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Martingales (2)

Definition. A real, adapted and integrable stochastic process (Xn)n⩾0 is called

a) A martingale iff 𝔼[Xn+1|ℱn]=Xn for all n⩾0;

b) A submartingale iff 𝔼[Xn+1|ℱn]⩾Xn for all n⩾0;

c) A supermartingale iff 𝔼[Xn+1|ℱn]⩽Xn for all n⩾0;

Image we play a game of head and tails and at every time we gain if “head” come out and you
loose otherwise. In this case we can consider the i.i.d. sequence (Yn)n⩾1 of r.v. which are ±1
according to whether we win or loose with probability 1/2 each (we play a fair game).
The natural filtration in this problem is given by ℱn =𝜎(Y1, . . . ,Yn) with ℱ0={∅,Ω}.
Provided we play n rounds then we gain

Xn =Y1 + ⋅ ⋅ ⋅ +Yn.

Two lectures ago we looked at stopping strategies given by a stopping time T and we proved that
provided T is integrable then

𝔼[XT]=0.

We know that (Xn)n⩾0 is a martingale wrt. ℱ• ≔(ℱn)n⩾1

But we can play different games, in particular we could bet a different amount (Cn)n⩾1 at every
step and then the total gain Zn at time n would be given by

ΔZn =Zn −Zn−1 =CnYn =CnΔXn,

for every n⩾1 with Z0=0 (for example, where negative amount stands for borrowed money). If
Cn is negative it means I bet on “tail”. Therefore

Zn =�
k=1

n

CkΔXk ≔(C •X)n,

An important property of the process (Cn)n⩾0 is that it has to be previsible wrt. ℱ• , i.e.

Cn ∈̂ℱn−1 =𝜎(Y1, . . . ,Yn−1)

for all n⩾1. Note that in this way (Zn)n is an adapted process.
For example we can choose

Cn =Cn
T ≔1n⩽T ,

with T a stopping time. Indeed note that {n⩽T}∈ℱn−1 so (Cn
T)n⩾1 is previsible. With this choice

we have

Zn =�
k=1

n

Ck
TΔXk =XT ∧n −X0=XT ∧n.
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In particular if T is bounded by N (deterministic) then ZN =XT . So these new strategies include
the kind of strategies which are implement via stopping times.
Since (Xn)n is a martingale, i.e. a fair game, we don't expect to be able to gain even using more
general strategies. In particular we expect that

𝔼[Zn]=𝔼[(C •X)n]=0,

for all n⩾1 and all previsible processes (Cn)n. Of course for this to be true (or even meaningful)
we need to precise some conditions.

Definition. Let (Xn)n⩾0 an adapted stochastic process and (Cn)n⩾1 a previsible stochastic process,
then we call the new process ((C •X)n)n⩾0 defined as

(C •X)n ≔�
k=1

n

CkΔXk, n⩾1,

with (C •X)0 =0, the martingale transform of X by C.

Lemma. Let (Cn)n⩾1 a previsible and uniformly bounded process (i.e. there exists a constant
L <∞ such that |Cn| ⩽L for all n⩾1). Then

a) If (Xn)n⩾0 is a martingale then ((C •X)n)n⩾0 is also a martingale;

b) If (Xn)n⩾0 is a super-martingale (resp. sub-martingale) and Cn ⩾0 for all n⩾1 then ((C •
X)n)n⩾0 is also a super-martingale (resp. sub-martingale);

If both (Cn)n⩾1 and (Xn)n⩾0 are square integrable (i.e. Cn, Xn ∈ L2(ℙ) for all n) then the same
results are true without the uniform boundedness condition.

Proof. I leave you to check that the martingale transform ((C •X)n)n⩾0 is an adapted and inte-
grable process. Then it is enough to note that

𝔼[Δ(C •X)n|ℱn−1] ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
def.

𝔼[CnΔXn|ℱn−1] ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
prev.

Cn𝔼[ΔXn|ℱn−1]

and conclude either with 𝔼[ΔXn|ℱn−1]=0 for case a) or 𝔼[ΔXn|ℱn−1]≷0 in case b).
In the square integrable case one just note that CnΔXn ∈ L1 provided Cn, ΔXn ∈ L2 by
Cauchy–Schwarz or Hölder inequalities. □

Definition. If T is a stopping time and (Xn)n⩾0 a stochastic process then we define the stopped
process (Xn

T)n⩾0 by

Xn
T ≔XT ∧n, n⩾0.

Note that if X• is adapted then also X•
T is adapted. If T =+∞ then X•

T =X•.

Lemma. If T is a stopping time and (Xn)n is a (super-)martingale then the stopped process
(Xn

T)n⩾0 is again a (super-)martingale and

𝔼[Xn∧T]⩽𝔼[X0], n⩾1,

in the supermartingale case with equalitiy for martingales.
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Proof. It is enough to note that

Zn ≔X0+(CT •X)n =Xn
T

with Cn
T =1n⩽T as above. In the supermartingale case (CT •X)• will also be a supermartingale by

the previous lemma and therefore by the supermartingale property of Z• we have

𝔼[Xn
T]=𝔼[Zn]⩽𝔼[Z0]=𝔼[X0

T]=𝔼[X0]. □

This theorem is interesting because there are no conditions on the stopping time.

Theorem. (Optional stopping theorem) Let T be a stopping time and (Xn)n⩾0 a (super-
)martingale. Then XT is integrable and

𝔼[XT]⩽𝔼[X0]

in the following cases:

a) T is bounded (i.e. ∃ constant N <∞ such that T ⩽N);

b) There exist Y ∈ L1(ℙ) and Y ⩾ 0 such that |Xn| ⩽ Y for all n ⩾ 1, (i.e. supn⩾1 |Xn| ∈
L1(ℙ)) and T <∞ a.s.;

c) 𝔼[T]<∞ and there exists a constant K <∞ such that |ΔXn| ⩽K for all n⩾1;

d) Xn ⩾0 for all n⩾0 and T <∞ a.s.

Remark. In all the cases a),b),c),d) we have that T <∞ a.s. therefore the natural definition of XT
is XT = XT(𝜔)(𝜔) on {𝜔 ∈ Ω:T(𝜔)< ∞} and we can take it arbitrarily on {𝜔 ∈ Ω: T(𝜔)= +∞},
e.g. XT =4397493274932.

Proof. Case a). Let N be such that T ⩽N . Then we have

|XT | ⩽ �
n=1

N

|Xn|1T =n ⩽ �
n=1

N

|Xn| ∈L1(ℙ)

so XT is integrable. Moreover we know that

𝔼[Xn∧T]=𝔼[X0]

so it is enough to take n=N to have

𝔼[ET]=𝔼[XN∧T]=𝔼[X0].

Case b). We note that

|Xn∧T −X0|⩽Y + |X0|∈L1(ℙ)

for all n⩾1 and that

lim
n→∞

(Xn∧T −X0)=XT −X0

a.s. therefore by dominated convergence we obtain that

𝔼[XT −X0]=𝔼� lim
n→∞

(Xn∧T −X0)� ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
dom

lim
n→∞

𝔼[Xn∧T −X0]=0.
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Case c). We observe that

XT ∧n =X0+�
k=1

∞

1k⩽T ∧nΔXk

therefore

|XT ∧n|⩽ |X0|+�
k=1

∞

1k⩽T ∧n|ΔXk| ⩽ |X0| +K�
k=1

∞

1k⩽T ∧n ⩽|X0| +KT ∈L1(ℙ)

and again we can use dominated convergence to conclude that 𝔼[XT]=𝔼[X0].
Case d). In this case we have Xn ⩾0 and no conditions on T (apart a.s. finiteness). The positivity
of the process imply that we can use Fatou's lemma to conclude that

0⩽𝔼[XT]=𝔼�lim
n

XT ∧n�⩽liminf
n

𝔼[XT ∧n]=𝔼[X0]<∞.

(In this last case we have only inequality). □

Lemma. Let (Xn)n⩾0 be a martingale (resp. a sub- or super- martingale) and T ⩾S two bounded
stopping times, then

𝔼[XT |ℱS]=XS,

(resp. ⩾, ⩽).

Proof. Let us prove it in the martingale case. Let N be a deterministic bound for S,T , i.e. S ⩽T ⩽
N and N ∈ℕ. We want to prove that 𝔼[XT −XS|ℱS]=0. It will be enough to prove that

𝔼[(XT −XS)1B]=0

for all B∈ℱS. We split now according to values of S and T :

𝔼[(XT −XS)1B]= �
n=0

N

�
m=n

N

𝔼[(XT −XS)1B∩{S=n}1T =m]

=�
n=0

N

�
m=n

N

𝔼[(Xm −Xn)1B∩{S=n}1T =m]

and using the martingale property of X one see that Xm =𝔼[XN|ℱm] and Xn =𝔼[XN|ℱn] so

=�
n=0

N

�
m=n

N

𝔼[(𝔼[XN|ℱm]−Xn)1B∩{S=n}1T =m]

because B∩{S =n}∩{T =m}∈ℱm,

=�
n=0

N

�
m=n

N

𝔼[(𝔼[XN1T =m|ℱm]−Xn1T =m)1B∩{S=n}]

=�
n=0

N

�
m=n

N

𝔼[(𝔼[XN1T =m|ℱn]−Xn1T =m)1B∩{S=n}]
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because B∩{S =n}∈ℱn,

=�
n=0

N

𝔼[[[[[[[[[[(((((((𝔼�XN �
m=n

N

1T =m||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=1

|ℱn�−Xn �
m=n

N

1T =m||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=1T ⩾S=1

)))))))1B∩{S=n}]]]]]]]]]]

=�
n=0

N

𝔼[(𝔼[XN|ℱn]−Xn)1B∩{S=n}]=0

because 𝔼[XN|ℱn]−Xn =0 by the martingale property.
To prove it when X is a submartingale (the supermartingale case is analogous) one use Doob's
decomposition and writes Xn = X0 + Mn + In where In is increasing previsible process and M a
martingale. Then

𝔼[XT |ℱS]=𝔼[X0 +MT + IT |ℱS]=X0 +𝔼[MT |ℱS]|||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=MS

+ 𝔼[IT |ℱS]||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
⩾𝔼[IS|ℱS]=IS

=X0+MS + IS =XS.

because IT ⩾ IS. □

Remark that in the last lecture Doob's decomposition was wrongly stated: the conditions on the
previsible process are sufficient and necessary:

Proposition. (Doob's decomposition) Let (Xn)n⩾0 be an adapted and integrable stochastic process,
then there exists a unique decomposition

Xn =X0 +Mn + In, n⩾0,

where (Mn)n⩾0 is a martingale and (In)n⩾0 a previsible process with I0 =0. Moreover:

1. In =0 for all n⩾0 iff X is a martingale,

2. I is increasing iff X is a submartingale,

3. I is decreasing iff X is a supermartingale.

Indeed recall that I• in Doob's decomposition is defined by

ΔIn ≔𝔼[ΔXn|ℱn−1]−Xn−1,

and therefore the necessity and sufficiency are obvious.
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