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Markov chains (continued)
In the last lecture we saw that

• the law of a Markov chain (Yn)n⩾0 on a state space (E,ℰ) (i.e. a stochastic process satis-
fying the Markov property and with values in (E,ℰ)) is characterized by giving its initial
law Law(Y0) ∈ Π(E, ℰ) and its transition kernel (or transition probability) P: E → Π(E,
ℰ)≈E ×ℰ→[0,1]

• any Markov chain can be canonically realised on the space (Eℕ,ℰ⊗ℕ) on which we also
dispose of the shift operator 𝜃n:Eℕ→Eℕ defined as (𝜃n(𝜔))k=𝜔n+k and of the canonical
process Xn(𝜔)=𝜔n so that Xk ∘𝜃n =Xk+n.

• for any x ∈ E we can construct on (Eℕ, ℰ⊗ℕ) the probability ℙx which is the law of the
Markov chain with initial condition X0 =x ℙx-a.s. Note that ℙ•:E →Π(Eℕ,ℰ⊗ℕ).

Example. (Random walk on ℝn). Let E = ℝn with the Borel 𝜎-algebra ℰ= ℬ(ℝn). For every
x∈E, consider an homogeneous Markov chain (Xn)n⩾0 defined as X0 =x and

Xn+1 =Xn +Zn

with (Zn)n⩾1 an i.i.d. sequence with values in E and such that 𝜌=Law(Z1)∈Π(ℝn). In this case
the transition kernel P is given by

P(x, dy)=(𝜌∗𝛿x)(dy)

where ∗ denotes convolution of the two measures 𝜌 and 𝛿x on E. More explicitly for any bounded
measurable function f :E →ℝ we have

Pf (x)=�
E

f (x+ z)𝜌(dz), x∈ℝn.

In this case

P(n)(x, dy)=P ⋅ ⋅ ⋅P�
n times

(x, dy)=(𝜌∗n ∗𝛿x)(dy).

Martingale problems
First we look at an important relation of Markov processes and martingale theory.
Let f : E → ℝ be a bounded measurable function and (Xn)n⩾0 a Markov process with transition
kernel P. Then by the Markov property:

𝔼[ f (Xn+1)|ℱn]=Pf (Xn)

which means that the new process ( f (Xn))n⩾0 has Doob's decomposition given by

f (Xn)= f (X0)+Mn +�
k=0

n−1

ℒf (Xk) (1)
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where ℒ is a linear operator on the space of bounded measurable functions on E given by

ℒf =Pf − f ,

and (Mn)n⩾0 is a martingale (explicitly ΔMn = f (Xn)−𝔼[ f (Xn)|ℱn−1], but this is rarely needed).
We learn that for function of Markov processes the predictable component in Doob's decomposi-
tion has a very explicit adn simple form.

The linear operator ℒ is called the generator of the process. The observation above motivates us
to give the following definition.

Definition. Let ℒ be a linear operator on the bounded measurable functions on E to ℝ. An
adapted process (Xn)n⩾0 with values in (E,ℰ) satisfies the martingale problem with respect
to ℒ, to the filtration (ℱn)n⩾0 and with initial law 𝜈∈Π(E,ℰ) iff

Law(X0)=𝜈

and for any bounded measurable f :E →ℝ we have that the process �Mn
f �n⩾0

Mn
f ≔ f (Xn)− f (X0)− �

k=0

n−1

ℒf (Xk), n⩾0,

is a martingale wrt. the filtration (ℱn)n⩾0.

Consider now the measure space (Ω,ℱ) given by the canonical space (Eℕ,ℰ⊗ℕ) with canonical
process (Xn)n⩾0.

Theorem. On the space (Ω,ℱ)=(Eℕ,ℰ⊗ℕ) a family of laws (ℙx)x∈E for which ℙx(X0 = x)=1
for all x ∈E is an homogeneous Markov process with transition kernel P iff it solves the martin-
gale problem for a generator ℒ. In this case we have

ℒ=P− Id.

Proof. We have seen that a Markov process solves the martingale problem. So it remains to show
that if the canonical process solve the martingale problem for an operator ℒ then it must a Markov
process with transition kernel P=Id+ℒ (btw, which is a strong constraint on ℒ). To prove the
markov property we have to consider 𝔼x[ f (Xn+1)|ℱn] for a bounded measurable f :E →ℝ. Since
X solve the martingale problem we have

f (Xn+1)− f (Xn)=Mn+1
f −Mn

f +ℒf (Xn)

where M f is a martingale. Taking cond. exp. we get

𝔼x[ f (Xn+1)|ℱn]=𝔼x[ f (Xn)|ℱn]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
f (Xn)

+𝔼x�Mn+1
f −Mn

f |ℱn�||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
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+𝔼x[ℒf (Xn)|ℱn]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
ℒf (Xn)

=Tf (Xn)

with Tf ≔ f +ℒf . This holds for any ℙx, i.e. any x∈E. In particular taking n=0 we have ℙx-a.s.
that

Tf (x)=Tf (X0)=𝔼x[ f (X1)|ℱ0]=𝔼x[ f (X1)]
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because X0 is ℙx-a.s. constant and therefore if A∈ℱ0=𝜎(X0) then ℙx(A)∈{0,1}, which implies
that 𝔼x[ f (X1)|ℱ0]=𝔼x[ f (X1)] ℙx −a.s.. Therefore we deduce that for all x∈E we have

Tf (x)=𝔼x[ f (X1)]=� f (y)(ℙx ∘ (X1)−1)(dy)

which in particular shows that T is the probability kernel given by P=ℙx ∘(X1)−1 =Id+ℒ. □

Corollary. If (Yn)n⩾0 and (Zn)n⩾0 are two processes on a general probability space (Ω, ℱ,ℙ)
which solve the martingale problem for the same generator ℒ and such that

Lawℙ(Y0)=Lawℙ(Z0)

then they are both Markov processes with the same transtition kernel and the same initial law and
as consequence they have the same law, that is

Lawℙ((Yn)n⩾0)=Lawℙ((Zn)n⩾0)∈Π(Eℕ,ℰ⊗ℕ).

Proof. As said. □

So solutions to martingale problems are unique in law (provided the initial conditions agree)

Remark. Martingale problems are a method to define dynamics of stochastic processes, much
like in the deterministic setting one would use finite difference equations. Existence and unique-
ness of solutions to martingale problems reduce in discrete time to problems of Markov processes.
All these constructions have powerful analogs also in continuous time.

Example. For the random walk on ℝn introduced above we have that for all x∈ℝn we have

ℒf (x)=Pf (x)− f (x)=�
ℝn

f (x+ z)𝜌(dz)− f (x)=�
ℝn

[ f (x+ z)− f (x)]𝜌(dz)

Now take n=1, i.e. E =ℝ and fix 𝜀>0 and small and take

𝜌(dy)= 1
2𝛿+𝜀 + 1

2𝛿−𝜀.

Then

ℒf (x)= 1
2[ f (x+𝜀)− f (x)]+ 1

2[ f (x−𝜀)− f (x)]

=1
2[ f (x+𝜀)+ f (x−𝜀)−2 f (x)]

by Taylor expansion, assuming f is sufficienly smooth:

ℒf (x)= 1
2� f ′(x)𝜀+ 1

2 f ′′(x)𝜀2+O(𝜀3)− f ′(x)𝜀+ 1
2 f ′′(x)𝜀2 +O(𝜀3)�

=𝜀21
2 f ′′(x)+O(𝜀3)

which shows that for 𝜀→0 the operator 𝜀−2ℒ approximate the standard Laplacian on ℝ (i.e. the
second derivative.)
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Note that if we consider the random walk (Xn)n⩾0 with this generator which depends on 𝜀 and
define a new process

Yn ≔Xn𝜀−2, n⩾0

then we have that for any bounded function (and working a bit formally)

f (Yn)= f (Xn𝜀−2)= f (X0)+Mn𝜀−2
f + �

k=0

n𝜀−2

ℒf (Xk)

= f (Y0)+Mn𝜀−2
f +𝜀2�

k=0

n𝜀−2

𝜀−2ℒf (Y𝜀2k)

and just handwaving a little one could guess that as 𝜀→0 the process Y converges to a process in
continuous time (Yt)t⩾0 such that

f (Yt)= f (Y0)+ M̂t
f + 1

2�
0

t
f ′′(Ys)ds

for any f ∈C2(ℝ) and for some martingale �M̂t
f �t⩾0 in continuous time. This is very heuristic here

but it can be made rigorous (in Stochastic Analysis). This is the point of introducing martingale
problems and the solution of the continuous time maringale problem with generator given by 1

2 f ′′
is what we will call the Brownian motion.

Let us not consider a martingale problem with generator ℒ and special classes of fuctions:

Definition. A function f is harmonic wrt. ℒ if

ℒ f (x)=0, x∈E.

It is called superharmonic iff ℒf ⩽0 and subharmonic iff ℒf ⩾0.

Remark. Note that if all these cases, if (Xn)n⩾0 solve the martingale problem for ℒ then the
process ( f (Xn))n⩾0 is either a martingale, a supermartingale or a submartingale.

The generator ℒ of a Markov process satisfy the maximum priciple:

Theorem. (Maximum principle) Let ℒ=P− Id be the generator of a Markov process on (E,ℰ).
Let (Xn)n⩾0 to be the canonical Markov process for the generator ℒ with family of laws given by
(ℙx)x∈E. Let D∈ℰ and

TDc =inf {n⩾0:Xn ∈Dc}.

Assume that TDc is finite almost surely under any ℙx for all x ∈ E. Then if f :E → R is a bounded
function which is subharmonic for ℒ, i.e.

ℒf (x)⩾0,

then we have

sup
x∈D

f (x)⩽ sup
x∈Dc

f (x).
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Proof. Then we know that the process ( f (Xn))n⩾0 is a submartingale under every ℙx for all x∈E.
By the submartingale property, the optional stopping theorem, for all n⩾0 and for all x∈E

f (x)=𝔼x[ f (X0)]⩽𝔼x[ f (Xn∧TDc)]

by dominated convergence we have

lim
n→∞

𝔼x[ f (Xn∧TDc)]=𝔼x[ f (XTDc)]⩽ sup
z∈Dc

f (z).

So in particular we proved that f (x)⩽supz∈Dc f (z) for all x∈D. □

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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