

Lecture 16 · 11.6.2021 · 10:15-12:00 via Zoom

Some applications of martingale theory (II)

Kakutani theorem

Theorem. (Kakutani product martingale theorem) Let $(X_n)_{n\geq 1}$ be a sequence of independent, positive and mean 1 random variables. Let $M_0 = 1$ and define for all $n \ge 1$

$$M_n = M_0 X_1 \cdots X_n$$
.

Then $(M_n)_{n\geqslant 0}$ is a positive martingale and $M_n\to M_\infty$ a.s. as $n\to\infty$. Let $a_n\coloneqq \mathbb{E}[X_n^{1/2}]$, then $a_n \in (0,1]$ and two things can happen:

a) If
$$\prod_{n=1}^{\infty} a_n > 0$$
 then $M_n \to M_{\infty}$ in L^1 and $\mathbb{E}[M_{\infty}] = 1$;

b) If
$$\prod_{n=1}^{\infty} a_n = 0$$
 then $M_n \to 0$ a.s.

Remark. This theorem make complete the picture of our previous counterexample of a positive martingale which converges to zero. In particular give a dichotomy on the possible behaviours. In case a) we have also $M_n = \mathbb{E}[M_\infty | \mathcal{F}_n]$.

Proof. It is easy to see that $(M_n)_{n\geq 0}$ is a martingale by independence of the factors in the product (exercise: alway check adapatedness, integrability and then the martingale property). Since $(M_n)_{n\geqslant 0}$ is a positive supermartingale we know that it converges a.s. to a positive limit $M_\infty\in L^1$. We have by Cauchy-Schwarz (or Jensen's)

$$a_n = \mathbb{E}[X_n^{1/2}] \le \{\mathbb{E}[(X_n^{1/2})^2]\}^{1/2} \{\mathbb{E}[(1)^2]\}^{1/2} = 1,$$

and if $a_n = 0$ then $X_n^{1/2} = 0$ a.s. and therefore we have a contradiction so we established that $a_n \in (0,1].$

Let now $N_0 = 1$ and

$$N_n = \frac{M_n^{1/2}}{\prod_{k=1}^n a_k} = \prod_{k=1}^n \frac{X_k^{1/2}}{\mathbb{E}[X_k^{1/2}]}, \qquad n \geqslant 1.$$

Then for the same reasons as above the stoch. process $(N_n)_{n\geq 0}$ is a positive martingale which again converges to a limit almost surely. We call the limit N_{∞} .

Case a) When $\prod_{k=1}^{n} a_k \rightarrow L > 0$, we have

$$\sup_{n} \mathbb{E}[N_{n}^{2}] = \sup_{n} \frac{\mathbb{E}[M_{n}]}{\prod_{k=1}^{n} (a_{k})^{2}} = \frac{1}{\inf_{n} \prod_{k=1}^{n} (a_{k})^{2}} < \infty$$

since $\prod_{k=1}^{n} (a_k)^2 > 0$ for all n and $\prod_{k=1}^{n} (a_k)^2 \to L^2 > 0$ as $n \to \infty$ therefore $\inf_n \prod_{k=1}^{n} (a_k)^2 > 0$. We discover that in this case $(N_n)_{n \ge 0}$ is a martingale bounded in L^2 and as consequence it converges not only a.s. but also in L^2 towards its limit $N_\infty \in L^2$.

Recall Doob's inequality applied to the running maximum $N_n^* = \sup_n N_n$:

$$||N_n^*||_{L^p} \leqslant \frac{p}{p-1} ||N_n||_{L^p}$$

which gives (by Fatou's lemma and by the above estimation)

$$||N_{\infty}^*||_{L^2} = \left\| \liminf_n N_n^* \right\|_{L^2 \text{Fatou}} \le \sup_n ||N_n^*||_{L^2} \le 2 \sup_n ||N_n||_{L^2} < \infty.$$

So we have that

$$N_{\infty}^* \coloneqq \sup_{n \ge 0} N_n \in L^2$$

and therefore

$$M_{\infty}^* := \sup_{n} M_n = \sup_{n} \left[N_n^2 \prod_{k=1}^n (a_k)^2 \right] \le \sup_{n} [N_n^2] = \left(\sup_{n} N_n \right)^2 \in L^1,$$

so the stochastic process $(M_n)_{n\geqslant 0}$ is uniformly bounded by an L^1 random variable M_∞^* . This implies in particular that $(M_n)_{n\geqslant 0}$ is a uniformly integrable martingale and therefore it converges a.s. and in L^1 to its limit M_∞ .

Case b) We still have that almost surely

$$M_{\infty} = \lim_{n} M_{n} = \lim_{n} \left[N_{n}^{2} \prod_{k=1}^{n} (a_{k})^{2} \right] = \left[\lim_{n} N_{n}^{2} \right] \left[\lim_{n} \prod_{k=1}^{n} (a_{k})^{2} \right] = \underbrace{N_{\infty}^{2}}_{<\infty a.s.} \underbrace{\left[\lim_{n} \prod_{k=1}^{n} (a_{k})^{2} \right]}_{= \infty a.s.} = 0$$

almost surely.

We can use Kakutani's theorem to study a questions in statistics, i.e. the likelyhood ratio test. Assume you have a family on i.i.d (real for simplicity) observations $(X_n)_{n\geqslant 1}$ and that we want to test the null hypothesis

• H_0 : the observations are drawn from the probability law μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, (i.e. Law $(X_n) = \mu$)

against the alternative hypothesis

• H_1 : the observations are drawn from the probability law ν , (i.e. Law $(X_n) = \nu$) with $\mu \neq \nu$.

We assume that ν is absolutely continuous wrt. μ with density $f \ge 0$, i.e.

$$d\nu = f d\mu$$

which I remind you that means that for all $A \in \mathcal{B}(\mathbb{R})$

$$\nu(A) = \int_A f(x) \, \mu(\mathrm{d}x).$$

The test protocol goes as follows: we consider the quantity (a statistics)

$$T_n = \sum_{k=1}^n \log f(X_k)$$

and observe that the stochastic process $(M_n)_{n\geqslant 1}$ defined as

$$M_n = e^{T_n} = \prod_{k=1}^n f(X_k), \qquad M_0 = 1.$$

is a martingale wrt. the filtration $(\mathscr{F}_n)_{n\geqslant 0}$ of the process $(X_n)_{n\geqslant 1}$ and the probability $\mathbb P$ which assing to every r.v. X_n the law μ , i.e. $\mathbb P(X_n\in A)=\mu(A)$ for all $A\in \mathcal B(\mathbb R)$. Indeed it is adapted, integrable and

$$\mathbb{E}[M_{n+1}|\mathcal{F}_n] = \mathbb{E}[f(X_{n+1})M_n|\mathcal{F}_n] = \mathbb{E}[f(X_{n+1})|\mathcal{F}_n]M_n = \mathbb{E}[f(X_{n+1})]M_n = \underbrace{\int f(x)\mu(\mathrm{d}x)M_n = M_n}_{\text{fd}\nu=1}.$$

We have also that $\mathbb{E}[M_n] = \prod_{k=1}^n \mathbb{E}[f(X_k)] = 1$.

Now we want to apply Kakutani theorem to determine what happens to M as $n \to \infty$. We compute therefore for all $n \ge 1$ we have

$$a_n = \mathbb{E}[f(X_n)^{1/2}] = \mathbb{E}[f(X_1)^{1/2}]$$

By Jensen's inequality (or Cauchy–Schwarz) we have $\mathbb{E}[f(X_1)^{1/2}] \leq \mathbb{E}[f(X_1)] = 1$ with **strict inequality** when $f(X_n)$ is not a.s. constant. In our case since $\mu \neq \nu$ we have that f is not a μ -a.s. constant function and therefore that $f(X_n)$ is not an \mathbb{P} -a.s. constant r.v.. This gives us that $0 < a_1 < 1$ and also that

$$\prod_{k=0}^{n} a_k = (a_1)^n \to 0$$

as $n \to \infty$. Therefore we are in case b) of Kakutani's theorem and we conclude that $M_n \to 0$ a.s.. Otherwise said we have that $T_n \to -\infty$ a.s.

Consider now the more general situation where the $(X_n)_{n\geq 1}$ are independent but not necessarily identically distributed.

Let \mathbb{P} be the probability under which each of them has distribution μ while we let \mathbb{Q} to the probability under which each of them as law ν_n with $d\nu_n = f_n d\mu$ for some sequence $(f_n)_n$ of densities.

Let $\mathscr{F}_n = \sigma(X_1, \dots, X_n)$ and consider the filtration $(\mathscr{F}_n)_{n \ge 0}$ with $\mathscr{F}_0 = \{\emptyset, \Omega\}$ and fix the measure space $(\Omega, \mathscr{F}_{\infty} = \sigma(\mathscr{F}_n : n \ge 0))$ and consider \mathbb{P}, \mathbb{Q} as probability measures on this measure space.

In this situation Kakutani's theorem give necessary and sufficient conditions under which \mathbb{Q} is absolutely continuous with respect to \mathbb{P} . Indeed note that

$$d\mathbb{Q}|_{\mathscr{F}_n} = Z_n d\mathbb{P}|_{\mathscr{F}_n}$$

where $Z_n = \prod_{k=1}^n f(X_k)$. Indeed for all $n \ge 1$ and any bounded measurable function $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ we have

$$\mathbb{E}_{\mathbb{Q}}[\varphi(X_1,\ldots,X_n)] = \int \varphi(x_1,\ldots,x_n) \nu_1(\mathrm{d}x_1) \cdots \nu_n(\mathrm{d}x_n)$$

$$= \int \varphi(x_1,\ldots,x_n) f_1(x_1) \cdots f_n(x_n) \mu(\mathrm{d}x_1) \cdots \mu(\mathrm{d}x_n)$$

$$= \mathbb{E}_{\mathbb{P}}[\varphi(X_1,\ldots,X_n) f_1(X_1) \cdots f_n(X_n)] = \mathbb{E}_{\mathbb{P}}[\varphi(X_1,\ldots,X_n) Z_n].$$

If

$$\prod_{k=1}^{\infty} \mathbb{E}_{\mathbb{P}}[f(X_k)^{1/2}] = \prod_{k=1}^{\infty} \int_{\mathbb{R}} f_k(x)^{1/2} \mu(\mathrm{d}x) > 0, \tag{1}$$

then the limit $Z_n \to Z_\infty$ exists a.s. and in L^1 by Kakutani's theorem and we have that $Z_n = \mathbb{E}_{\mathbb{P}}[Z_\infty|\mathscr{F}_n]$. Therefore for any $n \ge 0$ and any $A \in \mathscr{F}_n$ we have

$$\mathbb{E}_{\mathbb{O}}[\mathbb{1}_A] = \mathbb{E}_{\mathbb{P}}[\mathbb{1}_A Z_n] = \mathbb{E}_{\mathbb{P}}[\mathbb{1}_A \mathbb{E}_{\mathbb{P}}[Z_\infty | \mathscr{F}_n]] = \mathbb{E}_{\mathbb{P}}[\mathbb{1}_A Z_\infty]$$

This means that the probability measure $\tilde{\mathbb{Q}}$ defined by $d\tilde{\mathbb{Q}} = Z_{\infty}d\mathbb{P}$ is such that for any $n \ge 1$ and any $A \in \mathcal{F}_n$ we have

$$\mathbb{Q}(A) = \mathbb{E}_{\mathbb{Q}}[\mathbb{1}_A] = \mathbb{E}_{\mathbb{P}}[\mathbb{1}_A Z_\infty] = \mathbb{E}_{\tilde{\mathbb{Q}}}[\mathbb{1}_A] = \tilde{\mathbb{Q}}(A).$$

By Dinkin's $\pi - \lambda$ theorem the two measures coincide also on the σ -algebra generated by all the $(\mathcal{F}_n)_{n\geqslant 0}$, that is on \mathcal{F}_{∞} . So they are equal as measures on $(\Omega, \mathcal{F}_{\infty})$. We conclude that

$$d\mathbb{Q} = Z_{\infty}d\mathbb{P}$$
.

On the other hand, if \mathbb{Q} is absolutely continuous to \mathbb{P} then there exist a positive measurable function H on $(\Omega, \mathscr{F}_{\infty})$ such that $d\mathbb{Q} = Hd\mathbb{P}$. Therefore we have as above that $Z_n = \mathbb{E}[H|\mathscr{F}_n]$ if the condition (1) is violated, that is if the infinite product is 0 then by Kakutani's theorem we have $Z_n \to 0$ and therefore that H = 0 which is not possible.

We just proved the following important corollary of Kakutani's theorem

Corollary. In the conditions above we have

$$\mathbb{Q} \ll \mathbb{P} \Leftrightarrow \prod_{k=1}^{\infty} \int_{\mathbb{R}} f_k(x)^{1/2} \mu(\mathrm{d}x) > 0.$$

Remark. In particular we have seen that if the sequence $(X_n)_{n\geqslant 0}$ is i.i.d. under both $\mathbb Q$ and $\mathbb P$ then the two measures are either equal or mutually singular (i.e. $\mathbb Q \not < \mathbb P$ and $\mathbb P \not < \mathbb Q$).

Example. Take $X_n \in \{0, 1\}$ (Bernoulli random variables) with $\mu = \text{Ber}(1/2)$ and $\nu_k \sim \text{Ber}(p_k)$ this defines \mathbb{P} and \mathbb{Q} . Now we have

$$\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1, \qquad \nu_k = (1 - p_k)\delta_0 + p_k\delta_1 = f_k(0)\frac{1}{2}\delta_0 + f_k(1)\frac{1}{2}\delta_1 = f_k\mu$$

with $f_k(0) = 2(1 - p_k)$ and $f_k(1) = 2p_k$. So we have

$$\begin{split} \prod_{k=1}^{\infty} \int_{\mathbb{R}} f_k(x)^{1/2} \mu(\mathrm{d}x) &= \prod_{k=1}^{\infty} \int_{\mathbb{R}} f_k(x)^{1/2} \left[\frac{\delta_0(\mathrm{d}x) + \delta_1(\mathrm{d}x)}{2} \right] = \prod_{k=1}^{\infty} \frac{\left[(2(1-p_k))^{1/2} + (2p_k)^{1/2} \right]}{2} \\ &= \prod_{k=1}^{\infty} \left[\frac{(1-p_k)^{1/2} + p_k^{1/2}}{2^{1/2}} \right] \end{split}$$

and to have this positive we need $p_k \to \frac{1}{2}$ as $k \to \infty$. Exercise, let $p_k = \frac{1}{2} + \frac{1}{2}k^{-\alpha}$ and find conditions on $\alpha > 0$ to guarantee $\mathbb{Q} \ll \mathbb{P}$. One expect that α has to be large enough for the Kakutani criterion to be satisfied.