
V3F1/F4F1 Stochastic Processes – SS2021
Massimiliano Gubinelli

Lecture 20 . 25.6.2021 . 10:15–12:00 via Zoom

Markov chains
In the last lecture we introduce a random recurrence (Xn)n⩾0 as a stochastic process with values
in the measure space (E,ℰ) and solution to the recurrence equation

Xn =𝜙n(Xn−1,Un)

for all n ⩾ 1 where (Un)n⩾1 is a family of i.i.d. random variables with values in [0, 1] and inde-
pendent of X0 and 𝜙n are measurable functions E ×[0, 1]→E. For simplicity and without loss of
generality (think why) we can take Un to be uniformly distributed in [0, 1].

We observed that this process has a particular property which we called the Markov property wrt.
the filtration ℱn =𝜎(X0,Uk,k ⩽n).

Definition. An discrete stochastic process (Yn)n⩾0 with values in (E,ℰ) satisfies the Markov
property wrt. a filtration (𝒢n)n⩾0 iff it is adapted to 𝒢• and for any n⩾0 and any bounded
measurable function f :E →ℝ we have

𝔼[ f (Yn+1)|𝒢n]=𝔼[ f (Yn+1)|Yn]=(Pn+1f )(Yn) (1)

where Pn+1:E ×ℰ→ [0, 1] is a probability kernel on (E,ℰ). We call Pn transition kernels,
or transition “functions”.

Remark. Recall that a probability kernel on (E,ℰ) is a function T :E ×ℰ→[0,1] such that for all
x∈E the set function T(x, ⋅) is a probability on (E,ℰ) and for any A∈ℰ the function x∈E ↦T(x,
A)∈[0, 1] is a measurable function.

If (E,𝒫(E)) is a discrete measure space then any probability kernel T can be uniquely identified
with a function T̂ :E ×E → [0, 1] such that T̂(x, y) = T(x, {y}). Usually we use the same notation
for T̂ and T , there will be no ambiguity. In particular this function is a stochastic matrix, i.e. it
satisfies

�
y∈E

T(x,y)=1, x∈E.

Remark. To prove that the random recurrence above satisfies the Markov property we have to
check eq. (1) wrt. ℱn =𝜎(X0,Uk,k ⩽n). Fix n⩾0 and f :E →ℝ then we have

𝔼[ f (Xn+1)|ℱn]=𝔼[ f (𝜙n+1(Xn,Un+1))|X0,U1, . . . ,Un].

We first note that Xn is measurable wrt. ℱn (this can be proven by induction on the random recur-
rence) and then that Un+1 is independent of ℱn since the Us are independent among themselves
and with X0. By the properties of conditional expectations we have then

𝔼[ f (𝜙n+1(Xn,Un+1))|X0,U1, . . . ,Un]=g(Xn) (2)
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with g:E →ℝ defined as

g(x)≔𝔼[ f (𝜙n+1(x,Un+1))]=𝔼[ f (𝜙n+1(x,U1))].

Now by taking 𝔼[⋅|Xn] of (2) we have

g(Xn)=𝔼[g(Xn)|Xn]=𝔼[𝔼[ f (𝜙n+1(Xn,Un+1))|ℱn]|Xn]

=𝔼[ f (𝜙n+1(Xn,Un+1))|Xn]

since 𝜎(Xn)⊆ ℱn. Therefore we have proven the Markov property at step n. Morever we have
also identified the transition kernel

(Pn+1f )(x)=g(x)=𝔼[ f (𝜙n+1(x,U1))]=�
[0,1]

f (𝜙n+1(x,u))𝜇(du)=�
[0,1]

f (𝜙n+1(x,u))du

where 𝜇=Unif([0, 1]) is the law of U1 on ([0,1],ℬ([0,1])). So we can take

Pn+1(x, dy)=�
[0,1]

𝛿𝜙n+1(x,u)(dy)du=(𝜙n+1(x, ⋅)∗𝜇)(dy).

Another way to describe it is to say that for any A∈ℰ we have

Pn+1(x, A)=�
[0,1]

1A(𝜙n+1(x,u))du=ℙ(𝜙n+1(x,U1)∈ A)=�
𝜙n+1(x,⋅)−1A

du.

Example. Let (Xn)n⩾1 be an i.i.d. real-valued random sequence, take ℱn = 𝜎(Xk:k ∈ {0, . . . ,n}),
take y0∈ℝ and let

Yn = y0+X1+ ⋅ ⋅ ⋅ +Xn

for all n⩾0. Then it is easy to prove that (Yn)n⩾0 is a Markov chain with values in ℝ and wrt. the
filtration (ℱn)n⩾0. Note that if Xk is integrable and 𝔼[Xk]=0 then (Yn)n⩾0 is also a martingale. It
is not difficult to see that it is also a random recurrence, indeed we can write Yn+1=Yn +Xn+1.

The Markov property can be extended to a larger class of functions “for free” and state the con-
ditional independence of the future of the process wrt. to its past given the present.

Lemma. If (Yn)n⩾0 satisfies the Markov property (1) then for all n⩾0 and for a given n for all F:
Ω→ℝ which are bounded and measurable with respect to the 𝜎-algebra ℋn+1=𝜎(Yk:k ⩾n+1)
then we have

𝔼[F|𝒢n]=𝔼[F|Yn]. (3)

Proof. The proof is a exercise in measure theory.
We will prove it first for functions F for the form f (Yn+1, . . . , Yn+k) for any n ⩾ 0 and any k ⩾ 1.
By the Markov property the statemet is true for k =1 and all n⩾0. This will form the base of our
induction which will be over k. Let assume then that we know the statement for function with k
arguments and for all n ⩾ 0, we want to prove it for functions with k + 1 arguments of the form
f (Yn+1, . . . ,Yn+k+1).
For the moment let's assume assume that F has the particular form F = f (Ym+1,...,Ym+k)g(Ym+k+1)
for some m and some functions f ,g, then we need to consider

𝔼[F|𝒢m]=𝔼[ f (Ym+1, . . . ,Ym+k)g(Ym+k+1)|𝒢m]
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by the tower property we have

=𝔼[𝔼[ f (Ym+1, . . . ,Ym+k)g(Ym+k+1)|𝒢m+k]|𝒢m]

=𝔼[ f (Ym+1, . . . ,Ym+k)𝔼[g(Ym+k+1)|𝒢m+k]|𝒢m]

by the Markov property at time m+k this gives

=𝔼[ f (Ym+1, . . . ,Ym+k)𝔼[g(Ym+k+1)|Ym+k]|𝒢m]

but now f (Ym+1, . . . , Ym+k)𝔼[g(Ym+k+1)|Ym+k] is a just a function of k arguments for which we
assume we already know the Markov property, so we have

=𝔼[ f (Ym+1, . . . ,Ym+k)𝔼[g(Ym+k+1)|Ym+k]|Ym]

and then I can go back to write

=𝔼[ f (Ym+1, . . . ,Ym+k)𝔼[g(Ym+k+1)|𝒢m+k]|Ym]

=𝔼[𝔼[ f (Ym+1, . . . ,Ym+k)g(Ym+k+1)|𝒢m+k]|Ym]

=𝔼[ f (Ym+1, . . . ,Ym+k)g(Ym+k+1)|Ym]

by reversing some of the above steps and using that 𝜎(Ym)⊆𝒢m+k to use the tower property.
At this point we proved the statement for k + 1 and for all functions in the factorized form F =
f (Ym+1, . . . ,Ym+k)g(Ym+k+1). The set of such functions containts the indicator functions of sets of
the form A∩B with A∈𝜎(Ym+1, . . . ,Ym+k) and B∈𝜎(Ym+k+1).
By Dynkin's 𝜋-𝜆 theorem it follows that the statement is true for all indicator functions in the 𝜎-
algebra 𝜎(Ym+1, . . . , Ym+k+1) and then by an application of the monotone class theorem we have
then that the statement is true for all functions measurable wrt. 𝜎(Ym+1, . . . ,Ym+k,Ym+k+1), which
prove the induction step since m is arbitrary.
We are now at a point where we know the statement true for all n ⩾ 0 and all k ⩾ 0. By another
application of the monotone class theorem we can extend it to all the functions measurable wrt.
the smallest 𝜎-algebra generated by

∪k⩾0𝜎(Yn+1, . . . ,Yn+k)

namely ℋn+1. □

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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