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Optimal stopping problems
Optimal stopping problems involve the given of a stochastic process (Yn)n⩾1 which we assume
adapted to given filtration ℱ• =(ℱn)n⩾0 representing our knowledge of the system. The goal is to
optimize the average value of Y stopped at some random time T :Ω→ℕ. In applications is natural
to take this random time to be a stopping time and therefore what we want to study is the quantity
𝔼[YT] over all admissible stopping times T in our specific problem.
We interpret this situation as a game: we imagine that Yn(𝜔) is the gain which we obtain if we
decide to stop at time n in the situation 𝜔. We then try to find a stopping strategy which maximizes
the average gain. Stopping times are the natural class of allowed stopping strategies since they do
not involve knowledge from the future, i.e. {T =n}∈ℱn, stopping at time n can be decided only
using the information contained in ℱn.
We will only consider problems in finite horizon, meaning only involving a finite set of time
indexed n∈⟦N⟧≔{1,. . . ,N} with N <∞. We let 𝒯N to be the set of all stopping times T bounded
by N , i.e. 𝒯N ={T :Ω→⟦N⟧:T is a stopping time for the filtration ℱ• }.
Our problem is to study to the optimal average gain JN with horizon N :

JN = sup
T ∈𝒯N

𝔼[YT].

We say that T ∗ ∈𝒯N is an optimal stopping time iff JN =𝔼[YT ∗]. It does not have to be unique of
course.

Notation. infNA=(inf A)∧N for all A⊆ℕ.

Question: How we compute an optimal stopping time?
As with many optimization problems, an efficient solution here goes thru the determination of a
suitable value function (Zn)n∈⟦N⟧ associated to the choices still available at time n∈⟦N⟧.
The value function represents the average gain conditional on the information gained up to time
n, namely conditional on ℱn. Let's see what we know about it:

a) (Zn)n must be an adapted process, i.e. Zn must be measurable wrt. ℱn.

b) Provided n<N , Zn ⩾Yn: we can always stop at time n, i.e. not play further, and get Yn.

c) Provided n < N , Zn ⩾ 𝔼[Zn+1|ℱn]: my current position has a value which is no less than
what I will get in average if I continue one more step, given I already know ℱn.

At every step n<N I have indeed two possibilities: stop there or continue one more step. At the
final time N however I do not have these two choices: I need to stop right away, so if I'm at time
N I gain YN. This gives us an interesting information: ZN = YN. Morever since I have only two
possibilies in each other step, the value function must satisfy the following backward recursion:

ZN =YN, Zn =sup(Yn,𝔼[Zn+1|ℱn]), n∈{1, . . . ,N −1}. (1)

This equation defines uniquely the process (Zn)n∈⟦N⟧, which by construction is a supermartingale
which bounds Y from above.
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We will show that Z• is the Snell's envelope of Y•, that is the smallest supermartingale Q• which
bounds Y• from above, i.e. Qn ⩾Yn for all n∈⟦N⟧.

Theorem. Let (Yn)n∈⟦N⟧ be an adapted process such that 𝔼[|Yn|]<∞ for all n∈⟦N⟧. Define
(Zn)n∈⟦N⟧ as in (1) and let

T ∗ =inf {k ∈⟦N⟧:Yk =Zk}.

Then the process Z• is the Snell envelope of Y•, the process (Zn
T ∗)n∈⟦N⟧ is a martingale and

𝔼[Z1]=𝔼[ZT ∗]=𝔼[YT ∗]= JN.

The stopping time T ∗ is optimal.

Proof. Let us prove that Z• is the Snell envelope of Y•. Assume Q• is a supermartingale and such
that Qn ⩾Yn for all n∈⟦N⟧. Now let's perform a backward induction on n to prove that Qn ⩾Zn for
all n∈⟦N⟧. Base case: for n=N we have QN ⩾YN =ZN. Induction step: assume that Qn+1⩾Zn+1
then by the supermartingale property

Qn ⩾𝔼[Qn+1|ℱn]⩾𝔼[Zn+1|ℱn]

and since Qn ⩾Yn we have also that Qn ⩾sup(Yn,𝔼[Zn+1|ℱn])=Zn. So the induction is complete
and we proved that Q is above Z . Therefore Z is the smallest supermartingale above Y .
Now we want to prove that the process (Zn

T ∗
)n∈⟦N⟧ is a martingale. On the event {T ∗>n} we have

that Zn =𝔼[Zn+1|ℱn] from the definition of Z . Recall that Zn
T ∗ =Zn∧T ∗, then

𝔼[Zn+1
T ∗

|ℱn]=𝔼[Zn+1
T ∗

1n<T ∗|ℱn]+𝔼[Zn+1
T ∗

1n⩾T ∗|ℱn]

=𝔼[Zn+1|ℱn]1n<T ∗ +𝔼[ZT ∗1n⩾T ∗|ℱn]

=Zn1n<T ∗ +ZT ∗1n⩾T ∗ =Zn
T ∗

which proves the martingale property.
Let now consider the two stopping times n ∧ T ∗ and T ∗, we have n ∧ T ∗ ⩽ T ∗ and therefore by
optional stopping of the martingale M•

T ∗ we have

𝔼[ZT ∗|ℱn∧T ∗]=𝔼[ZT ∗
T ∗

|ℱn∧T ∗]=Zn∧T ∗
T ∗

=Zn∧T ∗

and taking expectation of this equation we have, for any T ∈𝒯N

𝔼[YT]⩽(1) 𝔼[ZT]⩽(2) 𝔼[Z1]=𝔼[Z1
T ∗

]=(3) 𝔼[ZN
T ∗

]=𝔼[ZT ∗]=(4) 𝔼[YT ∗]

where (1) follows from the fact that Z bounds Y from above, (2) follow from the supermatingale
property of Z and optional stopping, (3) follows from the martingale property of Z T ∗ and finally
(4) follows from the definition of T ∗.
This chain on inequalities prove that T ∗ is an optimal stopping time and therefeore that

JN =𝔼[YT ∗]=𝔼[Z1].

□
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Corollary. The stopping time T ∗ is the smallest optimal stopping time, i.e. if S is another optimal
stopping time then T ∗ ⩽S almost surely.

Proof. We prove it by contradiction, assume then that ℙ(T ∗ >S)>0. For 𝜔∈Ω where T ∗(𝜔)>
S(𝜔) we have YS(𝜔) < ZS(𝜔) by the definition of T ∗, everywhere else we have in general only
YS(𝜔)⩽ZS(𝜔). Given that {T ∗ >S} has positive probability this implies that 𝔼[YS]<𝔼[ZS]. The
supermatingale property of Z and optional stopping give then

𝔼[YS]<𝔼[ZS]⩽𝔼[Z1]=JN

which is in contradition with the fact that S is optimal and therefore JN =𝔼[YS]. We conclude that
ℙ(T ∗ >S)=0 which is what we wanted to prove. □

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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