Lecture 18 · 18.6.2021 · 10:15-12:00 via Zoom

Optimal stopping problems

Optimal stopping problems involve the given of a stochastic process $(Y_n)_{n\geq 1}$ which we assume adapted to given filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_n)_{n \ge 0}$ representing our knowledge of the system. The goal is to optimize the average value of Y stopped at some random time $T: \Omega \to \mathbb{N}$. In applications is natural to take this random time to be a stopping time and therefore what we want to study is the quantity $\mathbb{E}[Y_T]$ over all admissible stopping times T in our specific problem.

We interpret this situation as a game: we imagine that $Y_n(\omega)$ is the gain which we obtain if we decide to stop at time n in the situation ω . We then try to find a stopping strategy which maximizes the average gain. Stopping times are the natural class of allowed stopping strategies since they do not involve knowledge from the future, i.e. $\{T = n\} \in \mathcal{F}_n$, stopping at time n can be decided only using the information contained in \mathcal{F}_n .

We will only consider problems in finite horizon, meaning only involving a finite set of time indexed $n \in [N] := \{1, ..., N\}$ with $N < \infty$. We let \mathcal{T}_N to be the set of all stopping times T bounded by N, i.e. $\mathcal{T}_N = \{T: \Omega \to [\![N]\!]: T \text{ is a stopping time for the filtration } \mathcal{T}_\bullet \}$.

Our problem is to study to the optimal average gain J_N with horizon N:

$$J_N = \sup_{T \in \mathscr{T}_N} \mathbb{E}[Y_T].$$

We say that $T^* \in \mathcal{T}_N$ is an optimal stopping time iff $J_N = \mathbb{E}[Y_{T^*}]$. It does not have to be unique of course.

Notation. $\inf_{N} A = (\inf A) \wedge N$ for all $A \subseteq \mathbb{N}$.

Question: How we compute an optimal stopping time?

As with many optimization problems, an efficient solution here goes thru the determination of a suitable value function $(Z_n)_{n \in [N]}$ associated to the choices still available at time $n \in [N]$.

The value function represents the average gain conditional on the information gained up to time n, namely conditional on \mathcal{F}_n . Let's see what we know about it:

- a) $(Z_n)_n$ must be an adapted process, i.e. Z_n must be measurable wrt. \mathscr{F}_n .
- b) Provided n < N, $Z_n \ge Y_n$: we can always stop at time n, i.e. not play further, and get Y_n .
- c) Provided n < N, $Z_n \ge \mathbb{E}[Z_{n+1} | \mathcal{F}_n]$: my current position has a value which is no less than what I will get in average if I continue one more step, given I already know \mathcal{F}_n .

At every step n < N I have indeed two possibilities: stop there or continue one more step. At the final time N however I do not have these two choices: I need to stop right away, so if I'm at time N I gain Y_N . This gives us an interesting information: $Z_N = Y_N$. Morever since I have only two possibilies in each other step, the value function must satisfy the following backward recursion:

$$Z_N = Y_N, \qquad Z_n = \sup(Y_n, \mathbb{E}[Z_{n+1}|\mathcal{F}_n]), \qquad n \in \{1, \dots, N-1\}.$$
 (1)

This equation defines uniquely the process $(Z_n)_{n\in \mathbb{N}}$, which by construction is a supermartingale which bounds Y from above.

We will show that Z_{\bullet} is the *Snell's envelope* of Y_{\bullet} , that is the smallest supermartingale Q_{\bullet} which bounds Y_{\bullet} from above, i.e. $Q_n \geqslant Y_n$ for all $n \in [N]$.

Theorem. Let $(Y_n)_{n\in [\![N]\!]}$ be an adapted process such that $\mathbb{E}[|Y_n|] < \infty$ for all $n \in [\![N]\!]$. Define $(Z_n)_{n\in [\![N]\!]}$ as in (1) and let

$$T^* = \inf \{ k \in [N] : Y_k = Z_k \}.$$

Then the process Z_{\bullet} is the Snell envelope of Y_{\bullet} , the process $(Z_n^{T^*})_{n \in [\![N]\!]}$ is a martingale and

$$\mathbb{E}[Z_1] = \mathbb{E}[Z_{T^*}] = \mathbb{E}[Y_{T^*}] = J_N.$$

The stopping time T^* is optimal.

Proof. Let us prove that Z_{\bullet} is the Snell envelope of Y_{\bullet} . Assume Q_{\bullet} is a supermartingale and such that $Q_n \geqslant Y_n$ for all $n \in [N]$. Now let's perform a backward induction on n to prove that $Q_n \geqslant Z_n$ for all $n \in [N]$. Base case: for n = N we have $Q_N \geqslant Y_N = Z_N$. Induction step: assume that $Q_{n+1} \geqslant Z_{n+1}$ then by the supermartingale property

$$Q_n \geqslant \mathbb{E}[Q_{n+1}|\mathcal{F}_n] \geqslant \mathbb{E}[Z_{n+1}|\mathcal{F}_n]$$

and since $Q_n \ge Y_n$ we have also that $Q_n \ge \sup (Y_n, \mathbb{E}[Z_{n+1}|\mathcal{F}_n]) = Z_n$. So the induction is complete and we proved that Q is above Z. Therefore Z is the smallest supermartingale above Y.

Now we want to prove that the process $(Z_n^{T^*})_{n \in [\![N]\!]}$ is a martingale. On the event $\{T^* > n\}$ we have that $Z_n = \mathbb{E}[Z_{n+1}|\mathscr{F}_n]$ from the definition of Z. Recall that $Z_n^{T^*} = Z_{n \wedge T^*}$, then

$$\begin{split} \mathbb{E}[Z_{n+1}^{T^*}|\mathscr{F}_n] &= \mathbb{E}[Z_{n+1}^{T^*}\mathbb{1}_{n < T^*}|\mathscr{F}_n] + \mathbb{E}[Z_{n+1}^{T^*}\mathbb{1}_{n \ge T^*}|\mathscr{F}_n] \\ &= \mathbb{E}[Z_{n+1}|\mathscr{F}_n]\mathbb{1}_{n < T^*} + \mathbb{E}[Z_{T^*}\mathbb{1}_{n \ge T^*}|\mathscr{F}_n] \\ &= Z_n\mathbb{1}_{n < T^*} + Z_{T^*}\mathbb{1}_{n \ge T^*} = Z_n^{T^*} \end{split}$$

which proves the martingale property.

Let now consider the two stopping times $n \wedge T^*$ and T^* , we have $n \wedge T^* \leq T^*$ and therefore by optional stopping of the martingale $M_{\bullet}^{T^*}$ we have

$$\mathbb{E}[Z_{T^*}|\mathcal{F}_{n\wedge T^*}] = \mathbb{E}[Z_{T^*}^{T^*}|\mathcal{F}_{n\wedge T^*}] = Z_{n\wedge T^*}^{T^*} = Z_{n\wedge T^*}$$

and taking expectation of this equation we have, for any $T \in \mathcal{T}_N$

$$\mathbb{E}[Y_T] \leq_{(1)} \mathbb{E}[Z_T] \leq_{(2)} \mathbb{E}[Z_1] = \mathbb{E}[Z_1^{T^*}] =_{(3)} \mathbb{E}[Z_N^{T^*}] = \mathbb{E}[Z_{T^*}] =_{(4)} \mathbb{E}[Y_{T^*}]$$

where (1) follows from the fact that Z bounds Y from above, (2) follow from the supermatingale property of Z and optional stopping, (3) follows from the martingale property of Z^{T^*} and finally (4) follows from the definition of T^* .

This chain on inequalities prove that T^* is an optimal stopping time and therefeore that

$$J_N = \mathbb{E}[Y_{T^*}] = \mathbb{E}[Z_1].$$

Corollary. The stopping time T^* is the smallest optimal stopping time, i.e. if S is another optimal stopping time then $T^* \leq S$ almost surely.

Proof. We prove it by contradiction, assume then that $\mathbb{P}(T^*>S)>0$. For $\omega \in \Omega$ where $T^*(\omega)>S(\omega)$ we have $Y_S(\omega) < Z_S(\omega)$ by the definition of T^* , everywhere else we have in general only $Y_S(\omega) \leq Z_S(\omega)$. Given that $\{T^*>S\}$ has positive probability this implies that $\mathbb{E}[Y_S] < \mathbb{E}[Z_S]$. The supermatingale property of Z and optional stopping give then

$$\mathbb{E}[Y_S] < \mathbb{E}[Z_S] \leq \mathbb{E}[Z_1] = J_N$$

which is in contradition with the fact that S is optimal and therefore $J_N = \mathbb{E}[Y_S]$. We conclude that $\mathbb{P}(T^* > S) = 0$ which is what we wanted to prove.