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Markov chains

In the last lecture we introduce a random recurrence (X,),>0 as a stochastic process with values
in the measure space (E, &) and solution to the recurrence equation

Xn = ¢n (Xn—la Un)

for all n>1 where (U,),>1 is a family of i.i.d. random variables with values in [0, 1] and inde-
pendent of X and ¢,, are measurable functions E x [0, 1] - E. For simplicity and without loss of
generality (think why) we can take U, to be uniformly distributed in [0, 1].

We observed that this process has a particular property which we called the Markov property wrt.
the filtration %, = o (Xo, U,k <n).

Definition. An discrete stochastic process (Y,,),>0 with values in (E, &) satisfies the Markov
property wrt. a filtration () ,>o iff it is adapted to §. and for any n>0 and any bounded
measurable function f: E - R we have

E[f Yas )1Gn] = ELf (Yo )IYa] = (Prstf) (Ya) ey

where P, 1: E x & — [0,1] is a probability kernel on (E,&). We call P, transition kernels,
or transition “functions”.

Remark. Recall that a probability kernel on (E, &) is a function T: E x € — [0, 1] such that for all
x € E the set function T (x, -) is a probability on (£, %) and for any A € & the functionxe E+- T (x,
A) €0, 1] is a measurable function.

If (E,%(E)) is a discrete measure space then any probability kernel T can be uniquely identified
with a function 7: E x E — [0, 1] such that T'(x,y) =T (x, {y}). Usually we use the same notation
for T and T, there will be no ambiguity. In particular this function is a stochastic matrix, i.e. it
satisfies

Y Txy=1, x€E.
yeE

Remark. To prove that the random recurrence above satisfies the Markov property we have to
check eq. (1) wrt. %, =0 (Xo, U, k<n). Fixn>0 and f: E - R then we have

]E[f(XnH)LO}dn] = E[f(¢n+1(xn, Un+1))1Xo, Uy,..., Up].
We first note that X, is measurable wrt. %, (this can be proven by induction on the random recur-

rence) and then that U, is independent of %, since the Us are independent among themselves
and with Xy. By the properties of conditional expectations we have then

E[f(¢n+l(Xn, U,+1))IXo, Ul,---,Un]:g(Xn) (2)



with g: E— R defined as
8(x) = ELf (¢n+1(x, Uns1))]= EL[f ($p+1(x,Ur))].
Now by taking E[-[X,] of (2) we have
8(Xn) = E[g(Xn)1Xn] = E[EL[f (@n+1(Xn, Un+1))1F11X0]
=E[f ($n+1Xn, Uns+1)) X, ]

since o (X,) C ¥,. Therefore we have proven the Markov property at step n. Morever we have
also identified the transition kernel

(Pus1f)(x)=g(x) =E[f(pn+1(x,U1))] = [Ol]f(¢r1+](X,M))ﬂ(d”): [Ol]f(cbnﬂ(x,u))du
where p =Unif([0, 1]) is the law of U; on ([0,1], %([0,1])). So we can take

Pasi(xdy) = |

[0.1] 5¢n+1(x,u)(dy) du= (¢n+l(X, )*,U)(dY)

Another way to describe it is to say that for any A € € we have

PranA)=

@) du=P(puamUed)={ - du
Example. Let (X,,),>; be an i.i.d. real-valued random sequence, take %, = o (X3:k €{0,...,n}),
take yo€ R and let

Y,=yo+ X1+ +X,

for all n>0. Then it is easy to prove that (Y,), >0 is a Markov chain with values in R and wrt. the
filtration (%,),>0. Note that if X} is integrable and E[X;] =0 then (Y;),>0 is also a martingale. It
is not difficult to see that it is also a random recurrence, indeed we can write Y, 1 =Y, + X,,+1.

The Markov property can be extended to a larger class of functions “for free” and state the con-
ditional independence of the future of the process wrt. to its past given the present.

Lemma. If (Y,),>0 satisfies the Markov property (1) then for all n>0 and for a given n for all F:
Q — R which are bounded and measurable with respect to the o-algebra 36,.1=0(Y.kzn+1)
then we have

E[FI1%,]=E[F|Y,]. 3)

Proof. The proof is a exercise in measure theory.

We will prove it first for functions F for the form f(Y,+1,..., Yy+x) for any n>0 and any k > 1.
By the Markov property the statemet is true for k=1 and all n>0. This will form the base of our
induction which will be over k. Let assume then that we know the statement for function with k
arguments and for all n >0, we want to prove it for functions with k + 1 arguments of the form
f(Yn+15 vy Yogrs1).

For the moment let's assume assume that F has the particular form F=f (Yp+1,.+-, Yin+1) & Ym+k+1)
for some m and some functions f, g, then we need to consider

IE:[F|~C€m] = ]E[f(Ym+l, cees Ym+k)g(Ym+k+1)|~cgm]



by the tower property we have

:]E[]E[f(ymv%’- cey Ym+k)g(Ym+k+1)|?m+k]|?m]

=E[f Vns1s- -, Yok E[§ Vs kes DG i1 G ]

by the Markov property at time m + k this gives

=E[f(Yusts- s Vs D EL8 Vnks ) Y4116 ]

but now f(Yu+1s---» Yinrk) El€ (Yimtk+1)Yim+k] is @ just a function of k arguments for which we
assume we already know the Markov property, so we have

=E[f(Ynsts- s Yur) ELg Vs kr D1 Y11 Y]
and then I can go back to write

=E[f(ym+ls cees Ym+k)E[g(ym+k+1)|~(€m+k]|ym]
=E[E[f(ym+]’ cees Ym+k)g(Ym+k+l)|~C?m+k]|Ym]

:E[f(ym+]’---’ Ym+k)g(Ym+k+l)|Ym]

by reversing some of the above steps and using that o (Y,,) € &, .+« to use the tower property.

At this point we proved the statement for k£ + 1 and for all functions in the factorized form F =
fYmstseos Ymik) @ Yim+k+1). The set of such functions containts the indicator functions of sets of
the form AnBwithA€o(Y41,..., Ymik) and BE€ 0 (Yai41)-

By Dynkin's o7- 1 theorem it follows that the statement is true for all indicator functions in the o-
algebra o (Y41, .., Ym+k+1) and then by an application of the monotone class theorem we have
then that the statement is true for all functions measurable wrt. o(Y,,41,..., Ytk Ymaks1), Which
prove the induction step since m is arbitrary.

We are now at a point where we know the statement true for all » >0 and all £ > 0. By another
application of the monotone class theorem we can extend it to all the functions measurable wrt.
the smallest o-algebra generated by

Uik200 (Yas1, ..o, Vo)

namely 96, . O
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