|TA =+∞)= ℙx0(B,TA =+∞)
ℙx0(TA =+∞) = 𝔼x0[1B𝔼[1TA=+∞|ℱn]]

ℙx0(TA =+∞)

But now 𝔼[1TA=+∞|ℱn]=𝔼[1TA=+∞ ∘𝜃n|ℱn]1TA⩾n =h(Xn)1TA⩾n =h(Xn∧TA) so

ℙx0(B|TA =+∞)= ℙx0(B,TA =+∞)
ℙx0(TA =+∞) =𝔼x0[1B h(Xn∧TA)]=𝔼ℚ[1B ]

which allows to identify the conditional measure ℙ(⋅|TA = +∞) with the h-transformed measure
ℚ.

In order to extend this result to more general probabilities we need the notion of space-time har-
monic functions, namely functions f :ℕ×E such that ( f (n,Xn))n is a martingale. Given a positive
space-time harmonic function h we can again construct its h tranform as above and in general we
will obtain an inhomogeneous Markov chain, even starting from an homogeneous one.

Example 12. Consider the measure ℙ(⋅|XN ∈ A) for some fixed N >0 and A∈ℰ. Let

h(n,x)=ℙx(XN−n ∈ A).
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Then h is a space–time harmonic function and the corresponding h transformed measure ℚ coin-
cides with ℙ(⋅|XN ∈ A). It describes the Markov chain (Xn)n conditioned to reach A at time N .
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