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Asymptotic behaviour of martingales

We start the study of the long time behaviour of (super-,sub-)martingales. Part of the interest in
martingale theory is that they possess a nice asymptotic behaviour.

Let's start by considering a supermartingale (Xn)n⩾0. As usual we can interpret it as the total gain
in an unfavorable game. Indeed in average we expect to loose money : 𝔼[ΔXn+1|ℱn]⩽0.

We can also imagine that X is the value of a stock in a stock market (it is the stock for a company
whose future is not bright.. .)

We want to trade this stock and we use the following strategy: we fix two values a<b and every
time X falls below a we buy one unit of this stock and then wait that its value goes above b, at
which point we sell it.
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We call S1 the first time Xk⩽a and T1 the first time that Xk⩾b for k ⩾S1 and we proceed in the same
way to define S2,T2,S3,T3,... (write a recursive definition for these times). These are random times
which depends on our supermartingale, they are indeed stopping times for the filtration generated
by (Xn)n⩾0. (exercise prove it).

Let Wn our total gain at time n by using this strategy. For example in the drawing above we will
have
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and in general it is clear that we have an inequality of the form

Wn ⩾(b−a)Un(a,b)− (Xn −a)− (1)

where Un(a, b) is a (integer valued) random variable which counts the number of upcrossing
of the interval [a,b] that is the number of times the process is first ⩽a and then ⩾b (in the sense
above). In the picture above we have Un(a,b)=2.
Let's give a look at the process (Wn)n⩾0. We can write it as a martingale transform of (Xn)n⩾0, that
is

Wn =W0+ �
k=1

n

HnΔXn =W0+(H •X)n

where Hn =0,1 according to whether at time n we have the stock or not in the pocket. For example
we can define it with the following recurrence relation

Hn+1 =1Hn=0,Xn⩽a +1Hn=1,Xn<b, H0 =0,

which defines rigorously my strategy and show that this strategy is indeed previsible (which can
be proven by induction on n). Using the process we can also express the number of upcrossings:

Un(a,b)=�
k=1

n

1Hk−1=1,Hk=0.

Since Hn ⩾0, H is previsible, bounded, and X is supermartingale then we know that (Wn)n⩾0 is a
supermartingale, i.e. it will decrease in average at each step, more precisely we will have

𝔼[Wn+1|ℱn]⩽Wn.

The supermartingale propery implies that the process decrease in average, that is:

0⩾𝔼[Wn −W0]

and using (1) we have

0⩾𝔼[Wn −W0]⩾(b−a)𝔼[Un(a,b)]−𝔼[(Xn −a)−]⩾(b−a)𝔼[Un(a,b)]−𝔼[|Xn −a|]

which means that we have proven a basic result:

Lemma. (Doob's upcrossing inequality) For all a<b and n⩾1 we have that the average number
of upcrossings Un(a,b) of the interval (a,b) by a supermartingale (Xn)n⩾0 is bounded by

𝔼[Un(a,b)]⩽ 𝔼[|Xn −a|]
b−a .

Proof. Essentially already given above. □

The interest of this inequality is that it says something about the full history of the process (Xk)k⩾0
using only informations for its final value Xn at n.,

Remark. Most of the argument holds if we replace a, b with deterministic functions of n, i.e.
an < bn or even with stochastic processes which are previsible wrt. the filtration generated by
(Xn)n⩾0. But then it is not clear what one can say about the upcrossing number.
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Corollary. Let X be a supermartingale which is bounded in L1 (i.e. supn⩾0𝔼[|Xn|]<∞). Then if
we denote

U∞(a,b)≔ lim
n→∞

Un(a,b)=sup
n⩾0

Un(a,b)

the number of upcrossings of (a,b) by the whole process (Xn)n⩾0. Then for any a<b we have

ℙ(U∞(a,b)<∞)=1,

that is, a.s. the process X do only finitely many upcrossings of any interval (a,b).

Proof. First note that the process (Un(a, b))n⩾0 is increasing so the limit n → ∞ exists almost
surely (but it could be +∞). By monotone convergence and by Doob's upcrossing inequality we
have

𝔼[U∞(a,b)] ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
mon.

lim
n→∞

𝔼[Un(a,b)]=sup
n

𝔼[Un(a,b)] ⩽
Doob

sup
n

𝔼[|Xn −a|]
b−a

⩽supn𝔼[|Xn|]+ |a|
b−a <∞

by assumption of boundedness in L1. Therefore we conclude that U∞(a, b) is integrable which
implies in particular that {U∞(a,b)=+∞} has probability 0. □

We discovered that if we fix an interval (a, b) then a supermartingale will cross it only finitely
many times, therefore eventually it will always be above, below or in between (a,b).
An easy consequence of this behaviour is the following convergence result.

Theorem. (Doob's submartingale convergence theorem) A submartingale (Xn)n⩾0 bounded in
L1, i.e.

sup
n

𝔼[|Xn|]<∞,

converges a.s. towards a limit X∞ ∈L1, i.e.

lim
n→∞

Xn =X∞, a.s.

and X∞ ∈L1.

Proof. Take Yn =−Xn so that Y is a supermartingale bounded in L1, i.e. supn𝔼[|Yn|]<∞. Let

L+=limsup
n→∞

Yn, L− =liminf
n→∞

Yn,

which always exists, they are r.v. and are such that L+⩾L−. The existence of the a.s. limit for X
is equivalent to say that ℙ(L+=L−)=1. We proceed by contradiction: assume that ℙ(L+>L−)>0.
In this case we can always find a<b such that ℙ(L+>b>a>L−)>0 (exercise, do it!!). Now one
can show that

{L− <a<b<L+}⊆{U∞(a,b)=+∞}

since the process has to oscillate infinitely many times between a neighborhood of L− and a neigh-
borhood of L+, in particular it has to have ∞-many upcrossings of (a,b). This implies that

0<ℙ(L− <a<b<L+)⩽ℙ(U∞(a,b)=+∞)
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in contradiction with the fact that U∞(a, b) = +∞ has probability zero by Doobs' upcrossing
inequality since Y is bounded in L1. We conclude that ℙ(L− < L+) = 0 and therefore the almost
sure limit of Y exists and then also that X. Let X∞ =limn Xn, by Fatou's lemma we have

𝔼[|X∞|]⩽ liminf
n

𝔼[|Xn|]⩽sup
n

𝔼[|Xn|]<∞

again by boundedness in L1 of (Xn)n⩾0. □

Remark. This theorem obviously holds also for supermatingale but for supermatingales we have
a more interesting result which do not require boundedness in L1.

Theorem. (Supermartingale convergence theorem) Let (Xn)n⩾0 a positive supermartingale (Xn⩾
0) then it converges a.s. towards a limit X∞ ∈L1. (Note that X∞ ⩾0)

Proof. Easy. Note that by positivity and by the supermartingale property:

𝔼[|Xn|]=𝔼[Xn]⩽𝔼[X0]

therefore a positive supermartingale is automatically bounded in L1 and we conclude by the pre-
vious theorem applied to the submartingales Zn =−Xn. □

Warning. Even if a submartingale which is bounded in L1 converges a.s. to an L1 random vari-
able (as we have just seen), this does not implies that the convergence takes place in L1 (i.e. that
‖Xn −X∞‖L1 →0). Let's us give a counterexample.
Let (Zn)n⩾1 and i.i.d. sequence with values in ±1 with ℙ(Zn = +1) = p ∈ (0, 1) and let u > 1,
X0 =x>0 and let

Xn+1 =uZn+1Xn

which defines a new process (Xn)n⩾0. We can choose p= p(u) so that (Xn)n⩾1 is a positive mar-
tingale (exercise) and therefore 𝔼[Xn]=𝔼[X0]=x>0. By the strong law of large numbers

1
n�

k=1

n

Zk →𝔼[Z1]=2p−1, a.s.

and a consequence

�Xn
x �

1/n
=u

1
n∑k=1

n Zk →u2p−1, a.s.

However one verifies that in order for X to be a martingale one must have 𝔼[uZ1] = 1 which
implies that 2p−1<0 since u>1 (check it).
Therefore for any small 𝜀>0 there exists N0(𝜀) (depending on 𝜔) such that for any n>N0(𝜀) we
have almost surely

�Xn
x �

1/n
⩽u2p−1(1+𝜀)

which implies

0⩽Xn ⩽x [(u2p−1)(1+𝜀)]n

but we have u2p−1<1 and choosing 𝜀 small enough we can also have that (u2p−1)(1+𝜀)<1 from
which we conclude that

0⩽Xn ⩽x [(u2p−1)(1+𝜀)]n →0
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so Xn →0. However by the martingale property we have 𝔼[Xn]=1 for all n. This shows that Xn
cannot converge to X∞ =0 in L1 since otherwise this would imply convergence of the average:

1= |𝔼[X∞]−𝔼[Xn]|⩽𝔼[|X∞ −Xn|]

so ‖Xn −X∞‖L1 =1 for all n while Xn →X∞ almost surely.
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