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Some applications of martingale theory (II)

Kakutani theorem

Theorem. (Kakutani product martingale theorem) Let (X,)n>1 be a sequence of indepen-
dent, positive and mean 1 random variables. Let My=1 and define for all n> 1

M, =MyX;---X,.

Then (My),>0 is a positive martingale and M,, > M a.s. as n— oo. Let ay:= E[X,i/z], then
a, € (0, 1] and two things can happen:

a) If T12, an>0then M, > M in L' and E[M~]=1;

b) If T1,-, an=0then M,,—> 0 a.s.

Remark. This theorem make complete the picture of our previous counterexample of a positive
martingale which converges to zero. In particular give a dichotomy on the possible behaviours.

In case a) we have also M,, = E[M.|%,].

Proof. It is easy to see that (M,),>0 is a martingale by independence of the factors in the pro-
duct (exercise: alway check adapatedness, integrability and then the martingale property). Since
(M,,) >0 is a positive supermartingale we know that it converges a.s. to a positive limit Mo, € L'.

We have by Cauchy—Schwarz (or Jensen's)
a,=E[X,*1<{E[X,) VB2 =1,

and if @, =0 then X/>=0 a.s. and therefore we have a contradiction so we established that
a,€(0,1].

Let now Ny=1 and
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Then for the same reasons as above the stoch. process (N,),>0 is a positive martingale which
again converges to a limit almost surely. We call the limit N.

Case a) When [],_, ax—> L >0, we have
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since []}_, (ax)?>0 for all n and [;_, (ax)*>— L*>0 as n— co therefore inf, [],_, (ax)>>0. We
discover that in this case (N,),>0 is a martingale bounded in L? and as consequence it converges
not only a.s. but also in L? towards its limit N, € L2.



Recall Doob's inequality applied to the running maximum N,y = sup, N, :
N7l <5 Eg Nl
which gives (by Fatou's lemma and by the above estimation)
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So we have that
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and therefore
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so the stochastic process (M,),>¢ is uniformly bounded by an L' random variable MZ%. This
implies in particular that (M},),>¢ is a uniformly integrable martingale and therefore it converges
a.s. and in L' to its limit M.

Case b) We still have that almost surely
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almost surely. O

We can use Kakutani's theorem to study a questions in statistics, i.e. the likelyhood ratio test.

Assume you have a family on i.i.d (real for simplicity) observations (X,),>1 and that we want to
test the null hypothesis

e Hy: the observations are drawn from the probability law ¢ on (R, B(R)), (i.e. Law(X),) =
)

against the alternative hypothesis
e Hj: the observations are drawn from the probability law v, (i.e. Law(X,) =v) with u # v.

We assume that v is absolutely continuous wrt. u with density f >0, i.e.
dv=fdu
which I remind you that means that for all A € B(R)

v(A)= [ Fpdn.

The test protocol goes as follows: we consider the quantity (a statistics)

T,=Y) logf(Xp)
k=1



and observe that the stochastic process (M},), > defined as

n
My=e"=[]f X0,  Mo=1.
k=1

is a martingale wrt. the filtration (%,),>¢ of the process (X,),>1 and the probability P which
assing to every r.v. X, the law pu, i.e. P(X,€A) = pu(A) for all A€ B(R). Indeed it is adapted,
integrable and

]E[Mn-%—”gdn] = E[f(Xn+l)Mn|gn] = E[f(Xn+l)|-%1]Mn = E[f(XrHl)]Mn = If(x)ﬂ(dx)Mn:Ml1
Jdv=1

We have also that E[M,] =[],_, E[f (X 1=1.

Now we want to apply Kakutani theorem to determine what happens to M as n — co. We compute
therefore for all n > 1 we have

a,=E[f(X)'?1=E[f(X1)'/?]

By Jensen's inequality (or Cauchy—Schwarz) we have E[f(X;)'/?] < E[f(X1)] =1 with strict
inequality when f (X)) is not a.s. constant. In our case since u # v we have that f is not a u-
a.s. constant function and therefore that f(X,) is not an P-a.s. constant r.v.. This gives us that
0<a;<1 and also that

[T =) -0
k=0

as n — oo. Therefore we are in case b) of Kakutani's theorem and we conclude that M, — 0 a.s..
Otherwise said we have that 7, » —co a.s.

Consider now the more general situation where the (X,),>; are independent but not necessarily
identically distributed.

Let P be the probability under which each of them has distribution g while we let Q to the prob-
ability under which each of them as law v, with dv, = f,du for some sequence (f,), of densities.

Let %,=0(X,...,X,) and consider the filtration (%,),>o with %y ={®, Q} and fix the measure
space (Q, F=0(F,:n20)) and consider P, Q as probability measures on this measure space.

In this situation Kakutani's theorem give necessary and sufficient conditions under which Q is
absolutely continuous with respect to P. Indeed note that

dQ|%, = anP|57,,

where Z,, = H,’:zl f(Xg). Indeed for all n> 1 and any bounded measurable function ¢: R" - R we
have

Eqle(Xiv . X1 = [ @(x1,ccosxa) vi(dx)-v,(dx)
= [ @01 i) ) (e ()

ZEP[(P(XI,- . -,Xn)fl (X]) : f;i(Xn)] = EJP’[(P(XI,- .. ,Xn)Zn]-



If

[ Eslrxn'/2= Hj fe) (o) >0, (1)
k=1 k=1
then the limit Z, - Z. exists a.s. and in L' by Kakutani's theorem and we have that Z, =
Ep[Z|%,]. Therefore for any n>0 and any A € %, we have

Eqllal = Ep[14Z,] = Ep[L4Ep[Zec| Full = Ep[14Zc]

This means that the probability measure Q defined by dQ =ZdP is such that for any n>1 and
any A € ¥, we have

Q(A) =Eqll4] =Bp[1aZ]=Egl1a] = Q(A).

By Dinkin's o7 — A theorem the two measures coincide also on the o-algebra generated by all the
(F)nx0, that is on F.. So they are equal as measures on (L2, ¥.,). We conclude that

dQ=Z.dP.
On the other hand, if Q is absolutely continuous to P then there exist a positive measurable
function H on (Q, ¥.,) such that dQ = HdPP. Therefore we have as above that Z, = E[H|%,] if

the condition (1) is violated, that is if the infinite product is O then by Kakutani's theorem we have
Z,— 0 and therefore that H =0 which is not possible.

We just proved the following important corollary of Kakutani's theorem

Corollary. In the conditions above we have

Q<P e ] [ fitn'udn >0
k=1

Remark. In particular we have seen that if the sequence (X,,), >0 is i.i.d. under both Q and P’ then
the two measures are either equal or mutually singular (i.e. Q € P and P £ Q).

Example. Take X,, € {0, 1} (Bernoulli random variables) with u =Ber(1/2) and v, ~ Ber(py) this
defines P and Q. Now we have

1 1 1 l
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with fx(0) =2(1-py) and fi(1) =2pi. So we have

a = > N2 4 172
HIRfk<x>“2~<dx>=nJRW[“‘ ]n Lopo s g™
k=1 k=1




and to have this positive we need px —>% as k — oo. Exercise, let py= % + %k‘“ and find conditions
on «a >0 to guarantee Q <« P. One expect that  has to be large enough for the Kakutani criterion
to be satisfied.
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