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Markov chains (continued)

Recall the definition of the Markov property from last week.

Definition. An discrete stochastic process (Yy,),>o with values in (E, &) satisfies the Markov
property wrt. a filtration (,),>0 iff it is adapted to G. and for any n >0 and any bounded
measurable function f: E - R we have

E[f Y+ DIGn] = E[f (Yas ) 1Ya] = (P tf) (Ya) (1

where P, 1: Ex & — [0,1] is a probability kernel on (E,&). We call P, transition kernels,
or transition “functions”.

Definition. A stochastic process (Y,,),>0 with values in (E, &) which satisfies the Markov property
wrt. some filtration (,),>0 is called a Markov chain or a discrete time Markov process.

Remark. If (X,),>0 is a Markov chain for some filtration (%,),>0 then it is also a Markov chain
wrt. to its own filtration (%X = 0 (Xj: 0<k < n))nso0. (Exercise: prove it).

Remark. Given a probability kernel T on (E, &) we can associate to it two “actions”, the first on
measurable functions f: E - R given by 7f: E - R defined as

Tf ()= [ FOIT(x ),

while the second is defined on (probability) measures g on (E, &) giving a new (probability)
measure on (E, ) denoted usually 7T and defined by

(HT)(A) = [ T(x,A) (o)

for all A€ . This allows us to create new probabilit kernels by repeated action of T on itself, e.g.
T =TT:Ex& —[0,1] and more generally we define

TO=1dg, TUD=TT™ >0

where Idg: E x € — [0, 1] is the identity probability kernel given by Idg(x, dy) = 8.(dy). This
induces a natural semigroup structure on the family of probability kernels (7"),,>, indeed

T (n+m) —  (n)(m)

for all n,m>0.



In the case that (E, €) is a discrete measure space we saw that a probability kernel is just a func-
tion T: ExE —[0,1] (i.e. a matrix with indexes in E, possibily infinite) and in this case measures
1 on E corresponds to row vectors u: E — [0, 1] and functions f: E —» R corresponds to column

R B R I R

T

so that all the notations are compatible with the usual matrix/vector multiplication notations.

In the last lecture we have also seen that if ¥ is a Markov process and if F: Q — R is measurable
wrt. o (Y. k>n+ 1) (the future of Y at time n) then we have also

E[FI%,]=E[F|Y,],

i.e. the past and the future of Y are conditionally independent wrt. the present at time 7.

Let Y be a Markov process with values in (£, €) and initial law v =Law(Yy). Note that for any
n>=0 and any fy,..., f,: E > R (bounded and measurable) we have, by repeated use of the Markov
property and by Fubini theorem we have

]E[fO(YO)‘ (V) ]= fEnfO(yO)fl(yl)' ~ fa(yn) v (dyo) P1(yo,dy1) - - - Pa(Yn-1,dyn)

(show it). This shows that for any n >0 the law of the vector (Yj,...,Y;) is the probability measure
i, on (E", &®") given by

Hn(A)= fA v(dyo)P1(yo,dy1) - - Pu(Yn-1,dyn)

for all A€ €®".
We can do more, and consider the law p of the full process (Y;),>0 as a probability measure on
(EN,&°M).

Recall that the o-algebra €®N is the smallest g-algebra which makes measurable all the finite-
dimensional projections s;: EN — E! with I a finite subset of N. Alternatively and equivalently
%®N is defined as the o-algebra generated by the cylinder sets of the form 777! (A) for all I finite
subset of N and A € .

Note that we have
HoTT0 )=t (2)

therefore all the finite dimensional projections of the measure u are determined by the family of
measures (i,),>0 and since the o-algebra €®Y is generated by the cylinder sets this implies that
there could be at most one measure p with the property (2) for all n> 0.



We conclude that

Theorem. The law u of the Markov process (Y,) >0 is determined by the initial law v and the
family of transition probabilities (P,),>1.

(Essentially because such data determines the family (u,),>0 of finite dimensional projections).

The canonical realization of a Markov chain

One can now ask the reverse implication, that is whether given:
e aprobability measure v on a measure space (£, &) and
o afamily of probability kernels (P,),>; on the same measure space

there exist a probability space (Q, ¥, P) and a stochastic process (Y,),>0 on this space, such
that (Y,),>0 it is a Markov chain with initial law v and transition kernels (P,),>; (for its natural
filtration).

By the previous theorem if such a process exists then its law is uniquely determined by v and
(Pn)nzl-

The answer to this question is positive and it is called the canonical realization of a Markov
chain. We take Q=EYN, # = E®N and Y,(w) = w, the canonical process on EN.

The existence of a measure P on EY such that for all 7> 0

(Pomg. Ao, -+ ya) = v(dyo) P1(yo,dy1) - - - Py (Yn-1,dyn)

as a measure on E" it is a non-trivial result which follows from Kolmogorov's extension theorem.
We will review this result later on in the lectures when we will discuss the construciton of more
complicated processes.

In the context of Markov chains one can make an explicit construction of any Markov chain via
a random recurrence.

From now on, in order to simplify the discussion (and really without loss of generality) we will
assume that the Markov chain is time homogeneous, that is the transition kernels are independent
of time P, =P for all n> 1 and in this case we write simply P for P; forgetting about the time
index.

Moreover it is useful to consider general initial conditions for the Markov chain, that is instead of
fixing the initial law we take it to be &, for an abitrary x € E and we denote by PP, the associated
probability measure on the canonical space (E™, €®Y), that is the probability measure such that
foralln>0

(Proaia ... )30, -+ +»¥n) = 8x(dyo) P(yo,dy1) - - - P(Yn-1,dYn).

Under P, the canonical process (Y;,),>0 is a time-homogeneous Markov chain with initial law &,
(i.e. Yp=x P,-a.s.) and transition kernel P.

It is interesting to note that P: Ex €8N 5[0, 1]~ E » II(EN, €®Y) is itself a probability kernel
which goes from E to the probability measures H(EN, %@’N) on (EN, %@’N), i.e.

P:xeEr P, eI(EN, 8®N),



Given any initial point x € E when can then descrive via P, the random evolution of the Markov
process for all times. Of course we have also that

LaW]P’X((Yn)nZO) =Py

forall xeE, i.e. Po((Y)ns0€A) =P, (A) for all Ae €®N This is really a tautology since Y:
EN - EN s the identity function.

A first important byproduct of this construction is the following general form of the Markov
property. To introduce it we need the notion of shift

0,:EN 5 EN
on the space EN defined for all n>0 as
(00())k= Wntks k>0.

That is 6, remove the first n components from the infinite vector v € EN. Note that if F: EN - R
is a measurable function then for all n>0, F o 6,: EN - R is a function which is measurable wrt
the o-algebra generated by (Y;)i>y, i.€. by the future of the time n. Intuitively

(Fol,)(wo,...,Wiy...)=F(0,(w0,...,0k,...))=F(wy,...,0048-..).

(arigorous proof uses the monotone class theorem).

We denote by E, the expectation wrt. P, and by (%,),>0 the natural filtration of the canonical
process (Y,),0. The general Markov property on the canonical probabnility space (EN, €8N, P,)
then takes the form:

Lemma. For any bounded measurable function F: EN - R, any x€ E and n>0, we have

]Ex[FOHnLO};i]ZEX[F°011|Yn]:EY,,[F]a Py-a.s.

Proof. Exercise. Start with functions F' of the form
F=fo(Yo) - fin(Yn)

and then extend the result via a monotone class argument as we did last week. Indeed note that
for functions of this form we have

Fob,=fo(Yoo0n): - fin(Ymo 0n) = fo(¥a)- - fin(Ynsn)
so by the Markov property we have
Ex[F o 05| Fn] = Ex[F o 04lYn] =g (Yn)
for some function g and by an explicit computation one realises that
80)= [ fo030) -+ Fanym) 8(d¥0) P (3o, dy1) P (Y1, dyin)
=E,[fo(Y0) - - fin(Ym) ] = Ey[F].
Pay attention to the fact that two different kind of “randomness” are involved in the expression

(Ey[F))(@) =By o[F1= [ F(&)Py0)(dd).



O

This lemma can be generalized by replacing the fixed time n with a stopping time 7 (wrt. the
canonical filtration (%,),>0)

Theorem. (Strong Markov property) Let T be a P,-almost surely finite stopping time wrt.
the canonical filtration (%,)n>0 and let F: E N R be a bounded measurable function then

E[F o 07|¥7]=Ey,[F].

Proof. Take A € %, then we have that AN {T =n} € %, for all n >0 and therefore

]Ex[FOHTﬂA] :Z IE:JC[FC’HTIIA,T=n] = Z ]Ex[FOGnﬂA,T:n]

nz=0 n=0
:Z Ex[Ex[FO 0n|~0}dn]ﬂA,T=n]
n=0

=) EJEy[Fllar-]

n=0

=Y EuEy,[F11a7-n)=E:Ey,[F]1a]

n=0

and since this holds for arbitrary A € ¥ we have proven that E[F o 07|%7] = Ey,[F] by definition
of the conditional expectation E[F o 07| %7]. O

Remark. The use of the canonical space (EN, &°eN, P,) allows us to use the shift (6,),>0 to
prove the general form of the Markov property and more importantly the strong Markov property.
Indeed the shift 6, (i.e. of a map 6,, such that Y, o 8, =Y,,.,) exists in general only on the canon-
ical space and not for any other stochastic process (Y,),>0 which is not the canonical process on
a product space.

The law of any Markov chain can be always realized on the canonical space (EN, €®YN), so any
questions pertaining the law of a Markov chain can be set up in the canonical space where we have
a shift and also the strong Markov property as stated above.

In general the space (E, %) is called the state space of the Markov chain. When chain is time-
homogeneous, the transition kernel P (which does not depend on time) defines a semigroup
(P™),50 with

PO=1dg, PUtV=pp™  nx0.
Moreover P (x,-) is the law of Y, under P,, i.e.
P (x,A)=P.(Y,€A), Ac¥
and it satisfies the Chapman—-Kolmogorov equation (i.e. the semigroup law)

P (x, A) = fE P™ (x,dz)P"™ (z, A)
forallxeE, A€ &.
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