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Review of measure spaces, measures and integration.

We start by reviewing the basic setup of prob. theory, 𝜎-algebras and prob. measure, the con-
struction of probability measures, product of prob spaces, the notion of integral, and the various
properties of the integral.

A probability space is triple (Ω,ℱ,ℙ) where

• Ω is a set;

• ℱ⊆𝒫(Ω) is a 𝜎-algebra of events, that is a family of subsets of Ω which is stable
under complement, under finite intersections and under countable unions, and more-
over it contains the empty set ∅. This represents the possible events we want to
consider in our probabilistic setting.

• ℙ is a probability measure, that is a function ℙ:ℱ→[0,1] such ℙ(∅)=0, ℙ(Ac)=
1−ℙ(A) and is 𝜎-additive, that is for any disjoint family (Ak)k ⊆ℱ it holds

ℙ(∪nAn)=�
n

ℙ(An),

(𝜎-additivity is equivalent to continuity at ∅, that is ℙ(Bk) → 0 if ∩kBk = ∅ for an
arbitrary family (Bk)k ⊆ℱ).

These axioms are due to Kolmogorov in the '40. There are fomalizations of probability
which do not require 𝜎-additivity (see de Finetti). But you can prove less in them.

More generally we call measure a positive function 𝜇:ℱ→[0,∞] which satisfy all the properties
of a prob. measure apart from the property on complements, i.e. 𝜇(∅)=0 and it is 𝜎-additive.
𝜎-algebras are complicated to describe, so we would like to work with more manageable objects.
So for any family 𝒰⊆𝒫(Ω) we call 𝜎(𝒰) the smallest 𝜎-algebra which contains 𝒰, this is the
𝜎-algebra generated by 𝒰.
Examples of 𝜎-algebras

• 𝒫(Ω) is a 𝜎-algebra and we have always the trivial 𝜎-algebra {∅,Ω}.

• If Ω is a topological space then we can consider the 𝜎-algebra generated by all the open
sets of Ω we call it the Borel 𝜎-algebra and denote it with ℬ(Ω)= 𝜎({open sets in Ω}).
The elements in ℬ(Ω) are called Borel sets.

How can we work with prob. measures?

We need first a way to work with 𝜎-algebras easily. One important tool is Dynkin's 𝜋− 𝜆 the-
orem:

• We say that a family of sets Λ is a 𝜆-system if it contains ∅ and is closed under comple-
ments and countable disjoint unions;
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• We say that a family of sets Π is a 𝜋-system if it is closed under finite intersections.

Note that a 𝜎-algebra is both a 𝜆-system and a 𝜋-system.
Examples (show the claims as exercise):

• the family of open intervals of ℝ together with ∅ is a 𝜋-system (one can allow also finite
unions and it is still a 𝜋-system);

• the family of rectangles A×B⊆Ω×Ω with A,B∈ℱ is a 𝜋-system;

• the family {B∈ ℱ,ℙ(B)=ℚ(B)} for two probability measure ℙ,ℚ on ℱ, is a 𝜆-system
(exercise);

• consider the family Λ⊆ℱ such that there exists a vector space ℋ of bounded measurable
real-valued functions on ℱ such that 1∈ℋ and ℋ contains all the indicator functions 1B
of elements B∈Λ. Then Λ is a 𝜆-system;

Theorem. (Dynkin's π −λ theorem) If Π is a 𝜋-system and Λ a 𝜆-system then Π ⊆ Λ
implies that 𝜎(Π)⊆Λ.

A function f : (Ω,ℱ)→(E,ℰ) between two measure spaces (i.e. a pair of a space and 𝜎-algebra
on it) is measurable iff f −1(F)∈ℱ for all F ∈ℰ.
Note that f −1(ℰ) ≔ { f −1(F): F ∈ ℰ} is always a 𝜎-algebra, for a measurable function we have
moreover that f −1(ℰ)⊆ℱ, that is for an ℱ-measurable function f −1(ℰ) is a sub-𝜎-algebra of ℱ.
Functions measurable on a probability space (Ω, ℱ, ℙ) are called random variables. We can
speak about probabilities associated to this particular function.
For a random variable f :Ω→(E,ℰ) we can do

ℰ →→→→→→→→→→→→→→→→→→→→→→→
f −1

ℱ →→→→→→→→→→→→→→
ℙ

[0,1]

that is we can construct a new probability measure ℙf :ℰ→[0, 1] by pullback of ℙ with f . This
is called the law (or the distribution) of f .

Real valued random variable are like coordinates on the probability space, i.e. reduce the
problem to compute probabilities in the unstructured setting of Ω to a concrete problem
about algebra and analysis of real-valued functions.

If X: (Ω,ℱ)→(E,ℰ) is a r.v. then 𝜎(X) is the smallest 𝜎-algebra for which X is measurable and

𝜎(X)={X−1(F):F ∈ℰ}⊆ℱ.

We could say that 𝜎(X) represents the information on the measure space (Ω, ℱ) obtained
by looking at it via X (you can think about it as a coodinate system). Like any coordinate
system it could not be complete and discard some of the underlying information. 𝜎(X) can
be tought as the set of all possible questions you can ask about Ω using only the language
given by X.

For real valued functions measurability is usually understood wrt. to the Borel 𝜎-algebra. More
generally this applies for functions with values in top. spaces.
Measurability strongly depends on the inital 𝜎-algebra ℱ, when this is important we say explic-
itly ℱ-measurable.
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Measurable functions, like 𝜎-algebras are difficult to describe explicitly, but we have nice way to
relate this two concepts in the case the 𝜎-algebra is generated by some family 𝒰.

Theorem. (Monotone class theorem) Let ℋ be a vector space of bounded real-values
functions on Ω such that

i. 1∈ℋ,

ii. if fn⩾0 and fn↑ f pointwise with f bounded, then f ∈ℋ (so ℋ is stable under monotone
limits).

Then if ℋ contains the indicator functions of every element of a 𝜋-system 𝒰 then ℋ con-
tains every bounded 𝜎(𝒰)-measurable function.

The proof is not difficult and uses Dynkin's theorem. The property (ii) tells us that we can do
pointwise approximations in ℋ and the proof proceed by appoximating measurable functions
with simple functions which then are shown to be in ℋ. Recall that simple functions are those
measurable functions which take only finitely many values, i.e. f :Ω→ℝ is simple if

f (𝜔)= �
x∈B

x1f −1({x})(𝜔)

with B a finite subset of ℝ. Note that {x} is measurable wrt. ℬ(ℝ), this ensure that f −1({x})∈ℱ
since f is measurable.

Usually in proofs one consider a class of functions ℋ which satisfy all the above properies
and then this shows that it actually consists of all the measurable functions. This allows to
prove a statement about all measurable functions by proving:

1. first that it holds for indicator functions of measurable sets (is enough a generating
subset),

2. you prove it for linear combinations,

3. and then you prove that it is stable under monotone pointwise limits.

Indeed one applies the above theorem using as ℋ the set of all measurable functions satis-
fying the statement we are interested in.

Still, how we construct probability measures?
The main tool here is the Carathéodory extension theorem (stated for positive measures):

Theorem. (Carathéodory extension theorem) Let Ω be a set, 𝒰 an algebra of subsets of
Ω and 𝜇0:𝒰 → ℝ⩾0 ∪ {+∞} a positive 𝜎-additive set-function on 𝒰. Then there exists a
measure 𝜇:𝜎(𝒰)→ℝ⩾0∪{+∞} such that

𝜇|𝒰=𝜇0.

If 𝜇0 is 𝜎-finite then 𝜇 is unique.

𝒰 being an algebra only finite unions are allowed, so 𝜎-additivity for a set-function 𝜇0 is under-
stood in the sense that for any disjoint family (Ak)k ⊆ 𝒰 such that ∪kAk ∈ 𝒰 then 𝜇0(∪kAk) =
∑k 𝜇0(Ak), i.e. the requirement is only imposed when the uncountable union is in 𝒰, otherwise
we do not impose any requirements.
A measure is 𝜎-finite if it exist a countable measurable cover (Ak)k of Ω such that 𝜇(Ak)<∞ for
any k.
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Example: Lebesgue measure on ℝn is not finite but 𝜎-finite.
Usually in probability theory we just work with probability measures so the uniqueness part of
Carathéodory extension theorem is for free.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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