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Optimal stopping problems

Optimal stopping problems involve the given of a stochastic process (Y,),>1 which we assume
adapted to given filtration %, = (%¥,),>0 representing our knowledge of the system. The goal is to
optimize the average value of Y stopped at some random time 7': Q — N. In applications is natural
to take this random time to be a stopping time and therefore what we want to study is the quantity
E[Yr] over all admissible stopping times 7 in our specific problem.

We interpret this situation as a game: we imagine that ¥, (w) is the gain which we obtain if we
decide to stop at time # in the situation w. We then try to find a stopping strategy which maximizes
the average gain. Stopping times are the natural class of allowed stopping strategies since they do
not involve knowledge from the future, i.e. {T =n} € ¥, stopping at time n can be decided only
using the information contained in %,,.

We will only consider problems in finite horizon, meaning only involving a finite set of time
indexedne [N]:={1,...,N} with N <oco. We let Ty to be the set of all stopping times 7" bounded
by N,i.e. Iy={T:Q - [N]: T is a stopping time for the filtration %, }.

Our problem is to study to the optimal average gain Jy with horizon N:

Jv=sup E[Yr].
TG?N

We say that T* e Jy is an optimal stopping time iff Jy = E[Y7+]. It does not have to be unique of
course.

Notation. infyA = (inf A) AN for all ACN.

Question: How we compute an optimal stopping time?

As with many optimization problems, an efficient solution here goes thru the determination of a
suitable value function (Z,),en) associated to the choices still available at time n € [N].

The value function represents the average gain conditional on the information gained up to time
n, namely conditional on %,,. Let's see what we know about it:

a) (Z,), must be an adapted process, i.e. Z, must be measurable wrt. %,,.
b) Provided n<N, Z,>Y,: we can always stop at time #, i.e. not play further, and get ¥,,.

c) Provided n< N, Z,> E[Z,.1|%,]: my current position has a value which is no less than
what I will get in average if I continue one more step, given I already know %,,.

Atevery step n <N I have indeed two possibilities: stop there or continue one more step. At the
final time N however I do not have these two choices: I need to stop right away, so if I'm at time
N 1 gain Yy. This gives us an interesting information: Zy = Y. Morever since I have only two
possibilies in each other step, the value function must satisfy the following backward recursion:

Zn=1Yy, ansup(Yna]E[Zn-%—”%i]), nE{l,...,N—l}. (1)

This equation defines uniquely the process (Z,),e[n], which by construction is a supermartingale
which bounds Y from above.



We will show that Z, is the Snell's envelope of Y., that is the smallest supermartingale Q. which
bounds Y. from above, i.e. Q,, > Y, for all n € [N].

Theorem. Let (Y,),c[n be an adapted process such that E[|Y,|] < co forallne€[N]. Define
(Zp)neiny as in (1) and let

T*=inf{k € [N]: Yy =Z4}.
Then the process Z. is the Snell envelope of Y., the process (Z) ne[N] IS a martingale and

E[Z\]=E[Z7:]=E[Y7+] = Jn.

The stopping time T* is optimal.

Proof. Let us prove that Z, is the Snell envelope of Y.. Assume Q. is a supermartingale and such
that O, > Y, for alln e [N]. Now let's perform a backward induction on » to prove that Q, > Z, for
all ne [N]. Base case: for n=N we have Oy > Yy =Zy. Induction step: assume that Q,,,1 =7, +1
then by the supermartingale property

Qn> IE‘:[Qn+l|-%‘n] 2 E[Zn+l|-%1]

and since Q, > Y, we have also that Q, >sup (¥, E[Z,,+1|%,]) =Z,. So the induction is complete
and we proved that Q is above Z. Therefore Z is the smallest supermartingale above Y.

Now we want to prove that the process zr *)neﬂN]] is a martingale. On the event {T*>n} we have
that Z, = E[Z,,1|%,] from the definition of Z. Recall that Z,,T* =Z, AT+ then

ElZ %] =EBIZ Laerd Fnl + BIZL L7 Fo
:]E[Zn+]|~%1] ﬂn<T* + ]E[ZT*HVQT*LO};!]

T*
:anln<T* + ZT*ILnZT* = Zn

which proves the martingale property.

Let now consider the two stopping times n A T* and T, we have n A T* < T* and therefore by
optional stopping of the martingale M!~ we have

E(Zr|Funr) = BIZT | Funr] = Zinr+= Zunt
and taking expectation of this equation we have, for any 7' € Iy

E(Yr1<m ElZr1<@ ElZ11=E[Z{ 1= E[Z§ 1=E(Zr+] =4 E[ Y1+]

where (1) follows from the fact that Z bounds Y from above, (2) follow from the supermatingale
property of Z and optional stopping, (3) follows from the martingale property of Z” and finally
(4) follows from the definition of 7.

This chain on inequalities prove that T* is an optimal stopping time and therefeore that

In=E[Yr:]=E[Z].



Corollary. The stopping time T™ is the smallest optimal stopping time, i.e. if S is another optimal
stopping time then T* < S almost surely.

Proof. We prove it by contradiction, assume then that P(7* > S) >0. For w € Q where T*(w) >
S(w) we have Ys(w) < Zg(w) by the definition of T*, everywhere else we have in general only
Ys(w) <Zs(w). Given that {T* > S} has positive probability this implies that E[Ys] < E[Zg]. The
supermatingale property of Z and optional stopping give then

E[Y¥s] <E[Zs]<E[Z1]=Jn

which is in contradition with the fact that S is optimal and therefore Jy = E[Ys]. We conclude that
P(T*>S) =0 which is what we wanted to prove. O
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