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Some applications of martingale theory (II)

Kakutani theorem

Theorem. (Kakutani product martingale theorem) Let (Xn)n⩾1 be a sequence of indepen-
dent, positive and mean 1 random variables. Let M0=1 and define for all n⩾1

Mn =M0 X1⋅ ⋅ ⋅Xn.

Then (Mn)n⩾0 is a positive martingale and Mn →M∞ a.s. as n→∞. Let an ≔𝔼[Xn
1/2], then

an ∈(0,1] and two things can happen:

a) If ∏n=1
∞ an >0 then Mn →M∞ in L1 and 𝔼[M∞]=1;

b) If ∏n=1
∞ an =0 then Mn →0 a.s.

Remark. This theorem make complete the picture of our previous counterexample of a positive
martingale which converges to zero. In particular give a dichotomy on the possible behaviours.
In case a) we have also Mn =𝔼[M∞|ℱn].

Proof. It is easy to see that (Mn)n⩾0 is a martingale by independence of the factors in the pro-
duct (exercise: alway check adapatedness, integrability and then the martingale property). Since
(Mn)n⩾0 is a positive supermartingale we know that it converges a.s. to a positive limit M∞ ∈L1.
We have by Cauchy–Schwarz (or Jensen's)

an =𝔼[Xn
1/2]⩽{𝔼[(Xn

1/2)2]}1/2{𝔼[(1)2]}1/2 =1,

and if an = 0 then Xn
1/2 = 0 a.s. and therefore we have a contradiction so we established that

an ∈(0,1].

Let now N0 =1 and

Nn = Mn
1/2

∏k=1
n ak

=�
k=1

n Xk
1/2

𝔼[Xk
1/2]

, n⩾1.

Then for the same reasons as above the stoch. process (Nn)n⩾0 is a positive martingale which
again converges to a limit almost surely. We call the limit N∞.
Case a) When ∏k=1

n ak →L >0, we have

sup
n

𝔼[Nn
2]=sup

n

𝔼[Mn]
∏k=1

n (ak)2 = 1
infn ∏k=1

n (ak)2 <∞

since ∏k=1
n (ak)2>0 for all n and ∏k=1

n (ak)2→L2>0 as n→∞ therefore infn ∏k=1
n (ak)2>0. We

discover that in this case (Nn)n⩾0 is a martingale bounded in L2 and as consequence it converges
not only a.s. but also in L2 towards its limit N∞ ∈L2.
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Recall Doob's inequality applied to the running maximum Nn
∗ =supn Nn :

‖Nn
∗‖Lp ⩽ p

p−1‖Nn‖Lp

which gives (by Fatou's lemma and by the above estimation)

‖N∞
∗ ‖L2 =�liminf

n
Nn

∗�
L2

⩽
Fatou

sup
n

‖Nn
∗‖L2 ⩽

Doob's
2sup

n
‖Nn‖L2 <∞.

So we have that

N∞
∗ ≔sup

n⩾0
Nn ∈L2

and therefore

M∞
∗ ≔sup

n
Mn =sup

n [[[[[[[[[[[[[[Nn
2�
k=1

n

(ak)2]]]]]]]]]]]]]]⩽sup
n

[Nn
2]=�sup

n
Nn�

2 ∈L1,

so the stochastic process (Mn)n⩾0 is uniformly bounded by an L1 random variable M∞
∗ . This

implies in particular that (Mn)n⩾0 is a uniformly integrable martingale and therefore it converges
a.s. and in L1 to its limit M∞.
Case b) We still have that almost surely

M∞ =lim
n

Mn =lim
n [[[[[[[[[[[[[[Nn

2�
k=1

n

(ak)2]]]]]]]]]]]]]]=�lim
n

Nn
2�[[[[[[[[[[[[[[lim

n
�
k=1

n

(ak)2]]]]]]]]]]]]]]= N∞
2�

<∞a.s.
[[[[[[[[[[[[[[lim

n
�
k=1

n

(ak)2]]]]]]]]]]]]]]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0

=0

almost surely. □

We can use Kakutani's theorem to study a questions in statistics, i.e. the likelyhood ratio test.
Assume you have a family on i.i.d (real for simplicity) observations (Xn)n⩾1 and that we want to
test the null hypothesis

• H0: the observations are drawn from the probability law 𝜇 on (ℝ,ℬ(ℝ)), (i.e. Law(Xn)=
𝜇)

against the alternative hypothesis

• H1: the observations are drawn from the probability law 𝜈, (i.e. Law(Xn)=𝜈) with 𝜇≠𝜈.

We assume that 𝜈 is absolutely continuous wrt. 𝜇 with density f ⩾0, i.e.

d𝜈= f d𝜇

which I remind you that means that for all A∈ℬ(ℝ)

𝜈(A)=�
A

f (x)𝜇(dx).

The test protocol goes as follows: we consider the quantity (a statistics)

Tn =�
k=1

n

log f (Xk)

2



and observe that the stochastic process (Mn)n⩾1 defined as

Mn =eTn =�
k=1

n

f (Xk), M0 =1.

is a martingale wrt. the filtration (ℱn)n⩾0 of the process (Xn)n⩾1 and the probability ℙ which
assing to every r.v. Xn the law 𝜇, i.e. ℙ(Xn ∈ A)=𝜇(A) for all A ∈ ℬ(ℝ). Indeed it is adapted,
integrable and

𝔼[Mn+1|ℱn]=𝔼[ f (Xn+1)Mn|ℱn]=𝔼[ f (Xn+1)|ℱn]Mn =𝔼[ f (Xn+1)]Mn =� f (x)𝜇(dx)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
∫d𝜈=1

Mn =Mn.

We have also that 𝔼[Mn]=∏k=1
n 𝔼[ f (Xk)]=1.

Now we want to apply Kakutani theorem to determine what happens to M as n→∞. We compute
therefore for all n⩾1 we have

an =𝔼[ f (Xn)1/2]=𝔼[ f (X1)1/2]

By Jensen's inequality (or Cauchy–Schwarz) we have 𝔼[ f (X1)1/2] ⩽ 𝔼[ f (X1)] = 1 with strict
inequality when f (Xn) is not a.s. constant. In our case since 𝜇 ≠ 𝜈 we have that f is not a 𝜇-
a.s. constant function and therefore that f (Xn) is not an ℙ-a.s. constant r.v.. This gives us that
0<a1<1 and also that

�
k=0

n

ak =(a1)n →0

as n → ∞. Therefore we are in case b) of Kakutani's theorem and we conclude that Mn → 0 a.s..
Otherwise said we have that Tn →−∞ a.s.

Consider now the more general situation where the (Xn)n⩾1 are independent but not necessarily
identically distributed.
Let ℙ be the probability under which each of them has distribution 𝜇 while we let ℚ to the prob-
ability under which each of them as law 𝜈n with d𝜈n = fnd𝜇 for some sequence ( fn)n of densities.
Let ℱn = 𝜎(X1, . . . , Xn) and consider the filtration (ℱn)n⩾0 with ℱ0 = {∅, Ω} and fix the measure
space (Ω,ℱ∞ =𝜎(ℱn:n⩾0)) and consider ℙ,ℚ as probability measures on this measure space.
In this situation Kakutani's theorem give necessary and sufficient conditions under which ℚ is
absolutely continuous with respect to ℙ. Indeed note that

dℚ|ℱn =Zndℙ|ℱn

where Zn =∏k=1
n f (Xk). Indeed for all n⩾1 and any bounded measurable function 𝜑:ℝn →ℝ we

have

𝔼ℚ[𝜑(X1, . . . ,Xn)]=� 𝜑(x1, . . . ,xn)𝜈1(dx1)⋅ ⋅ ⋅𝜈n(dxn)

=� 𝜑(x1, . . . ,xn) f1(x1)⋅ ⋅ ⋅ fn(xn)𝜇(dx1)⋅ ⋅ ⋅𝜇(dxn)

=𝔼ℙ[𝜑(X1, . . . ,Xn) f1(X1)⋅ ⋅ ⋅ fn(Xn)]=𝔼ℙ[𝜑(X1, . . . ,Xn)Zn].
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If

�
k=1

∞

𝔼ℙ[ f (Xk)1/2]=�
k=1

∞

�
ℝ

fk(x)1/2𝜇(dx)>0, (1)

then the limit Zn → Z∞ exists a.s. and in L1 by Kakutani's theorem and we have that Zn =
𝔼ℙ[Z∞|ℱn]. Therefore for any n⩾0 and any A∈ℱn we have

𝔼ℚ[1A]=𝔼ℙ[1AZn]=𝔼ℙ[1A𝔼ℙ[Z∞|ℱn]]=𝔼ℙ[1AZ∞]

This means that the probability measure ℚ̃ defined by dℚ̃=Z∞dℙ is such that for any n⩾1 and
any A∈ℱn we have

ℚ(A)=𝔼ℚ[1A]=𝔼ℙ[1AZ∞]=𝔼ℚ̃[1A]=ℚ̃(A).

By Dinkin's 𝜋−𝜆 theorem the two measures coincide also on the 𝜎-algebra generated by all the
(ℱn)n⩾0, that is on ℱ∞. So they are equal as measures on (Ω,ℱ∞). We conclude that

dℚ=Z∞dℙ.

On the other hand, if ℚ is absolutely continuous to ℙ then there exist a positive measurable
function H on (Ω, ℱ∞) such that dℚ=Hdℙ. Therefore we have as above that Zn = 𝔼[H|ℱn] if
the condition (1) is violated, that is if the infinite product is 0 then by Kakutani's theorem we have
Zn →0 and therefore that H =0 which is not possible.
We just proved the following important corollary of Kakutani's theorem

Corollary. In the conditions above we have

ℚ≪ℙ⇔�
k=1

∞

�
ℝ

fk(x)1/2𝜇(dx)>0.

Remark. In particular we have seen that if the sequence (Xn)n⩾0 is i.i.d. under both ℚ and ℙ then
the two measures are either equal or mutually singular (i.e. ℚ≪ℙ and ℙ≪ℚ).

Example. Take Xn ∈{0,1} (Bernoulli random variables) with 𝜇=Ber(1/2) and 𝜈k∼Ber(pk) this
defines ℙ and ℚ. Now we have

𝜇= 1
2𝛿0 + 1

2𝛿1, 𝜈k =(1− pk)𝛿0+ pk𝛿1 = fk(0)1
2𝛿0+ fk(1)1

2𝛿1= fk𝜇

with fk(0)=2(1− pk) and fk(1)=2pk. So we have

�
k=1

∞

�
ℝ

fk(x)1/2𝜇(dx)=�
k=1

∞

�
ℝ

fk(x)1/2�𝛿0(dx)+𝛿1(dx)
2 �=�

k=1

∞ [(2(1− pk))1/2+(2pk)1/2]
2

=�
k=1

∞

[[[[[[[[[[[[[[
(1− pk)1/2 + pk

1/2

21/2 ]]]]]]]]]]]]]]
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and to have this positive we need pk → 1
2 as k →∞. Exercise, let pk = 1

2 + 1
2k−𝛼 and find conditions

on 𝛼>0 to guarantee ℚ≪ℙ. One expect that 𝛼 has to be large enough for the Kakutani criterion
to be satisfied.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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