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Martingales (2)

Definition. A real, adapted and integrable stochastic process (X,)n>0 is called
a) A martingale iff E[X,1|%,] =X, for all n>0;
b) A submartingale iff E[X,1|%,] =X, for alln>0;

¢) A supermartingale iff E[X,1|%,) <X, for all n>0;

Image we play a game of head and tails and at every time we gain if “head” come out and you
loose otherwise. In this case we can consider the i.i.d. sequence (Y,),>; of r.v. which are +1
according to whether we win or loose with probability 1/2 each (we play a fair game).

The natural filtration in this problem is given by %, =0 (Y1,...,Y,) with Fy= {0, Q}.

Provided we play n rounds then we gain
X,=Y"1+--+7,.

Two lectures ago we looked at stopping strategies given by a stopping time 7" and we proved that
provided T is integrable then

E[X7]=0.
We know that (X,,),,>0 is a martingale wrt. %, := (%¥,),>1

But we can play different games, in particular we could bet a different amount (C,), > at every
step and then the total gain Z, at time n would be given by

AZ,=Z,-Z,_1=CpY,=ChAX,,
for every n> 1 with Zy=0 (for example, where negative amount stands for borrowed money). If
C, is negative it means I bet on “tail”. Therefore
n
Zy=Y CilhXg=(CeX),,
k=1

An important property of the process (C,),>0 is that it has to be previsible wrt. %, , i.e.

Ch€EFno1=0(Y1,.... Y1)

for all n> 1. Note that in this way (Z,), is an adapted process.

For example we can choose

T._
Cn = Cn = ﬂnsT,

with T a stopping time. Indeed note that {n<T} e %,_; so ch n>11s previsible. With this choice

we have
n

Zy=) CLAXi=Xrnn—Xo=Xrn.
k=1



In particular if 7" is bounded by N (deterministic) then Zy=Xr. So these new strategies include
the kind of strategies which are implement via stopping times.

Since (X,), is a martingale, i.e. a fair game, we don't expect to be able to gain even using more
general strategies. In particular we expect that

E[Z,]=E[(C+X),] =0,

for all n>1 and all previsible processes (C,),. Of course for this to be true (or even meaningful)
we need to precise some conditions.

Definition. Let (X),), >0 an adapted stochastic process and (Cy) 1 a previsible stochastic process,
then we call the new process ((C X)) >0 defined as

(CeX),:= Z CiAX,, n>1,
k=1

with (C  X)g=0, the martingale transform of X by C.

Lemma. Let (C,),> a previsible and uniformly bounded process (i.e. there exists a constant
L < oo such that |C,| <L foralln>1). Then

a) If (Xu)n>o is a martingale then ((C X),),>0 is also a martingale;

b) If (Xn)nso0 s a super-martingale (resp. sub-martingale) and C, >0 for alln>1 then ((Ce
X)n)uso is also a super-martingale (resp. sub-martingale);

If both (C,)n>1 and (X,),>0 are square integrable (i.e. Cy,, X, e L*(P) for all n) then the same
results are true without the uniform boundedness condition.

Proof. I leave you to check that the martingale transform ((C ¢ X),),>0 is an adapted and inte-
grable process. Then it is enough to note that

E[A(C'X)n“)}dn—l] ]E[CnAXnL%i—]] S CnIE[AXnLO}dn—l]

def. prev.

and conclude either with E[AX,|%,_1]=0 for case a) or E[AX,,|%,-1] 20 in case b).

In the square integrable case one just note that C,AX, € L' provided C,, AX, € L*> by
Cauchy—Schwarz or Holder inequalities. O

Definition. If T is a stopping time and (X,),>0 a stochastic process then we define the stopped
process (X,,T)n>0 by

XI=Xrpn,  n20.
Note that if X, is adapted then also X! is adapted. If T = + o then XI =X..

Lemma. If T is a stopping time and (X,), is a (super-)martingale then the stopped process
X n>0 IS again a (super-)martingale and

in the supermartingale case with equalitiy for martingales.



Proof. It is enough to note that

Zn=Xo+ (CT e X), =X

with CT' =1,<r as above. In the supermartingale case (C” ¢ X). will also be a supermartingale by
the previous lemma and therefore by the supermartingale property of Z, we have

E[XT1=E[Z,]< E[Zy] = E[X{]=E[X]. O

This theorem is interesting because there are no conditions on the stopping time.

Theorem. (Optional stopping theorem) Let T be a stopping time and (X,),>0 a (super-
)martingale. Then X7 is integrable and

E[X7] < E[Xo]
in the following cases:
a) T is bounded (i.e. 3 constant N < co such that T < N);

b) There exist Y eLY(P) and Y >0 such that |X,| < Yforalln>1, (ie. sup,>11X,le
YP))and T <o a.s.;

¢) E[T]< oo and there exists a constant K < oo such that |AX,| <K foralln>1;

d) X,=20 foralln>0and T < > a.s.

Remark. In all the cases a),b),c),d) we have that T < co a.s. therefore the natural definition of X7
is Xr =Xr(y)(w) on {w € Q:T(w) < oo} and we can take it arbitrarily on {w € Q: T (w) = 400},
e.g. Xr=4397493274932.

Proof. Case a). Let N be such that T <N. Then we have

N
X7 < Z Xl L7-n < Y Xl €L1(
n=1

n=1
so X7 is integrable. Moreover we know that
E[Xy 7] =E[Xo]

so it is enough to take n=N to have

E[Er] = E[Xnar]=E[Xo].
Case b). We note that

Xunr=Xol <Y +[Xol €L'(P)
for all n>1 and that

lim (X, A7 —Xo) =X7-Xo

n—oo

a.s. therefore by dominated convergence we obtain that

E[X7-Xo] = E[ lim (X,r7=Xo) |

n—oo

llm]E[ nAT — XO] 0.

dom n-oo



Case c). We observe that

Xran=Xo+ Y LicranAXi
k=1
therefore

X7 nnl <IXol + Y Lkt nnl AXi <IXol + K Ticran <IXol + KT € L'(P)
k=1 k=1

and again we can use dominated convergence to conclude that E[X7]=E[Xj].

Case d). In this case we have X, > 0 and no conditions on 7" (apart a.s. finiteness). The positivity
of the process imply that we can use Fatou's lemma to conclude that

0<E[X7]=E [limXTA,,] <1liminfE [X7x,] = E[Xo] < co.

(In this last case we have only inequality). O

Lemma. Let (X,,),>0 be a martingale (resp. a sub- or super- martingale) and T > S two bounded
stopping times, then

E[X7|Fs] =X,

(resp. 2, <).

Proof. Let us prove it in the martingale case. Let N be a deterministic bound for S,7,i.e. S<T <
N and N € N. We want to prove that E[X7— X|%s] =0. It will be enough to prove that

E[(X7-Xs5)15]=0

for all Be ¥s. We split now according to values of S and T

N N
E[(Xr-Xs)1g]=Y Y Bl(Xr—Xs)1sn(s=nmlr-n]
n=0 m=n
N N
ZZ ]E[(Xm_Xn)ﬂBﬁ{S:n}HT=m]
=0 m=n

and using the martingale property of X one see that X,, = E[Xy|%,,] and X,, = E[Xy|%,] so

N N
=Z Z E[XNFm] = Xn) Lpa(s=nyL1=m]
n=0 m=n

because BN{S=n}n{T'=m} e,

N N
=> Y BUBXNLr=mlFn] - XaLr=m) Lan(s=n)]



because BN{S =n} e %,,

N
[ NZ HT m|jn] Z ﬂT:m) HBO{S:n}]
m=n

Nala—

=] =lrs>s=1

N
Z E[XN %] =X0) 1pais=n;1 =0

because E[Xy|%,] - X, =0 by the martingale property.

To prove it when X is a submartingale (the supermartingale case is analogous) one use Doob's
decomposition and writes X,, = Xo + M), + I, where I,, is increasing previsible process and M a
martingale. Then

E[X7|%Fs] =E[Xo+ M7+ I7|%Fs] =Xo+ E[M7|Fs] + E[I7|%s]
——
=Ms 2E[Is|Fs]=Is

=X0+Ms+IS=XS.

because I7 > I. O

Remark that in the last lecture Doob's decomposition was wrongly stated: the conditions on the
previsible process are sufficient and necessary:

Proposition. (Doob's decomposition) Let (X,,) >0 be an adapted and integrable stochastic process,
then there exists a unique decomposition

X, =Xo+M, +1,, n=0,
where (M) >0 is a martingale and (I,),>0 a previsible process with Ino=0. Moreover:
1,=0 for all n 20 iff X is a martingale,
2. 1is increasing iff X is a submartingale,
3. lis decreasing iff X is a supermartingale.
Indeed recall that /, in Doob's decomposition is defined by
Al = E[AXy| Fn-1] = Xn-1,

and therefore the necessity and sufficiency are obvious.
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