Lecture 10 · 14.5.2021 · 10:15-12:00 via Zoom

Martingales

We assume we are given a prob. space $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $(\mathcal{F}_n)_{n\geqslant 0}$ which will be fixed all along this lecture (unless specified otherwise). The given of $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geqslant 0}, \mathbb{P})$ it is called a filtered probability space.

We want to characterise the class \mathcal{M} of real-valued stochastic processes $(X_n)_{n\geq 0}$ which are adapted, integrable (i.e. $X_n \in L^1(\mathbb{P})$ for all $n \geq 0$) and such that for all bounded stopping times T

$$\mathbb{E}[X_T] = \mathbb{E}[X_0],\tag{1}$$

This class models the total gain (or loss) in a "fair" games of chance.

Lemma. An adapted and integrable process $(X_n)_{n\geq 0}$ satisfies (1) iff for all $n\geq 0$ we have

$$\mathbb{E}[X_{n+1}|\mathscr{F}_n] = X_n. \tag{2}$$

Proof. Let's start to show that (1) implies (2). The idea is to find a appropriate stopping time. For any $n \ge 0$ and any $A \in \mathcal{F}_n$ we can define the stopping time (check)

$$T_{n,A}(\omega) = \begin{cases} n+1 & \text{if } \omega \in A \\ n & \text{otherwise} \end{cases}$$

This is a stopping time bounded by n + 1 and therefore by (1) we have

$$0 = \mathbb{E}[X_{T_{n,A}}] - \mathbb{E}[X_0] = \mathbb{E}[X_{n+1} \underbrace{\mathbb{I}_A}_{\in \mathscr{F}_n} + X_n \mathbb{I}_{A^c}] - \mathbb{E}[X_0]$$

$$= \mathbb{E}\left[\mathbb{E}\left[X_{n+1} \middle| \mathscr{F}_n\right] \mathbb{1}_A\right] - \mathbb{E}\left[X_n \mathbb{1}_A\right] + \underbrace{\mathbb{E}\left[X_n\right] - \mathbb{E}\left[X_0\right]}_{=0 \text{ by (1) since } n \text{ is a bounded stopping time}}$$

So we have that for all $n \ge 0$ and $A \in \mathcal{F}_n$ we have

$$\mathbb{E}[\mathbb{E}[X_{n+1}|\mathscr{F}_n]\mathbb{1}_A] = \mathbb{E}[X_n\mathbb{1}_A]$$

which implies that $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$ (\mathbb{P} -a.s.).

Let's now prove that $(2)\Rightarrow(1)$. Consider an arbitrary stopping time T bounded by some $N \in \mathbb{N}$ (i.e. $T(\omega) \leq N$ for all $\omega \in \Omega$). By decomposing the prob. space according to the values of T we have

$$\mathbb{E}[X_T] = \sum_{n=0}^{N} \mathbb{E}[X_T \mathbb{1}_{T=n}] = \sum_{n=0}^{N} \mathbb{E}[X_n \mathbb{1}_{T=n}]$$

Now we observe that if (2) holds for any $n \ge 0$ then for any $k \ge n + 1$

$$\mathbb{E}[X_k|\mathscr{F}_n] = \mathbb{E}\left[\underbrace{\mathbb{E}[X_k|\mathscr{F}_{k-1}]}_{=X_{k-1}}|\mathscr{F}_n\right] = \mathbb{E}[X_{k-1}|\mathscr{F}_n] = \underbrace{\cdots}_{\text{induction}} = X_n$$

and therefore we have

$$\mathbb{E}\left[X_{N}|\mathscr{F}_{n}\right] = X_{n} \tag{3}$$

П

for any $n \in \{0, ..., N\}$. So now

$$\mathbb{E}[X_T] = \sum_{n=0}^N \mathbb{E}\left[\mathbb{E}[X_N | \mathscr{F}_n] \underbrace{\mathbb{1}_{T=n}}_{\hat{e} \mathscr{F}_n}\right] = \sum_{n=0}^N \mathbb{E}[X_N \mathbb{1}_{T=n}] = \mathbb{E}[X_N].$$

(Stopping at the random time T is in average equivalent to stopping at the final time N). But now using again (3) with n = 0 we have

$$\mathbb{E}[X_T] = \mathbb{E}[X_N] = \mathbb{E}[\mathbb{E}[X_N | \mathscr{F}_0]] = \mathbb{E}[X_0]$$

which is want we wanted to prove.

Definition. A real, adapted and integrable stochastic process $(X_n)_{n \ge 0}$ is called

- a) A martingale iff $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$ for all $n \ge 0$;
- b) A submartingale iff $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geqslant X_n$ for all $n \geqslant 0$;
- c) A supermartingale iff $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \leq X_n$ for all $n \geq 0$;

In the game interpretain a martingale is a "fair game", a submartingale is a "favorable game", a supermartingale is an "unfavorable game".

Note that a (super-,sub-)martingale satisfies

$$\mathbb{E}\left[\Delta X_{n+1}|\mathcal{F}_n\right] \stackrel{\geq}{=} 0$$

with $\Delta X_{n+1} := X_{n+1} - X_n$.

The name of these objects is related to a corresponding naming of object in theory of harmonic functions (e.g. superharmonic, subharmonic). There is a precise relation between the theory of martingales and theory of harmonic functions, we will see it later on.

Example.

- 1. Let $X \in L^1(\mathcal{F})$ and let $X_n := \mathbb{E}[X|\mathcal{F}_n]$, then the process $(X_n)_{n \ge 0}$ is a martingale. Check the three properties: adaptedness, integrability and the martingale relation (i.e. $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$). That's the fundamental example of martingales.
- 2. A process $(A_n)_{n\geq 0}$ which is integrable, adapted, increasing (resp. decreasing) then it is a submartingale (resp. supermartingale).
- 3. Note that a martingale is both a supermart. and a submart.
- 4. Let $(X_n)_{n\geq 1}$ a sequence of i.i.d. r.v.s which are integrable and with $\mathbb{E}[X_1] = 0$. Let

$$Y_n = X_1 + \cdots + X_n$$

for all $n \ge 1$ with $Y_0 = 0$. Take moreover $(\mathscr{F}_n^Y = \sigma(Y_0, ..., Y_n))_{n \ge 0}$ to be the filtration generated by $(Y_n)_{n \ge 0}$, then $Y_{\bullet} = (Y_n)_{n \ge 0}$ is a martingale wrt. the filtration $(\mathscr{F}_n^Y)_{n \ge 0}$. If $\mathbb{E}[X_1] \ge 0$ the Y_{\bullet} is a submartingale while if $\mathbb{E}[X_1] \le 0$ it is a supermartingale. The process Y_{\bullet} is called also the random walk with increments $(X_n)_{n \ge 0}$.

5. If $(X_n)_{n\geq 0}$ is a (super-,sub-)mart. wrt. a filtration $(\mathcal{G}_n)_{n\geq 0}$, then it is also a (super,sub)mart. with respect to its own filtration, i.e. $(\mathcal{F}_n^X = \sigma(X_0, \dots, X_n))_{n\geq 0}$.

Stopping times. A typical example of stopping time is something like

$$T = \inf\{n \ge 0: X_n \in A\}$$

the first time the process $(X_n)_n$ enters the set A. The idea is that the event $\{T=n\}$ correspond to the choice of stopping at time n and this depends on \mathcal{F}_n , that is on the information available at time n.

In the particular case when $(\mathscr{F}_n)_n = (\mathscr{F}_n^Z)_n$ is generated by a real-valued stochastic process $(Z_n)_{n\geqslant 0}$ then for any $n\geqslant 0$ there exists a measurable function $h_n:\mathbb{R}^{n+1}\to\{0,1\}$ such that

$$\mathbb{1}_{T=n} = h_n(Z_0, Z_1, \dots, Z_n).$$

The given of T is equivalent to the family of functions $(h_n)_{n\geq 0}$.

Recall that a previsible process $(Y_n)_{n\geq 0}$ is a process such that $Y_{n+1} \in \mathcal{F}_n$ for all $n \geq 0$.

Proposition. (Doob's decomposition) Let $(X_n)_{n\geqslant 0}$ be an adapted and integrable stochastic process, then there exists a unique decomposition

$$X_n = X_0 + M_n + I_n, \qquad n \geqslant 0,$$

where $(M_n)_{n\geq 0}$ is a martingale and $(I_n)_{n\geq 0}$ a previsible process with $I_0=0$. Moreover:

- 1. $I_n = 0$ for all $n \ge 0$ iff X is a martingale,
- 2. I is increasing **iff** X is a submartingale,
- 3. I is decreasing iff X is a supermartingale.

Proof. For existence one observe

$$\Delta X_{n+1} = X_{n+1} - X_n = X_{n+1} - \mathbb{E}[X_{n+1} | \mathscr{F}_n] + \mathbb{E}[X_{n+1} | \mathscr{F}_n] - X_n$$

and let $\Delta M_{n+1} := X_{n+1} - \mathbb{E}[X_{n+1}|\mathcal{F}_n]$ and $\Delta I_{n+1} := \mathbb{E}[X_{n+1}|\mathcal{F}_n] - X_n$ with $M_0 = 0$, $I_0 = 0$. This defines two processes M_{\bullet} and I_{\bullet} and I_{\bullet} leave you to check that they satisfy the properties stated in the proposition. For example, note that

$$\mathbb{E}\left[\Delta M_{n+1}|\mathscr{F}_n\right] = \mathbb{E}\left[X_{n+1} - \mathbb{E}\left[X_{n+1}|\mathscr{F}_n\right]|\mathscr{F}_n\right] = \mathbb{E}\left[X_{n+1}|\mathscr{F}_n\right] - \mathbb{E}\left[X_{n+1}|\mathscr{F}_n\right] = 0.$$

For the uniqueness assume that there exists another pair M'_{\bullet} , I'_{\bullet} which satisfy the same assumptions as M_{\bullet} , I_{\bullet} , then we have that

$$M_n - M'_n + I_n - I'_n = X_n - X_0 - X_n + X_0 = 0, \quad n \ge 0$$

which implies that

$$M_n - M'_n = I'_n - I_n, \quad n \geqslant 0.$$

In particular the process $N_n := M_n - M'_n$ is both a martingale (as difference of two martingales, you can check that martingales indeed for a vector space over \mathbb{R}) and it is also a previsible process since $N_n = I'_n - I_n \in \mathscr{F}_{n-1}$ for all $n \ge 1$. Now the point is that a previsible martingale is constant process:

$$N_{n+1} = \mathbb{E}[N_{n+1}|\mathcal{F}_n] = N_n = \cdots = N_0 = 0$$

which proves that $N_n = 0$ for all $n \ge 0$ and therefore that M = M' and I = I', uniqueness of the decomposition.

The char. of the decomp. for (super-,sub-)mart. is left as exercise.

Proposition. Let $(X_n)_{n\geqslant 0}$ be a martingale (resp. sub-martingale) and $\Phi: \mathbb{R} \to \mathbb{R}$ a convex function (resp. convex and increasing) such that $(\Phi(X_n))_{n\geqslant 0}$ is an integrable process, then $(\Phi(X_n))_{n\geqslant 0}$ is a submartingale.

Example 1. If $(X_n)_{n\geqslant 0}$ is a martingale then $(|X_n|^p)_{n\geqslant 0}$ is a sub-martingale for all $p\geqslant 1$ provided $X_n\in L^p$ for all $n\geqslant 1$.

Proposition. Let $(X_n)_{n\geqslant 0}$ be a square-integrable martingale (i.e. a martingale such that $X_n \in L^2$ for all $n\geqslant 0$) then the sub-martingale $(X_n^2)_{n\geqslant 0}$ has the decomposition

$$X_n^2 = X_0^2 + N_n + [X]_n$$

where

$$N_n := 2\sum_{k=1}^n X_{k-1} \Delta X_k, \qquad [X]_n := \sum_{k=1}^n (\Delta X_k)^2.$$

The process $(N_n)_{n\geqslant 0}$ is a martingale and the process $([X]_n)_{n\geqslant 0}$ is an increasing process called the quadratic variation of X.

Remark. The process $([X]_n)_{n\geqslant 0}$ is not previsible therefore this is not Doob's decomposition, but it is still a useful decomposition and a natural one for L^2 martingales.