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Martingales
We assume we are given a prob. space (Ω, ℱ, ℙ) and a filtration (ℱn)n⩾0 which will be fixed
all along this lecture (unless specified otherwise). The given of (Ω, ℱ,(ℱn)n⩾0, ℙ) it is called a
filtered probability space.

We want to characterise the class ℳ of real-valued stochastic processes (Xn)n⩾0 which are
adapted, integrable (i.e. Xn ∈L1(ℙ) for all n⩾0) and such that for all bounded stopping times T

𝔼[XT]=𝔼[X0], (1)

This class models the total gain (or loss) in a “fair” games of chance.

Lemma. An adapted and integrable process (Xn)n⩾0 satisfies (1) iff for all n⩾0 we have

𝔼[Xn+1|ℱn]=Xn. (2)

Proof. Let's start to show that (1) implies (2). The idea is to find a appropriate stopping time. For
any n⩾0 and any A∈ℱn we can define the stopping time (check)

Tn,A(𝜔)={{{{{{{{{{{{{{{{{{{{ n+1 if 𝜔∈ A
n otherwise

This is a stopping time bounded by n+1 and therefore by (1) we have

0=𝔼[XTn,A]−𝔼[X0]=𝔼�Xn+11A�
∈̂ℱn

+Xn1Ac�−𝔼[X0]

=𝔼[𝔼[Xn+1|ℱn]1A]−𝔼[Xn1A]+ 𝔼[Xn]−𝔼[X0]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0, by (1), since n is a bounded stopping time

So we have that for all n⩾0 and A∈ℱn we have

𝔼[𝔼[Xn+1|ℱn]1A]=𝔼[Xn1A]

which implies that 𝔼[Xn+1|ℱn]=Xn (ℙ-a.s.).
Let's now prove that (2)⇒(1). Consider an arbitrary stopping time T bounded by some N ∈ℕ (i.e.
T(𝜔)⩽N for all 𝜔∈Ω). By decomposing the prob. space according to the values of T we have

𝔼[XT]= �
n=0

N

𝔼[XT1T =n]= �
n=0

N

𝔼[Xn1T =n]

Now we observe that if (2) holds for any n⩾0 then for any k ⩾n+1

𝔼[Xk|ℱn]=𝔼�𝔼[Xk|ℱk−1]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=Xk−1

|ℱn�=𝔼[Xk−1|ℱn]= ⋅ ⋅ ⋅�
induction

=Xn
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and therefore we have

𝔼[XN|ℱn]=Xn (3)

for any n∈{0, . . . ,N}. So now

𝔼[XT]= �
n=0

N

𝔼�𝔼[XN|ℱn]1T =n�
∈̂ℱn

�= �
n=0

N

𝔼[XN1T =n]=𝔼[XN].

(Stopping at the random time T is in average equivalent to stopping at the final time N). But now
using again (3) with n=0 we have

𝔼[XT]=𝔼[XN]=𝔼[𝔼[XN|ℱ0]]=𝔼[X0]

which is want we wanted to prove. □

Definition. A real, adapted and integrable stochastic process (Xn)n⩾0 is called

a) A martingale iff 𝔼[Xn+1|ℱn]=Xn for all n⩾0;

b) A submartingale iff 𝔼[Xn+1|ℱn]⩾Xn for all n⩾0;

c) A supermartingale iff 𝔼[Xn+1|ℱn]⩽Xn for all n⩾0;

In the game intepreation a martingale is a “fair game”, a submartingale is a “favorable game”, a
supermartingale is an “unfavorable game”.

Note that a (super-,sub-)martingale satisfies

𝔼[ΔXn+1|ℱn]=
⩾
⩽

0

with ΔXn+1 ≔Xn+1−Xn.

The name of these objects is related to a corresponding naming of object in theory of harmonic
functions (e.g. superharmonic, subharmonic). There is a precise relation between the theory of
martingales and theory of harmonic functions, we will see it later on.

Example.

1. Let X ∈L1(ℱ) and let Xn ≔𝔼[X|ℱn], then the process (Xn)n⩾0 is a martingale. Check the
three properties: adaptedness, integrability and the martingale relation (i.e. 𝔼[Xn+1|ℱn]=
Xn). That's the fundamental example of martingales.

2. A process (An)n⩾0 which is integrable, adapted, increasing (resp. decreasing) then it is a
submartingale (resp. supermartingale).

3. Note that a martingale is both a supermart. and a submart.

4. Let (Xn)n⩾1 a sequence of i.i.d. r.v.s which are integrable and with 𝔼[X1]=0. Let

Yn =X1 + ⋅ ⋅ ⋅ +Xn
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for all n⩾1 with Y0=0. Take moreover (ℱn
Y =𝜎(Y0,...,Yn))n⩾0 to be the filtration generated

by (Yn)n⩾0, then Y• =(Yn)n⩾0 is a martingale wrt. the filtration (ℱn
Y)n⩾0. If 𝔼[X1]⩾ 0 the

Y• is a submartingale while if 𝔼[X1]⩽ 0 it is a supermartingale. The process Y• is called
also the random walk with increments (Xn)n⩾0.

5. If (Xn)n⩾0 is a (super-,sub-)mart. wrt. a filtration (𝒢n)n⩾0, then it is also a (super,sub)-
mart. with respect to its own filtration, i.e. (ℱn

X =𝜎(X0, . . . ,Xn))n⩾0.

Stopping times. A typical example of stopping time is something like

T =inf {n⩾0:Xn ∈ A}

the first time the process (Xn)n enters the set A. The idea is that the event {T =n} correspond
to the choice of stopping at time n and this depends on ℱn, that is on the information avail-
able at time n.
In the particular case when (ℱn)n =(ℱn

Z)n is generated by a real-valued stochastic process
(Zn)n⩾0 then for any n⩾0 there exists a measurable function hn:ℝn+1 →{0,1} such that

1T =n =hn(Z0,Z1, . . . ,Zn).

The given of T is equivalent to the family of functions (hn)n⩾0.

Recall that a previsible process (Yn)n⩾0 is a process such that Yn+1 ∈̂ℱn for all n⩾0.

Proposition. (Doob's decomposition) Let (Xn)n⩾0 be an adapted and integrable stochastic process,
then there exists a unique decomposition

Xn =X0 +Mn + In, n⩾0,

where (Mn)n⩾0 is a martingale and (In)n⩾0 a previsible process with I0 =0. Moreover:

1. In =0 for all n⩾0 iff X is a martingale,

2. I is increasing iff X is a submartingale,

3. I is decreasing iff X is a supermartingale.

Proof. For existence one observe

ΔXn+1 =Xn+1−Xn =Xn+1−𝔼[Xn+1|ℱn]+𝔼[Xn+1|ℱn]−Xn

and let ΔMn+1≔Xn+1−𝔼[Xn+1|ℱn] and ΔIn+1≔𝔼[Xn+1|ℱn]−Xn with M0=0, I0=0. This defines
two processes M• and I• and I leave you to check that they satisfy the properties stated in the
proposition. For example, note that

𝔼[ΔMn+1|ℱn]=𝔼[Xn+1 −𝔼[Xn+1|ℱn]|ℱn]=𝔼[Xn+1|ℱn]−𝔼[Xn+1|ℱn]=0.

For the uniqueness assume that there exists another pair M•′, I•′ which satisfy the same assump-
tions as M•, I•, then we have that

Mn −Mn′+ In − In′ =Xn −X0 −Xn +X0 =0, n⩾0

which implies that

Mn −Mn′= In′ − In, n⩾0.
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In particular the process Nn ≔Mn −Mn′ is both a martingale (as difference of two martingales, you
can check that martingales indeed for a vector space over ℝ) and it is also a previsible process
since Nn = In′ − In ∈̂ ℱn−1 for all n ⩾ 1. Now the point is that a previsible martingale is constant
process:

Nn+1 =
prev.

𝔼[Nn+1|ℱn] =
mart.

Nn = ⋅ ⋅ ⋅ =N0=0

which proves that Nn = 0 for all n ⩾ 0 and therefore that M = M′ and I = I′, uniqueness of the
decomposition.
The char. of the decomp. for (super-,sub-)mart. is left as exercise. □

Proposition. Let (Xn)n⩾0 be a martingale (resp. sub-martingale) and Φ:ℝ→ℝ a convex function
(resp. convex and increasing) such that (Φ(Xn))n⩾0 is an integrable process, then (Φ(Xn))n⩾0
is a submartingale.

Proof. (exercise) □

Example 1. If (Xn)n⩾0 is a martingale then (|Xn|p)n⩾0 is a sub-martingale for all p ⩾ 1 provided
Xn ∈Lp for all n⩾1.

Proposition. Let (Xn)n⩾0 be a square-integrable martingale (i.e. a martingale such that Xn ∈L2

for all n⩾0) then the sub-martingale (Xn
2)n⩾0 has the decomposition

Xn
2 =X0

2+Nn +[X]n

where

Nn ≔2�
k=1

n

Xk−1ΔXk, [X]n ≔�
k=1

n

(ΔXk)2.

The process (Nn)n⩾0 is a martingale and the process ([X]n)n⩾0 is an increasing process called the
quadratic variation of X.

Proof. (exercise) □

Remark. The process ([X]n)n⩾0 is not previsible therefore this is not Doob's decomposition, but
it is still a useful decomposition and a natural one for L2 martingales.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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