Lecture 14 · 4.6.2021 · 14:15–16:00 via Zoom

Closed martingales (II)

Definition. A martingale $(M_n)_{n\geqslant 0}$ is **closed** (by Z) if there exists a r.v. in $Z\in L^1$ such that

$$M_n = \mathbb{E}[Z|\mathscr{F}_n]$$

for all $n \ge 0$. We say that the martingale is closed in L^p for $p \ge 1$ if $Z \in L^p$.

We saw already that a martingale bounded in L^2 is closed (and this is an iff).

Then on Tuesday we proved Doob's maximal inequality and in particular Doob's L^p inequality which controls the size of the running maximum $X_n^* = \sup_{k \le n} X_n$: if $(X_n)_{n \ge 0}$ is a positive submartingale then for all p > 1

$$||X_n^*||_{L^p} \leqslant \frac{p}{p-1} ||X_n||_{L^p}.$$

Martingales in L^p

We look not at martingales which are bounded in L^p for p > 1 and use Doob's inequality.

Theorem. Let $X_{\bullet} = (X_n)_{n \ge 0}$ be a martingale and p > 1. Then the following statements are equivalent:

- a) X_{\bullet} is bounded in L^p (i.e. $\sup_{n\geq 0} ||X_n||_{L^p} < \infty$);
- b) X_{\bullet} converges a.s. and in L^p ;
- c) There exists a random variable $X_{\infty} \in L^p$ such that $X_n = \mathbb{E}[X_{\infty} | \mathcal{F}_n]$ for all $n \ge 0$, i.e. X_{∞} closes the martingale X_{\bullet} .

Proof. a) \Rightarrow b). Being bounded in L^p implies being bounded in L^1 and therefore by Doob's submartingale convergences theorem we have that $X_n \to X_\infty \in L^1$ a.s.

By Doob's L^p inequality $(|X|_n^*)_{n\geq 0}$ satisfies (recall that $|X|_n^* = \sup_{\leq k \leq n} |X_n|$)

$$|||X|_n^*||_{L^p} \lesssim ||X_n||_{L^p} \lesssim \sup_n ||X_n||_{L^p} < \infty.$$

Note that $|X|_{n+1}^* \ge |X|_n^*$ for all $n \ge 0$. By monotone convergence we have therefore that

$$|||X|_{\infty}^{*}||_{L^{p}} = \left| \lim_{n \to \infty} |X|_{n}^{*} \right||_{L^{p}} \le \lim_{n \to \infty} ||X|_{n}^{*}||_{L^{p}} \le \frac{p}{p-1} \sup_{n} ||X_{n}||_{L^{p}} < \infty$$

and in particular

$$|X_n - X_\infty| \leq |X_n| + |X_\infty| = |X_n| + \lim_{m \to \infty} |X_m| \leq 2|X|_\infty^* \in L^p$$

for all $n \ge 0$. By dominated convergence we conclude that

$$\lim_{n\to\infty} \|X_n - X_\infty\|_{L^p} = \left\{ \lim_{n\to\infty} \mathbb{E}\left[|X_n - X_\infty|^p\right] \right\}^{1/p} = 0,$$

which means that $X_n \to X_\infty$ in L^p . (note indeed that $|X_n - X_\infty|^p \le (2|X|_\infty^*)^p \in L^1$ and $X_n \to X_\infty$ a.s.).

b) \Rightarrow **c**). Let $X_{\infty} := \lim_n X_n$ when X_n coverges and let's take $X_{\infty} = 0$ when the sequence do not converges. Let $Z_n = \mathbb{E}[X_{\infty} | \mathscr{F}_n]$ and consider

$$\|X_n - Z_n\|_{L^p} = \|X_n - \mathbb{E}[X_{\infty}|\mathscr{F}_n]\|_{L^p} = \|\mathbb{E}[X_m|\mathscr{F}_n] - \mathbb{E}[X_{\infty}|\mathscr{F}_n]\|_{L^p} \leqslant \|X_m - X_{\infty}\|_{L^p}$$

which is true for all $m \ge n$ by the martingale property of X_{\bullet} and by the contractivity of the cond. exp. in L^p . Now we just take $m \to \infty$ to see that $\|X_m - X_\infty\|_{L^p} \to 0$ and therefore that $\|X_n - Z_n\|_{L^p} = 0$ for all n which gives us that $X_n = \mathbb{E}[X_\infty|\mathscr{F}_n]$.

c) \Rightarrow a). Easy again by contractivity of the cond. exp. in L^p :

$$\sup_{n\geqslant 0}\|X_n\|_{L^p}=\sup_{n\geqslant 0}\|\mathbb{E}[X_\infty|\mathscr{F}_n]\|_{L^p}\leqslant \|X_\infty\|_{L^p}<\infty.$$

Corollary. Let $(X_n)_{n\geqslant 0}$ a martingale closed in L^p (i.e. $X_n = \mathbb{E}[Z|\mathcal{F}_n]$ for some $Z \in L^p$). Then

$$X_n \to X_\infty = \mathbb{E}[Z|\mathscr{F}_\infty]$$

almost surely and in L^p .

Recall that $\mathscr{F}_{\infty} = \sigma(\mathscr{F}_n: n \geqslant 0)$, the smallest σ -algebra which contains all the \mathscr{F}_n . In general is not true that $\mathscr{F} = \mathscr{F}_{\infty}$, \mathscr{F}_{∞} could be strictly smaller than \mathscr{F} . Example: take $\mathscr{F}_n = \mathscr{G} \subset \mathscr{F}$ for all $n \geqslant 0$ then $\mathscr{F}_{\infty} = \mathscr{G} \neq \mathscr{F}$.

Proof. By the previous theorem we know that $X_n \to X_\infty = \lim_n X_n$ a.s. and in L^p and moreover that $X_n = \mathbb{E}[X_\infty | \mathscr{F}_n]$. Let $A \in \mathscr{F}_n \subseteq \mathscr{F}_\infty$ for some $n \ge 0$, then by def. of cond. exp. we have

$$\mathbb{E}[\mathbb{1}_A(X_\infty-Z)] = \mathbb{E}[\mathbb{1}_A\mathbb{E}[(X_\infty-Z)|\mathcal{F}_n]] = \mathbb{E}[\mathbb{1}_A(X_n-X_n)] = 0.$$

Therefore we have

$$\mathbb{E}[\mathbb{1}_A X_\infty] = \mathbb{E}[\mathbb{1}_A Z] = \mathbb{E}[\mathbb{1}_A \mathbb{E}[Z|\mathcal{F}_\infty]]$$

for all $A \in \bigcup_{n \geqslant 0} \mathscr{F}_n$. Now note that $\Pi = \bigcup_{n \geqslant 0} \mathscr{F}_n$ is a π -system which generates $\mathscr{F}_{\infty} = \sigma(\bigcup_{n \geqslant 0} \mathscr{F}_n)$. Then the family $\Lambda = \{A \in \mathscr{F} : \mathbb{E}[\mathbb{1}_A X_{\infty}] = \mathbb{E}[\mathbb{1}_A \mathbb{E}[Z|\mathscr{F}_{\infty}]]\}$ is also easily seen to be a λ -system such that $\Pi \subseteq \Lambda$. Then by Dynkin's $\pi - \lambda$ theorem we have $\Pi \subseteq \sigma(\Pi) \subseteq \Lambda$ so we have that the equality is true for all $A \in \mathscr{F}_{\infty}$.

The last ingredient given by the fact that X_{∞} if \mathscr{F}_{∞} measurable, this come easily form the fact that $X_n \in \mathscr{F}_{\infty}$ for all $n \geqslant 0$ and that $L^+ = \limsup_n X_n \in \mathscr{F}_{\infty}$ and $L^- = \liminf_n X_n \in \mathscr{F}_{\infty}$. Therefore $\{L^+ = L^-\} \in \mathscr{F}_{\infty}$ and as consequence $\hat{X}_{\infty} := L^+ \mathbb{1}_{\{L^+ = L^-\}}$ is \mathscr{F}^{∞} measurable and $\hat{X}_{\infty} = X_{\infty}$ a.s. So we can actually choose X_{∞} to be \mathscr{F}_{∞} measurable and conclude that

$$X_{\infty} = \mathbb{E}[Z|\mathscr{F}_{\infty}],$$
 a.s.

using the above equality.

Uniformly integrable martingales

We now understand quite well the case of martingales in L^p for p > 1. What happens when p = 1? We already know that boundedness in L^1 is not enough for closedness in L^1 . It turns out that the right property in this case is uniform integrability.

Recall that

• A family $(Y_{\alpha})_{\alpha}$ is UI iff for any $\varepsilon > 0$ there exists L > 0 such that

$$\sup_{\alpha} \mathbb{E}\left[|Y_{\alpha}|\mathbb{1}_{|Y_{\alpha}|>L}\right] < \varepsilon.$$

• A UI family $(Y_{\alpha})_{\alpha}$ is also bounded in L^1 :

$$\sup_{\alpha} \mathbb{E}[|Y_{\alpha}|] = \sup_{\alpha} \mathbb{E}[|Y_{\alpha}|\mathbb{1}_{|Y_{\alpha}| \leq L}] + \sup_{\alpha} \mathbb{E}[|Y_{\alpha}|\mathbb{1}_{|Y_{\alpha}| > L}] \leq L + \varepsilon < \infty.$$

- A family of r.v. bounded in L^p is automatically uniformly integrable (see the exercise sheet on uniform integrability).
- The family $(\mathbb{E}[Y|\mathcal{G}])_{\mathcal{G}\subseteq\mathcal{F}}$ of conditional expectations of a given L^1 random variable Y is also a UI family.

Theorem. Let $(X_n)_{n\geq 0}$ be a martingale, then the following are equivalent statements:

- a) $(X_n)_{n\geq 0}$ is uniformly integrable;
- b) $X_n \to X_\infty$ almost surely and in L^1 ;
- c) There exists $Z \in L^1$ such that $X_n = \mathbb{E}[Z|\mathcal{F}_n]$ for all $n \ge 0$ (i.e. X_{\bullet} is closed);

Proof. a) \Rightarrow b). From UI we deduce that X_{\bullet} is bounded in L^1 and therefore by the submartingale convergence theorem we have $X_n \to X_{\infty}$ a.s. and that $X_{\infty} \in L^1$.

From UI and almost sure convergence we deduce that $X_n \to X_\infty$ converges in L^1 . (This is the key point where we use UI!!!).

b) \Rightarrow **c**). The argument we used in L^p works also in L^1 : define $Z_n := \mathbb{E}[X_\infty | \mathscr{F}_n]$ and observe that for all $m \ge n$, as $m \to \infty$ we have

$$||X_n - Z_n||_{L^1} = ||X_n - \mathbb{E}[X_\infty | \mathscr{F}_n]||_{L^1} = ||\mathbb{E}[X_m | \mathscr{F}_n] - \mathbb{E}[X_\infty | \mathscr{F}_n]||_{L^1} \le ||X_m - X_\infty||_{L^1} \to 0$$

and therefore $X_n = Z_n$.

c) \Rightarrow **a**). This is a basic property of the family of conditional expectations $(X_n)_{n\geqslant 0} = (\mathbb{E}[Z|\mathscr{F}_n])_{n\geqslant 0} \subseteq (\mathbb{E}[Z|\mathscr{F}])_{\mathscr{G}\subset\mathscr{F}}$ which is UI.

Lemma. If $(X_n)_{n\geqslant 0}$ is a UI supermartingale (resp. submartingale) then $X_n\to\infty$ almost sure and in L^1 and moreover $\mathbb{E}[X_\infty|\mathscr{F}_n]\leqslant X_n$ (resp. $\mathbb{E}[X_\infty|\mathscr{F}_n]\geqslant X_n$) for all $n\geqslant 0$. This means the supermartingale property (resp. submartingale) can be extended to the index set $\mathbb{N}^*=\mathbb{N}\cup\{+\infty\}$.

Proof. (Exerice using argument as above).

Definition. If X is a UI martingale, then it is natural to define for any stopping time T (not necessarily finite)

$$X_T = \sum_{n \geq 0} X_n \mathbb{1}_{T=n} + X_\infty \mathbb{1}_{T=\infty},$$

where $X_{\infty} = \lim_{n} X_n$ and $X_n = \mathbb{E}[X_{\infty} | \mathcal{F}_n]$.

We have then the following extension of the optimal stopping theorem.

Theorem. (Opt. Stop. for UI martingales) Let $(X_n)_{n \in \mathbb{N}^*}$ be a UI martingale and $S \leq T$ two stopping times, then $X_T, X_S \in L^1$ and

$$\mathbb{E}[X_T|\mathscr{F}_S] = X_S.$$

 $(In\ particular\ X_T = \mathbb{E}\left[X_{\infty}|\mathscr{F}_T\right])$

Proof. Note that

$$|X_T| \leqslant \sum_{n>0} |X_n| \mathbb{1}_{T=n} + |X_\infty| \mathbb{1}_{T=\infty}$$

and

$$\mathbb{E}[|X_T|] \leq \sum_{n>0} \mathbb{E}[|X_n|\mathbb{1}_{T=n}] + \mathbb{E}[|X_\infty|\mathbb{1}_{T=\infty}]$$

$$\leq \sum_{n \geq 0} \mathbb{E}[|X_{\infty}|\mathbbm{1}_{T=n}] + \mathbb{E}[|X_{\infty}|\mathbbm{1}_{T=\infty}] = \mathbb{E}\left[|X_{\infty}|\left(\sum_{n \geq 0} \mathbbm{1}_{T=n} + \mathbbm{1}_{T=\infty}\right)\right] = \mathbb{E}[|X_{\infty}|] < \infty.$$

Moreover for $A \in \mathcal{F}_T$ we have

$$\mathbb{E}[X_{\infty}\mathbb{1}_A] = \sum_{n \geq 0} \mathbb{E}[X_{\infty}\mathbb{1}_{A \cap \{T=n\}}] + \mathbb{E}[X_{\infty}\mathbb{1}_{A \cap \{T=\infty\}}]$$

$$= \sum_{n>0} \mathbb{E}\left[\mathbb{E}\left[X_{\infty}|\mathscr{F}_{n}\right]\mathbb{1}_{A\cap\{T=n\}}\right] + \mathbb{E}\left[X_{\infty}\mathbb{1}_{A\cap\{T=\infty\}}\right]$$

$$= \sum_{n \geq 0} \mathbb{E}[X_n \mathbb{1}_{A \cap \{T=n\}}] + \mathbb{E}[X_\infty \mathbb{1}_{A \cap \{T=\infty\}}] = \mathbb{E}[X_T \mathbb{1}_A],$$

so in particular we have proven that $X_T = \mathbb{E}[X_\infty | \mathscr{F}_T]$. Then it is easy to see that $(\mathscr{F}_S \subseteq \mathscr{F}_T)$

$$\mathbb{E}[X_T|\mathscr{F}_S] = \mathbb{E}[\mathbb{E}[X_\infty|\mathscr{F}_T]|\mathscr{F}_S] = \mathbb{E}[X_\infty|\mathscr{F}_S] = X_S.$$