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Optimal stopping problems (II)
In the last lecture we proved the basic result of optimal stopping in discrete time and finite horizon
N :

Theorem. Let (Yn)n∈⟦N⟧ be an adapted process such that 𝔼[|Yn|]<∞ for all n∈⟦N⟧, recall
then ⟦N⟧={1, . . . ,N}. Define (Zn)n∈⟦N⟧ as

ZN =YN, Zn =sup(𝔼[Zn+1|ℱn],Yn), n∈⟦N −1⟧,

and let

T ∗ ≔inf {k ∈⟦N⟧:Yk =Zk}.

Then the process Z• is the Snell envelope of Y•, the process (Zn
T ∗)n∈⟦N⟧ is a martingale and

JN ≔ sup
T ∈𝒯N

𝔼[YT]=𝔼[YT ∗]=𝔼[ZT ∗]=𝔼[Z1]

where 𝒯N is the set of all stopping time taking values in ⟦N⟧. The stopping time T ∗ is optimal.

Remark. The process (Zn)n∈⟦N⟧ is also the average gain for playing optimally from time n on,
that is

Zn = sup
T ∈𝒯N:T ⩾n

𝔼[YT |ℱn].

One can actually introduce this process in this way and then proceed to prove all the properties we
have shown, i.e. Snell's envelope property and also the representation for optimal stopping times.

Markovian problems
In many optimal stopping problems the following assumptions are satisfied:

Assumption. There exists an adapted process (Xn)n⩾0 taking values in a measure space (E,ℰ)
for which, for any n⩾0 we have

a) For any bounded measurable function f :E →ℝ

𝔼[ f (Xn+1)|ℱn]=𝔼[ f (Xn+1)|Xn]=(Pn+1f )(Xn)

for some probability kernel on E, that is a function Pn+1:E ×ℰ→ [0, 1] such that it is a
probability measure in the second variable and for any A∈ℰ the function x∈E ↦Pn+1(x,
A) has to be (ℰ-)measurable. This is called the Markov property for the process (Xn)n⩾0
wrt. (ℱn)n⩾0. Much more on this later on in the course.

b) For any n∈⟦N⟧ the gain Yn can be expressed as a function of Xn, that is Yn =𝜑n(Xn) for
some measurable function 𝜑n:E →ℝ.

When this assumption is satisfied we say that the optimal stopping problem is Markovian.
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Remark. Recall that the notation Pnf :E →ℝ means the function defined via the integral

(Pnf )(x)=�
E

f (y)Pn(x, dy).

When the problem is Markovian the Snell envelope and the optimal stopping time T ∗ has a very
simple and concrete representation which is very important for real-world applications.
Let's find it. First note that

ZN =YN =𝜑N(XN),

moreover

ZN−1 =sup(𝔼[ZN|ℱN−1],YN−1)=sup(𝔼[𝜑N(XN)|ℱN−1],𝜑N−1(XN−1))

and using the Markovian structure of the problem we have now

ZN−1=sup((PN𝜑N)(XN−1),𝜑N−1(XN−1))= vN−1(XN−1)

where vN−1(x) ≔ sup ((PN𝜑N)(x), 𝜑N−1(x)) for any x ∈ E. So we see a structure emerging, in
particular by recursion Zn will be a function of Xn which we call vn:E → ℝ, namely we set (vn:
E →ℝ)n∈⟦N⟧ satisfying

vN =𝜑N, vn =sup(Pn+1vn+1,𝜑n). (1)

And with this definition you can check very easily that indeed we have

Zn = vn(Xn)

for all n∈⟦N⟧. Moreover

JN =𝔼[Z1]=𝔼[v1(X1)]

and the optimal stopping time T ∗ is given by the first time k ∈ ⟦N⟧ when Yk = Zk, namely when
𝜑k(Xk)=vk(Xk). We can restate this by defining the stopping region at time k ∈⟦N⟧ to be

𝒮k ≔{x∈E:𝜑k(x)=vk(x)}∈ℰ

and then

T ∗ =inf {k ∈⟦N⟧:Xk ∈𝒮k}.

The Markovian assumption allow to transfer the optimal stopping problem from the abstract mea-
sure space (Ω, ℱ) (which in particular depends on the horizon N) to the “concrete” measure
space (E,ℰ) (which in particular is independent of N).

The Moser problem
Let's discuss a specific very simple example called the Moser problem. This is a Markovian
optimal stopping problem in discrete time and horizon N where (Xn)n∈⟦N⟧ is just a family of i.i.d.
random variables with values in E =[0,1] with the Borel 𝜎-algebra ℰ=ℬ([0, 1]) and where we
take 𝜑n: [0, 1]→ℝ to be the identity: 𝜑n(x)= x, namely we have Yn =Xn, at every step n we gain
the value of the process Xn. The natural filtration in this problem is then ℱn =𝜎(Xk:k ∈{1,. . . ,n})
the filtration generated by the process X•.
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One can check that due to independence (Xn)n∈⟦N⟧ is indeed Markovian wrt. this filtration, i.e.:

𝔼[ f (Xn+1)|ℱn]=𝔼[ f (Xn+1)|Xn, . . . ,X1]=𝔼[ f (Xn+1)]=𝔼[ f (Xn+1)|Xn]=(Pn+1f )(Xn)

where the kernel Pn+1(x, dy) is idependent of n and of x∈E (the first variable) and given by

Pn+1(x, dy)=𝜇(dy)

where 𝜇=Law(X1) is the law of the r.v. X1. We assume that we know the law 𝜇.
We can know use the theory we constructed above to solve this optimal stopping problem. Since
this problem has a Markovian structure we know that to compute the Snell's envelope we can just
find the family of functions vn: [0, 1]→ℝ defined above with eq. (1):
When n=N we have

vN(x)=𝜑N(x)=x

and then for any n<N we compute:

vn(x)=max((Pn+1vn+1)(x),𝜑n(x))

we have 𝜑n(x)=x and also

(Pn+1vn+1)(x)=�
[0,1]

vn+1(y)Pn+1(x, dy)=�
[0,1]

vn+1(y)𝜇(dy)

vn(x)=max�x,�
[0,1]

vn+1(y)𝜇(dy)�.

Note that

JN =𝔼[Z1]=𝔼[v1(X1)]=�
[0,1]

v1(y)𝜇(dy).

To simplify this representation we let

𝜌n ≔�
[0,1]

vn(y)𝜇(dy),

then note that vn(x)=max(x,𝜌n+1) and therefore that

𝜌n =�
[0,1]

max(x,𝜌n+1)𝜇(dy)

so all the information on the solution of this optimal stopping problem is contained in sequence of
numbers (𝜌n)n∈⟦N⟧ which then give the functions vn(x)= max (x, 𝜌n+1) and therefore the Snell's
envelope Zn =max(Xn,𝜌n+1) and the optimal stopping time

T ∗ =inf {k ∈⟦N −1⟧:Xk ⩾𝜌k+1}∧N

that is, once we have computed the numbers (𝜌k)k∈⟦N⟧ we stop the first time k we see a number
Xk bigger than 𝜌k+1, or we stop at N if this never happens before.

In particular

𝜌N =�
[0,1]

vN(y)𝜇(dy)=�
[0,1]

y𝜇(dy)=𝔼[X1].

Note that 𝜌n ⩾𝜌n+1⩾ ⋅ ⋅ ⋅ ⩾𝜌N =𝔼[X1].
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Exercise 1. Compute the levels (𝜌n)n∈⟦N⟧ for N =10 and 𝜇=Uniform([0, 1]) and determine J10.

Remark. Recall that ∫E f (y)𝜇(dy) is a notation for the integral of the measurable function f :
E →ℝ with respect to the measure 𝜇, alternative notations are:

�
E

f (y)𝜇(dy)=�
E

f (y)d𝜇(y)=�
E

f d𝜇

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Markov chains (Markov processes in discrete time)
Markov chains are an important class of stochastic processes in discrete time which are very
useful in applications and which have a nice and complex theory.
To introduce the subject, let us look at a specific example of random recurrences.

Random recurrences
Take a sequence of i.i.d random variables (Un)n⩾1 with values in [0,1] and uniformly distributed
there, and let (𝜙n:E ×[0,1]→E)n⩾1 be a family of measurable functions where (E,ℰ) is a given
measure space. We let also 𝜈 to be a probability measure on (E,ℰ). Then define a new stochastic
process (Xn)n⩾0 as follows: X0 is independent of (Un)n⩾1 and with law 𝜈, i.e. 𝜈=Lawℙ(X0) and
then let regursively for all n⩾1

Xn ≔𝜙n(Xn−1,Un).

This is like in a board game: at time n− 1 we are in position Xn−1, we throw the dice Un and the
rule of the game 𝜙n tells us where to be in the next round, i.e. our new position Xn.
This is a random recurrence. Many phenomena in science and in applications can be modeled
with such stochastic processes. Two extreme situations:

• Take 𝜙n(x,y)=𝜑n(y) to be independent of the variable x∈E, then (Xn)n⩾1 is just a family
of independent random variables Xn =𝜑n(Un), moreover if 𝜑n do not depend on n they are
also indentically distributed.

• Take 𝜙n(x, y)= fn(x) to be independent of its second variable y ∈[0, 1], then the random
sequence (Un)n is not influencing anymore the process (Xn)n⩾0 which become a deter-
ministic recursion, i.e. Xn = fn(Xn−1), possibly with a random initial condition X0. This
represents a phenomenon which evolves according a deterministic rule from state to state.

Random recurrences interpolate naturally between these two extreme situations: we have a mech-
anism to evolve the current state into a future state, but this mechanism is a combination of
deterministic and random behaviours.
In this problem we have a natural filtration, which is the one for example generated by the process
(Xn)n⩾0 itself, i.e. ℱn =𝜎(X0, . . . ,Xn). There is also another filtration which is the one generated
by the (Un)n⩾1 togetgher with X0, i.e. 𝒢n =𝜎(X0,U1, . . . ,Un).
As an exercise, I leave you to prove the following lemma.

Lemma. Let (Xn)n⩾0 be the random recurrence just defined. For any measurable bounded func-
tion f :E →ℝ we have

𝔼[ f (Xn+1)|𝒢n]=𝔼[ f (Xn+1)|Xn]
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and a similar property for the filtration (ℱn)n⩾0. This property is called the Markov property of
the process (Xn)n⩾0 wrt. the filtration (𝒢n)n⩾0 (or (ℱn)n⩾0).

Remark. The Markov property intuitively says that the “future” of the process depends on its
“past” only via the “present”. Not all stochastic processes are markov processes.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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