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Closed martingales (II)

Definition. A martingale (Mn)n⩾0 is closed (by Z) if there exists a r.v. in Z ∈L1 such that

Mn =𝔼[Z |ℱn]

for all n⩾0. We say that the martingale is closed in Lp for p⩾1 if Z ∈Lp.

We saw already that a martingale bounded in L2 is closed (and this is an iff).
Then on Tuesday we proved Doob's maximal inequality and in particular Doob's Lp inequality
which controls the size of the running maximum Xn

∗ = sup⩽k⩽nXn: if (Xn)n⩾0 is a positive sub-
martingale then for all p>1

‖Xn
∗‖Lp ⩽ p

p−1‖Xn‖Lp.

Martingales in Lp

We look not at martingales which are bounded in Lp for p>1 and use Doob's inequality.

Theorem. Let X• = (Xn)n⩾0 be a martingale and p > 1. Then the following statements are
equivalent:

a) X• is bounded in Lp (i.e. supn⩾0 ‖Xn‖Lp <∞);

b) X• converges a.s. and in Lp;

c) There exists a random variable X∞ ∈ Lp such that Xn =𝔼[X∞|ℱn] for all n ⩾0, i.e.
X∞ closes the martingale X•.

Proof. a) =› b). Being bounded in Lp implies being bounded in L1 and therefore by Doob's sub-
martingale convergences theorem we have that Xn →X∞ ∈L1 a.s.
By Doob's Lp inequality (|X|n∗)n⩾0 satisfies (recall that |X|n∗ =sup⩽k⩽n |Xn|)

‖|X|n∗‖Lp ≲‖Xn‖Lp ≲sup
n

‖Xn‖Lp <∞.

Note that |X|n+1
∗ ⩾|X|n∗ for all n⩾0. By monotone convergence we have therefore that

‖|X|∞∗ ‖Lp =� lim
n→∞

|X|n∗�
Lp ⩽ lim

n→∞
‖|X|n∗‖Lp ⩽ p

p−1sup
n

‖Xn‖Lp <∞

and in particular

|Xn −X∞|⩽ |Xn|+ |X∞|= |Xn|+ lim
m→∞

|Xm|⩽2|X|∞∗ ∈Lp

for all n⩾0. By dominated convergence we conclude that

lim
n→∞

‖Xn −X∞‖Lp ={{{{{{{{{{{{{{ lim
n→∞

𝔼[|Xn −X∞|p]}}}}}}}}}}}}}}1/p
=0,
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which means that Xn →X∞ in Lp. (note indeed that |Xn −X∞|p ⩽(2|X|∞∗ )p ∈L1 and Xn →X∞ a.s.).
b) =› c). Let X∞ ≔ limn Xn when Xn coverges and let's take X∞ = 0 when the sequence do not
converges. Let Zn =𝔼[X∞|ℱn] and consider

‖Xn −Zn‖Lp =‖Xn −𝔼[X∞|ℱn]‖Lp =‖𝔼[Xm|ℱn]−𝔼[X∞|ℱn]‖Lp ⩽‖Xm −X∞‖Lp

which is true for all m⩾ n by the martingale property of X• and by the contractivity of the cond.
exp. in Lp. Now we just take m→∞ to see that ‖Xm −X∞‖Lp →0 and therefore that ‖Xn −Zn‖Lp =0
for all n which gives us that Xn =𝔼[X∞|ℱn].
c) =› a). Easy again by contractivity of the cond. exp. in Lp:

sup
n⩾0

‖Xn‖Lp =sup
n⩾0

‖𝔼[X∞|ℱn]‖Lp ⩽‖X∞‖Lp <∞.

□

Corollary. Let (Xn)n⩾0 a martingale closed in Lp (i.e. Xn =𝔼[Z |ℱn] for some Z ∈Lp). Then

Xn →X∞ =𝔼[Z |ℱ∞]

almost surely and in Lp.

Recall that ℱ∞ =𝜎(ℱn:n⩾0), the smallest 𝜎-algebra which contains all the ℱn. In general
is not true that ℱ=ℱ∞, ℱ∞ could be strictly smaller than ℱ. Example: take ℱn =𝒢 ⊂ℱ
for all n⩾0 then ℱ∞ =𝒢≠ℱ.

Proof. By the previous theorem we know that Xn →X∞=limnXn a.s. and in Lp and moreover that
Xn =𝔼[X∞|ℱn]. Let A∈ℱn ⊆ℱ∞ for some n⩾0, then by def. of cond. exp. we have

𝔼[1A(X∞ −Z)]=𝔼[1A𝔼[(X∞ −Z)|ℱn]]=𝔼[1A(Xn −Xn)]=0.

Therefore we have

𝔼[1AX∞]=𝔼[1AZ]=𝔼[1A𝔼[Z |ℱ∞]]

for all A∈∪n⩾0ℱn. Now note that Π=∪n⩾0ℱn is a 𝜋-system which generates ℱ∞ =𝜎(∪n⩾0ℱn).
Then the family Λ = {A ∈ ℱ: 𝔼[1AX∞] = 𝔼[1A𝔼[Z |ℱ∞]]} is also easily seen to be a 𝜆-system
such that Π⊆ Λ. Then by Dynkin's 𝜋− 𝜆 theorem we have Π⊆ 𝜎(Π)⊆ Λ so we have that the
equality is true for all A∈ℱ∞.
The last ingredient given by the fact that X∞ if ℱ∞ measurable, this come easily form the fact
that Xn ∈̂ ℱ∞ for all n ⩾ 0 and that L+ = limsupnXn ∈̂ ℱ∞ and L− = liminfnXn ∈̂ ℱ∞. Therefore
{L+=L−}∈ℱ∞ and as consequence X̂∞ ≔L+1{L+=L−} is ℱ∞ measurable and X̂∞ =X∞ a.s. So we
can actually choose X∞ to be ℱ∞ measurable and conclude that

X∞ =𝔼[Z |ℱ∞], a.s.

using the above equality. □

Uniformly integrable martingales
We now understand quite well the case of martingales in Lp for p>1. What happens when p=1?
We already know that boundedness in L1 is not enough for closedness in L1. It turns out that the
right property in this case is uniform integrability.

2



Recall that

• A family (Y𝛼)𝛼 is UI iff for any 𝜀>0 there exists L >0 such that

sup
𝛼

𝔼[|Y𝛼|1|Y𝛼|>L]<𝜀.

• A UI family (Y𝛼)𝛼 is also bounded in L1:

sup
𝛼

𝔼[|Y𝛼|]=sup
𝛼

𝔼[|Y𝛼|1|Y𝛼|⩽L]+sup
𝛼

𝔼[|Y𝛼|1|Y𝛼|>L]⩽L +𝜀<∞.

• A family of r.v. bounded in Lp is automatically uniformly integrable (see the exer-
cise sheet on uniform integrability).

• The family (𝔼[Y |𝒢])𝒢⊆ℱ of conditional expectations of a given L1 random variable
Y is also a UI family.

Theorem. Let (Xn)n⩾0 be a martingale, then the following are equivalent statements:

a) (Xn)n⩾0 is uniformly integrable;

b) Xn →X∞ almost surely and in L1;

c) There exists Z ∈L1 such that Xn =𝔼[Z |ℱn] for all n⩾0 (i.e. X• is closed);

Proof. a) =› b). From UI we deduce that X• is bounded in L1 and therefore by the submartingale
convergence theorem we have Xn →X∞ a.s. and that X∞ ∈L1.
From UI and almost sure convergence we deduce that Xn →X∞ converges in L1. (This is the key
point where we use UI!!!).
b) =› c). The argument we used in Lp works also in L1: define Zn ≔ 𝔼[X∞|ℱn] and observe that
for all m⩾n, as m→∞ we have

‖Xn −Zn‖L1 =‖Xn −𝔼[X∞|ℱn]‖L1 =‖𝔼[Xm|ℱn]−𝔼[X∞|ℱn]‖L1 ⩽‖Xm −X∞‖L1 →0

and therefore Xn =Zn.
c) =›a). This is a basic property of the family of conditional expectations (Xn)n⩾0=(𝔼[Z |ℱn])n⩾0⊆
(𝔼[Z |𝒢])𝒢⊆ℱ which is UI. □

Lemma. If (Xn)n⩾0 is a UI supermartingale (resp. submartingale) then Xn → ∞ almost sure
and in L1 and moreover 𝔼[X∞|ℱn] ⩽ Xn (resp. 𝔼[X∞|ℱn] ⩾ Xn) for all n ⩾ 0. This means the
supermartingale property (resp. submartingale) can be extended to the index set ℕ∗=ℕ∪{+∞}.

Proof. (Exerice using argument as above). □

Definition. If X is a UI martingale, then it is natural to define for any stopping time T (not neces-
sarily finite)

XT = �
n⩾0

Xn1T =n +X∞1T =∞,

where X∞ =limnXn and Xn =𝔼[X∞|ℱn].
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We have then the following extension of the optimal stopping theorem.

Theorem. (Opt. Stop. for UI martingales) Let (Xn)n∈ℕ∗ be a UI martingale and S ⩽T two
stopping times, then XT ,XS ∈L1 and

𝔼[XT |ℱS]=XS.

(In particular XT =𝔼[X∞|ℱT])

Proof. Note that

|XT |⩽ �
n⩾0

|Xn|1T =n + |X∞|1T =∞

and

𝔼[|XT |]⩽ �
n⩾0

𝔼[|Xn|1T =n]+𝔼[|X∞|1T =∞]

⩽�
n⩾0

𝔼[|𝔼[X∞|ℱn]|1T =n]+𝔼[|X∞|1T =∞]

⩽
Jensen

�
n⩾0

𝔼[𝔼[|X∞||ℱn]1T =n]+𝔼[|X∞|1T =∞]

⩽�
n⩾0

𝔼[|X∞|1T =n]+𝔼[|X∞|1T =∞] =
Fubini

𝔼[[[[[[[[[[[[|X∞|((((((((((((�
n⩾0

1T =n +1T =∞))))))))))))]]]]]]]]]]]]=𝔼[|X∞|]<∞.

Moreover for A∈ℱT we have

𝔼[X∞1A]= �
n⩾0

𝔼[X∞1A∩{T =n}]+𝔼[X∞1A∩{T =∞}]

=�
n⩾0

𝔼[𝔼[X∞|ℱn]1A∩{T =n}]+𝔼[X∞1A∩{T =∞}]

=�
n⩾0

𝔼[Xn1A∩{T =n}]+𝔼[X∞1A∩{T =∞}]=𝔼[XT1A],

so in particular we have proven that XT =𝔼[X∞|ℱT]. Then it is easy to see that (ℱS ⊆ℱT)

𝔼[XT |ℱS]=𝔼[𝔼[X∞|ℱT]|ℱS]=𝔼[X∞|ℱS]=XS.

□

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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