V3F1/F4F1 Stochastic Processes – SS2021 Massimiliano Gubinelli

Lecture 17 · 15.6.2021 · 14:15–16:00 via Zoom

Information der Fachschaft: Dieses Jahr findet das Mathe-Sommerfest virtuell am Freitag, den 25.06, ab 18 c.t. statt. Alle aktuellen Informationen sind auf https://fsmath.uni-bonn.de/veranstaltungen-detail/events/sommerfest-331.html zu finden. Schaut vorbei!

Information from the Student Council: This year the Maths Summer Party will take place virtually on Friday, June 25, starting at 18 c.t.. Latest information can be found on https://fsmath.uni-bonn.de/events-detail/events/sommer-fest-kopie.html. Come by!

Some applications of martingale theory (III)

The Radon-Nikodým theorem via martingales

Let $(\Omega, \mathcal{F}, \mu)$ a measure space and $f: \Omega \to \mathbb{R}_+$ positive measurable function, then we can form the set function μ^f on \mathcal{F} defined as

$$\mu^f(A) \coloneqq \int_A f \mathrm{d}\mu.$$

In this case we write

$$d\mu^f = f d\mu$$

or that

$$f = \frac{\mathrm{d}\mu^f}{\mathrm{d}\mu}$$

which is called the Radon-Nikodým derivative of μ^f wrt. μ . It is well defined μ -almost everywhere.

This is actually a measure on (Ω, \mathscr{F}) (prove it by using the properties of the Lebesgue integral) which has the following property: $\mu^f(A) = 0$ for all $A \in \mathscr{F}$ such that $\mu(A) = 0$.

Definition. We say that a measure ν on (Ω, \mathcal{F}) is absolutely continuous with respect to a measure μ iff $\nu(A) = 0$ for all $A \in \mathcal{F}$ such that $\mu(A) = 0$. (All the null sets of μ are also null sets of ν). In this case we write $\nu \ll \mu$.

Theorem. (*Radon-Nikodým*) If μ , ν are two σ -finite measures on (Ω, \mathcal{F}) then the following two statements are equivalent:

- *a*) $\nu \ll \mu$;
- b) $dv = f d\mu$ for some positive measurable function $f: \Omega \to \mathbb{R}_+$, which is unique μ -almost everywhere.

We want to propose a proof of this theorem which is based on the UI martingale convergence theorem.

Proof. $b \ge a$ it is clear from the considerations above. Let us focus on the proof that a) implies b).

Reduction to finite measures. We start by noting that by σ -finiteness we can reduce the problem to a statement involving finite measures μ , ν (eventually only defined on sets of a partition of Ω). (Think about the details for exercise).

Reduction to $v \le \mu$. The second reduction comes by considering only the case where $v \le \mu$ (here I mean that $v(A) \le \mu(A)$ for all $A \in \mathcal{F}$). This is possible because we can always take

$$\tilde{\mu} = \mu + \nu$$

in which case we have $\nu \leq \tilde{\mu}$ and we still have $\nu \ll \tilde{\mu}$. Moreorver we have $\mu \leq \tilde{\mu}$ and of course $\mu \ll \tilde{\mu}$. So provided we already proved the existence of the RN derivative for ν and μ wrt. $\tilde{\mu}$ we have that there exists functions f, g such that

$$d\nu = g d\tilde{\mu}, \qquad d\mu = f d\tilde{\mu}.$$

But now we also have that $\mu({f=0}) = \int_{{f=0}} f d\tilde{\mu} = 0$ which implies that

$$\tilde{\mu}(\{f=0\}) = \int_{\{f=0\}} d\tilde{\mu} = \int_{\{f=0\}} d\mu + \int_{\{f=0\}} d\nu = \nu(\{f=0\}) = 0$$

since $\nu \ll \mu$ and $\mu(\{f=0\}) = 0$. Therefore $d\mu = f d\tilde{\mu} = (f + \mathbb{1}_{f=0}) d\tilde{\mu}$ and we have that $f + \mathbb{1}_{f=0} > 0$ $\tilde{\mu}$ almost everywhere so we can write

$$\mathrm{d}\nu = g \,\mathrm{d}\tilde{\mu} = \frac{g}{(f + \mathbb{I}_{f=0})} (f + \mathbb{I}_{f=0}) \,\mathrm{d}\tilde{\mu} = \frac{g}{(f + \mathbb{I}_{f=0})} \,\mathrm{d}\mu$$

and we proved that ν has RN derivative

$$\frac{\mathrm{d}\nu}{\mathrm{d}\mu} = \frac{g}{(f + \mathbb{1}_{f=0})}$$

wrt. to μ .

Now it remains to prove that the RN exists in the particular case when $\nu \leq \mu$ and μ is finite and $\mu \neq 0$. We can normalize μ so that $\mu(\Omega) = 1$ and we think of $(\Omega, \mathcal{F}, \mu)$ as a probability space.

Let \mathscr{R} be the family of all paritions \mathscr{P} of Ω made of measurable sets from \mathscr{F} . The family \mathscr{R} is a <u>partial order</u> once endowed with the order relation $\mathscr{P} \leq \mathscr{Q}$ iff $\sigma(\mathscr{P}) \subseteq \sigma(\mathscr{Q})$ (concretely: the partition \mathscr{Q} is finer than \mathscr{P}). Moreover it is a <u>directed set</u> for this relation meaning that for any \mathscr{P} , $\mathscr{Q} \in \mathscr{R}$ there exists another partition $\mathscr{W} \in \mathscr{R}$ such that $\mathscr{P} \leq \mathscr{W}$ and $\mathscr{Q} \leq \mathscr{W}$ (just take the parition formed by all the interections of elements in \mathscr{P} and \mathscr{Q}).

For any $\mathcal{P} \in \mathcal{R}$ we define $f_{\mathcal{P}}: \Omega \to \mathbb{R}_+$ as

$$f_{\mathcal{P}} \coloneqq \sum_{A \in \mathcal{P}} \frac{\nu(A)}{\mu(A)} \mathbb{1}_A$$

which simply means that $f_{\mathscr{P}}(\omega) = \frac{\nu(A)}{\mu(A)}$ for $\omega \in A$ and which is well defined by absolute continuity since $\nu(A) = 0$ when $\mu(A) = 0$, in which case we take $\nu(A) / \mu(A) = 0$. Since $\nu \leq \mu$ we also have that $f_{\mathscr{P}}: \Omega \to [0, 1]$ and moreover that $f_{\mathscr{P}}$ is $\sigma(\mathscr{P})$ measurable.

The key property of these functions is that

$$\nu(A) = \int_A f_{\mathcal{P}} \mathrm{d}\mu$$

for all $A \in \sigma(\mathcal{P})$ (by a $\pi - \lambda$ argument). Moreover if $\mathcal{P} \leq \mathcal{Q}$ then for any $A \in \sigma(\mathcal{P})$

$$\int_{A} f_{\mathcal{P}} \mathrm{d}\mu = \int_{A} f_{\mathcal{Q}} \mathrm{d}\mu. \tag{1}$$

(think about it). This implies that the family of random variables $(f_{\mathcal{P}})_{\mathcal{P}\in\mathcal{R}}$ is a martingale indexed by the directed set \mathcal{R} with respect to the partial order \geq (refinement of partitions).

Now the key point is that we can generalize the notion of martingales indexed by \mathbb{N} to any directed set, and in particular to \mathcal{R} with the natural notion of convergence which is similar to that for sequences indexed by \mathbb{N} . Indeed (\mathbb{N}, \geq) is just another directed set, in this respect. Moreover the martingales convergence theorems that we proved are also valid in this more general context and since $(f_{\mathcal{P}})_{\mathcal{P}\in\mathcal{R}}$ is a bounded martingale since $|f_{\mathcal{P}}| \leq 1$ we have that is uniformly integrable (and more than that in $L^{p}(\mu)$ for all p > 1). Therefore it converges a.s. and in L^{1} (at least) to a limit $g \in L^{1}(\mu)$. (Here convergence means that for every $\varepsilon > 0$ there exists $Q \in \mathcal{R}$ s.t. for all $\mathcal{P} \geq Q$ we have $|f_{\mathcal{P}}-g| \leq \varepsilon$)

By passing to the limit in (1) we have that for all $\mathcal{P} \in \mathcal{R}$ and all $A \in \sigma(\mathcal{P})$ we have

$$\int_A f_{\mathscr{P}} \mathrm{d}\mu = \int_A g \mathrm{d}\mu.$$

But now if $A \in \mathscr{F}$ one can always consider the partition $\mathscr{P} = \{A, A^c\}$ and therefore have that

$$\nu(A) = \int_A f_{\mathcal{P}} \mathrm{d}\mu = \int_A g \mathrm{d}\mu$$

for all $A \in \mathcal{F}$. This proves that the measure ν can be written as $gd\mu$ and that $g = d\nu/d\mu$. This closes the existence step.

Uniqueness. Let assume that we have another function \hat{g} such that $d\nu = \hat{g}d\mu$. Then for any C > 0:

$$\int \mathbb{1}_{\{C > \hat{g} > g > -C\}} (\hat{g} - g) d\mu = \int \mathbb{1}_{\{C > \hat{g} > g > -C\}} d\nu - \int \mathbb{1}_{\{C > \hat{g} > g > -C\}} d\nu = 0$$

which implies that $\mathbb{1}_{\{C>\hat{g}>g>-C\}}(\hat{g}-g)=0$ μ -a.s. and therefore that $\mu(\{C>\hat{g}>g>-C\})=0$. Since *C* is arbitrary this also implies $\mu(\{\hat{g}>g\})=0$. Then we can interchange the role of \hat{g} and g to conclude that $\mu(\{\hat{g}<g\})=0$ and therefore that $\mu(\{\hat{g}\neq g\})=0$, i.e. $\hat{g}=g$ μ -almost everywhere.

Remark. It is a useful exercise to fill out the details on how to extend Doobs' submartingale and supermartingale convergence theorems to martingales indexed by directed sets. Try it if you like.

Lemma. Let μ, ν be σ -finite measures on (Ω, \mathcal{F}) such that $\nu \ll \mu$. If $f: \Omega \to \mathbb{R}$ is a \mathcal{F} -measurable function which is in $L^1(\nu)$ then for all $A \in \mathcal{F}$:

$$\int_A f \mathrm{d}\nu = \int_A f \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \mathrm{d}\mu.$$

Proof. We may assume that μ is finite by σ -finiteness and that $f \ge 0$ by splitting it into positive and negative parts. By monotone convergence it is also possible to assume that f is bounded (indeed otherwise just consider $(f \land N)$ and then the take the monotone limit $N \to \infty$).

Now we prove that the theorem is true for bounded measurable functions. Let \mathcal{H} be the family of all \mathcal{F} -measurable bounded functions g such that

$$\int_A g \mathrm{d}\nu = \int_A g \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \mathrm{d}\mu.$$

Then \mathscr{H} contains 1 (by definition of the RN derivative as we proved in the previous theorem). Moreover \mathscr{H} is a vector space and it is closed by monotone limits (by monotone convergence in the l.h.s. and the r.h.s. separately). Therefore by the monotone class theorem the set \mathscr{H} must contain all the \mathscr{F} measurable bounded functions since it contains all the indicators of \mathscr{F} measurable sets (again by the RN theorem):

$$\int_{A} \mathbb{1}_{B} \mathrm{d}\nu = \nu(B \cap A) = \int_{A \cap B} \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \mathrm{d}\mu = \int_{A} \mathbb{1}_{B} \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \mathrm{d}\mu.$$