Lecture 20 · 25.6.2021 · 10:15-12:00 via Zoom

Markov chains

In the last lecture we introduce a random recurrence $(X_n)_{n\geqslant 0}$ as a stochastic process with values in the measure space (E,\mathcal{E}) and solution to the recurrence equation

$$X_n = \phi_n(X_{n-1}, U_n)$$

for all $n \ge 1$ where $(U_n)_{n \ge 1}$ is a family of i.i.d. random variables with values in [0, 1] and independent of X_0 and ϕ_n are measurable functions $E \times [0, 1] \to E$. For simplicity and without loss of generality (think why) we can take U_n to be uniformly distributed in [0, 1].

We observed that this process has a particular property which we called the Markov property wrt. the filtration $\mathcal{F}_n = \sigma(X_0, U_k, k \leq n)$.

Definition. An discrete stochastic process $(Y_n)_{n\geqslant 0}$ with values in (E,\mathcal{E}) satisfies the **Markov property** wrt. a filtration $(\mathcal{G}_n)_{n\geqslant 0}$ iff it is adapted to \mathcal{G}_{\bullet} and for any $n\geqslant 0$ and any bounded measurable function $f:E\to\mathbb{R}$ we have

$$\mathbb{E}[f(Y_{n+1})|\mathcal{G}_n] = \mathbb{E}[f(Y_{n+1})|Y_n] = (P_{n+1}f)(Y_n) \tag{1}$$

where P_{n+1} : $E \times \mathcal{E} \to [0,1]$ is a probability kernel on (E,\mathcal{E}) . We call P_n transition kernels, or transition "functions".

Remark. Recall that a probability kernel on (E, \mathcal{E}) is a function $T: E \times \mathcal{E} \to [0, 1]$ such that for all $x \in E$ the set function $T(x, \cdot)$ is a probability on (E, \mathcal{E}) and for any $A \in \mathcal{E}$ the function $x \in E \mapsto T(x, A) \in [0, 1]$ is a measurable function.

If $(E, \mathcal{P}(E))$ is a discrete measure space then any probability kernel T can be uniquely identified with a function $\hat{T}: E \times E \to [0,1]$ such that $\hat{T}(x,y) = T(x,\{y\})$. Usually we use the same notation for \hat{T} and T, there will be no ambiguity. In particular this function is a stochastic matrix, i.e. it satisfies

$$\sum_{y \in E} T(x, y) = 1, \qquad x \in E.$$

Remark. To prove that the random recurrence above satisfies the Markov property we have to check eq. (1) wrt. $\mathscr{F}_n = \sigma(X_0, U_k, k \le n)$. Fix $n \ge 0$ and $f: E \to \mathbb{R}$ then we have

$$\mathbb{E}[f(X_{n+1})|\mathcal{F}_n] = \mathbb{E}[f(\phi_{n+1}(X_n, U_{n+1}))|X_0, U_1, \dots, U_n].$$

We first note that X_n is measurable wrt. \mathscr{F}_n (this can be proven by induction on the random recurrence) and then that U_{n+1} is independent of \mathscr{F}_n since the Us are independent among themselves and with X_0 . By the properties of conditional expectations we have then

$$\mathbb{E}[f(\phi_{n+1}(X_n, U_{n+1}))|X_0, U_1, \dots, U_n] = g(X_n)$$
(2)

with $g: E \to \mathbb{R}$ defined as

$$g(x) := \mathbb{E}[f(\phi_{n+1}(x, U_{n+1}))] = \mathbb{E}[f(\phi_{n+1}(x, U_1))].$$

Now by taking $\mathbb{E}[\cdot|X_n]$ of (2) we have

$$g(X_n) = \mathbb{E}[g(X_n)|X_n] = \mathbb{E}[\mathbb{E}[f(\phi_{n+1}(X_n, U_{n+1}))|\mathcal{F}_n]|X_n]$$
$$= \mathbb{E}[f(\phi_{n+1}(X_n, U_{n+1}))|X_n]$$

since $\sigma(X_n) \subseteq \mathcal{F}_n$. Therefore we have proven the Markov property at step n. Morever we have also identified the transition kernel

$$(P_{n+1}f)(x) = g(x) = \mathbb{E}[f(\phi_{n+1}(x, U_1))] = \int_{[0,1]} f(\phi_{n+1}(x, u)) \, \mu(\mathrm{d}u) = \int_{[0,1]} f(\phi_{n+1}(x, u)) \, \mathrm{d}u$$

where $\mu = \text{Unif}([0,1])$ is the law of U_1 on $([0,1], \mathcal{B}([0,1]))$. So we can take

$$P_{n+1}(x, dy) = \int_{[0,1]} \delta_{\phi_{n+1}(x,u)}(dy) du = (\phi_{n+1}(x, \cdot)_* \mu) (dy).$$

Another way to describe it is to say that for any $A \in \mathcal{E}$ we have

$$P_{n+1}(x,A) = \int_{[0,1]} \mathbb{1}_A(\phi_{n+1}(x,u)) du = \mathbb{P}(\phi_{n+1}(x,U_1) \in A) = \int_{\phi_{n+1}(x,\cdot)^{-1}A} du.$$

Example. Let $(X_n)_{n \ge 1}$ be an i.i.d. real-valued random sequence, take $\mathscr{F}_n = \sigma(X_k : k \in \{0, \dots, n\})$, take $y_0 \in \mathbb{R}$ and let

$$Y_n = y_0 + X_1 + \dots + X_n$$

for all $n \ge 0$. Then it is easy to prove that $(Y_n)_{n \ge 0}$ is a Markov chain with values in \mathbb{R} and wrt. the filtration $(\mathscr{F}_n)_{n \ge 0}$. Note that if X_k is integrable and $\mathbb{E}[X_k] = 0$ then $(Y_n)_{n \ge 0}$ is also a martingale. It is not difficult to see that it is also a random recurrence, indeed we can write $Y_{n+1} = Y_n + X_{n+1}$.

The Markov property can be extended to a larger class of functions "for free" and state the conditional independence of the future of the process wrt. to its past given the present.

Lemma. If $(Y_n)_{n\geqslant 0}$ satisfies the Markov property (1) then for all $n\geqslant 0$ and for a given n for all $F: \Omega \to \mathbb{R}$ which are bounded and measurable with respect to the σ -algebra $\mathcal{H}_{n+1} = \sigma(Y_k: k \geqslant n+1)$ then we have

$$\mathbb{E}[F|\mathcal{G}_n] = \mathbb{E}[F|Y_n]. \tag{3}$$

Proof. The proof is a exercise in measure theory.

We will prove it first for functions F for the form $f(Y_{n+1}, \ldots, Y_{n+k})$ for any $n \ge 0$ and any $k \ge 1$. By the Markov property the statemet is true for k = 1 and all $n \ge 0$. This will form the base of our induction which will be over k. Let assume then that we know the statement for function with k arguments and for all $n \ge 0$, we want to prove it for functions with k + 1 arguments of the form $f(Y_{n+1}, \ldots, Y_{n+k+1})$.

For the moment let's assume assume that F has the particular form $F = f(Y_{m+1},...,Y_{m+k})g(Y_{m+k+1})$ for some m and some functions f,g, then we need to consider

$$\mathbb{E}[F|\mathcal{G}_m] = \mathbb{E}[f(Y_{m+1}, \dots, Y_{m+k})g(Y_{m+k+1})|\mathcal{G}_m]$$

by the tower property we have

$$= \mathbb{E}\left[\mathbb{E}\left[f(Y_{m+1}, \dots, Y_{m+k})g(Y_{m+k+1})|\mathcal{G}_{m+k}\right]|\mathcal{G}_m\right]$$

$$= \mathbb{E}\left[f(Y_{m+1}, \dots, Y_{m+k}) \mathbb{E}\left[g(Y_{m+k+1}) | \mathcal{G}_{m+k}\right] | \mathcal{G}_m\right]$$

by the Markov property at time m + k this gives

$$=\mathbb{E}\left[f(Y_{m+1},\ldots,Y_{m+k})\mathbb{E}\left[g(Y_{m+k+1})|Y_{m+k}||\mathscr{G}_m\right]\right]$$

but now $f(Y_{m+1},...,Y_{m+k})\mathbb{E}[g(Y_{m+k+1})|Y_{m+k}]$ is a just a function of k arguments for which we assume we already know the Markov property, so we have

$$=\mathbb{E}[f(Y_{m+1},\ldots,Y_{m+k})\mathbb{E}[g(Y_{m+k+1})|Y_{m+k}]|Y_m]$$

and then I can go back to write

$$=\mathbb{E}[f(Y_{m+1},...,Y_{m+k})\mathbb{E}[g(Y_{m+k+1})|\mathcal{G}_{m+k}]|Y_m]$$

$$=\mathbb{E}[\mathbb{E}[f(Y_{m+1},...,Y_{m+k})g(Y_{m+k+1})|\mathcal{G}_{m+k}]|Y_m]$$

$$=\mathbb{E}[f(Y_{m+1},...,Y_{m+k})g(Y_{m+k+1})|Y_m]$$

by reversing some of the above steps and using that $\sigma(Y_m) \subseteq \mathcal{G}_{m+k}$ to use the tower property.

At this point we proved the statement for k+1 and for all functions in the factorized form $F = f(Y_{m+1}, \ldots, Y_{m+k})g(Y_{m+k+1})$. The set of such functions containts the indicator functions of sets of the form $A \cap B$ with $A \in \sigma(Y_{m+1}, \ldots, Y_{m+k})$ and $B \in \sigma(Y_{m+k+1})$.

By Dynkin's π - λ theorem it follows that the statement is true for all indicator functions in the σ -algebra $\sigma(Y_{m+1}, \ldots, Y_{m+k+1})$ and then by an application of the monotone class theorem we have then that the statement is true for all functions measurable wrt. $\sigma(Y_{m+1}, \ldots, Y_{m+k}, Y_{m+k+1})$, which prove the induction step since m is arbitrary.

We are now at a point where we know the statement true for all $n \ge 0$ and all $k \ge 0$. By another application of the monotone class theorem we can extend it to all the functions measurable wrt. the smallest σ -algebra generated by

$$\bigcup_{k\geqslant 0}\sigma(Y_{n+1},\ldots,Y_{n+k})$$

namely \mathcal{H}_{n+1} .