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Closed martingales
We have already seen that (sub-,super-)martingales converge a.s. quite easily. A positive super-
martingale converge a.s. and also a submartingale bounded in L1.
However the convergence in not in general in L1 (we have seen a counterexample of a martingale
bounded in L1 with average always 1 but which converges to 0).
We are interested in understanding conditions under which we have stronger types of conver-
gences e.g. in Lp for some p⩾1 beside the a.s. converge.

Let's look at some particular situation.

Martingales bounded in L2

Theorem 1. Let (Mn)n⩾0 be a martingale which is bounded in L2(ℙ) (i.e. 𝛼 =
supn⩾0𝔼[|Mn|2]<∞), Then it converges a.s. and in L2(ℙ) to a r.v. M∞ ∈L2(ℙ) and more-
over

Mn =𝔼[M∞|ℱn], n⩾0.

Remark. The interesting fact is that the limit M∞ retain the full information about the martingale
in these that we can reconstruct the martingale as a orthogonal projection of M∞ ∈ L2(Ω, ℱ,ℙ)
onto L2(Ω,ℱn,ℙ).

Definition. A martingale (Mn)n⩾0 is closed (by Z) if there exists a r.v. in Z ∈L1 such that

Mn =𝔼[Z |ℱn]

for all n⩾0. We say that the martingale is closed in Lp for p⩾1 if Z ∈Lp.

Remark. If a martingale (Mn)n⩾0 is closed by Z in Lp then it is easy to see that also
(Mn)n⩾0 is bounded in Lp and in particular we have that Mn → M∞ a.s. as n → ∞. And
it is an interesting exercise for you to show that M∞ = 𝔼[Z |ℱ∞] where recall that ℱ∞ =
∨n⩾0ℱn =𝜎((ℱn)n⩾0). In general M∞ ≠Z .

Remark. Note that a martingale bounded in L1 is not necessarily closed (see the above counterex-
ample). This will become clear later on.

Corollary. A martingale is bounded in L2 iff it is closed in L2.

Proof. This follows from the above theorem of convergence of L2 martingales. □

Proof of Th 1. The proof is an application of Pythagoras theorem. We write the martingale as the
sum of its increments:

Mn =M0 +�
k=1

n

ΔMk�
Mk−Mk−1
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and observe that if k >k′>0 then ΔMk′ ∈̂ℱk and ΔMkΔMk′∈L1

𝔼[ΔMkΔMk′]=𝔼�𝔼[ΔMk|ℱk]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0

ΔMk′�=0

which means that all the increments are orthogonal in L2. Then (Pythagoras!)

𝔼[Mn
2]=𝔼[M0

2]+�
k=1

n

𝔼[(ΔMk)2]

which implies that the sequence (𝔼[Mn
2])n⩾0 is increasing and that

𝔼[M0
2]+�

k=1

∞

𝔼[(ΔMk)2]=sup
n⩾0

𝔼[Mn
2] ≔𝛼<∞.

By a similar argument one deduces that for k >k′⩾n we have

𝔼[(Mk −Mk′)2]= �
ℓ=k′+1

k

𝔼[(ΔMℓ)2]⩽ �
ℓ=n+1

∞

𝔼[(ΔMℓ)2]→0

as n → ∞ since the series converges. This means that (Mk)k⩾0 is a Cauchy sequence in L2 so it
converges in L2 to a limit X ∈L2, i.e.

X =L2(ℙ)− lim
n→∞

Mn ∈L2.

Since the martingale is bounded in L2 it is also bounded in L1 and therefore it converges a.s. by
Doob's submartingale convergence theorem (seen last week) we call the corresponding almost
sure limit M∞ = (a.s. − )limn→∞Mn. Apriori X ≠ M∞, however since (Mn)n⩾0 converges in L2 to
M∞ we can always extract a subsequence (Mnk)k⩾0 such that Mnk →X almost surely (we did it in
detail when discussing the conditional expectation, try to recall that argument).
Therefore for this subsequence we have both

Mnk →X, Mnk →M∞

since a subsequence of a sequence which converges a.s. to a limit converges a.s. to the same limit.
We concludet that X =M∞ a.s. This proves that Mn →M∞ a.s. and in L2.
We have still to prove that M∞ closes (Mn)n⩾0, that is that Mn =𝔼[M∞|ℱn].
We know that for all m>n we have

Mn =𝔼[Mm|ℱn]

(by the martingale property) so we have to pass to the limit as m→∞ in this equation. We proceed
as follows: for every m>n we have

‖Mn −𝔼[M∞|ℱn]‖L2(ℙ) = ‖𝔼[Mm|ℱn]−𝔼[M∞|ℱn]‖L2(ℙ) (by mart. prop.)
= ‖𝔼[Mm −M∞|ℱn]‖L2(ℙ) (by linearity)
⩽ ‖Mm −M∞‖L2(ℙ) (by contractivity of cond. exp.)
→ 0 as m→∞

(sinceMm →M∞ inL2)

which shows that Mn −𝔼[M∞|ℱn]=0 in L2 and therefore a.s.. □
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Exercise. Try to prove that M∞ can be chosen to be ℱ∞-measurable. In the above proof we only have that M∞∈̂ℱ.

In order to extend these considerations to large classes of martingales we need to develop tools to
deal with martingales which are bounded in other Lp spaces with p ≠2 where we do not have at
our disposal the geometry to the Hilbert space.

Doob's maximal inequalities

Theorem 2. (Doob's maximal inequality) Let (Xn)n⩾0 be a positive submartingale and let

Xn
∗ = sup

0⩽k⩽n
Xk

be the running supremum of X. Then for all 𝜆>0 and n⩾0 we have

𝜆ℙ(Xn
∗ ⩾𝜆)⩽𝔼[Xn1Xn

∗⩾𝜆]⩽𝔼[Xn].

Proof. Let T ≔inf {n⩾0:Xn ⩾𝜆}. Then {T ⩽n}={Xn
∗ ⩾𝜆} and T ∧n is a bounded stopping time.

By the positivity of (Xn)n⩾0 we have

𝔼[Xn]=𝔼[Xn1T ⩽n +Xn1T >n]⩾𝔼[Xn1T ⩽n]=𝔼[Xn1Xn
∗⩾𝜆]

which proves the second inequality. By the optional stopping theorem applied to the two bounded
stopping times n and T ∧ n we have 𝔼[Xn|ℱT ∧n] ⩾ XT ∧n then using the fact that {T ⩽ n} ∈ ℱT ∧n
(check it!) and that XT ⩾𝜆 we have

𝔼[Xn1T ⩽n]=𝔼[𝔼[Xn|ℱT ∧n]1T ⩽n]=𝔼[XT ∧n1T ⩽n]=𝔼[XT1T ⩽n]

⩾𝜆𝔼[1T ⩽n]=𝜆ℙ(T ⩽n)=𝜆ℙ(Xn
∗ ⩾𝜆)

so we prove the theorem. □

We want not to extend this to all (super-/sub-)martingales without positivity assumption.

Corollary 3. Let (Xn)n⩾0 be a (super-/sub-)martingale and let |X|n∗ ≔ sup0⩽k⩽n |Xk|. Then for all
𝜆>0 and all n⩾0 we have

𝜆ℙ(|X|n∗ ⩾3𝜆)⩽3𝔼[|X0|]+4𝔼[|Xn|].

Proof. Is left as exercise. Hint: use Doob's decomposition for Xn to have a martingale M and a
previsible process I (either decreasing or increasing). Bound the running maximum of the previs-
ible process is easy, and bound the running maximum of the martingale can be done with Doob's
inequality for positive submartingales. □

Theorem 4. (Doob's Lp inequalities) Let (Xn)n⩾0 a martingale or a positive submartingale,
then for all p>1 we have for the running maximum:

‖Xn
∗‖Lp ⩽ p

p−1‖Xn‖Lp, n⩾0.
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Proof. If X is a martingale then (|Xn|)n⩾0 is a positive submartingale, then we can just discuss this
last case. For L >0 we have

𝔼[(Xn
∗ ∧L)p] = 𝔼��

0

Xn
∗∧L

pxp−1dx�

= 𝔼��
0

L
pxp−11Xn

∗⩾xdx�

= �
0

L
pxp−1𝔼[1Xn

∗⩾x]dx (Fubini)

⩽ �
0

L
pxp−1𝔼[Xn1Xn

∗⩾x]
x dx (Doobs maximal ineq.)

⩽ �
0

L
pxp−2𝔼[Xn1Xn

∗⩾x]dx

⩽ p
p−1𝔼�Xn�0

L
(p−1)xp−21Xn

∗⩾xdx� (Fubini again)

⩽ p
p−1𝔼[Xn(Xn

∗ ∧L)p−1]

⩽ p
p−1‖Xn‖Lp‖Xn

∗ ∧L‖Lp
p−1 (Hölder inequality)

we applied Hölder inequality with exponents p,�1− 1
p�−1= p

p − 1 . At this point we divide both sides
by ‖Xn

∗ ∧L‖Lp
p−1 to get

‖Xn
∗ ∧L‖Lp ⩽ p

p−1‖Xn‖Lp

since 𝔼[(Xn
∗ ∧L)p]= ‖Xn

∗ ∧L‖Lp
p . Now by monotone convergence as L →∞ we have

‖Xn
∗‖Lp = lim

L→∞
‖Xn

∗ ∧L‖Lp ⩽ p
p−1‖Xn‖Lp

which proves the theorem. □

Remark. The Lp inequality is false when p=1, i.e. there is no constant C such that

‖Xn
∗‖L1 ⩽C‖Xn‖L1

This is hinted also by the fact that on the r.h.s. the constant go to infinity. When p = 1 we
only have the weaker inequality given by the Doob's maximal inequality:

𝜆ℙ(Xn
∗ >𝜆)⩽𝔼[Xn]=‖Xn‖L1.

Note that by Markov's inequality

𝜆ℙ(Xn
∗ >𝜆)⩽‖Xn

∗‖L1

this is why Doob's maximal inequality is “weaker”.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

4


	Closed martingales
	Martingales bounded in L^2
	Doob's maximal inequalities


