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Discrete Markov chains
This week we are going to give a more detailed look at Markov chains in discrete state spaces, i.e.
we take E to be a discrete set (maybe infinite) and ℰ=𝒫(E).

This is a technically simpler setting where however many of the properties and the typical behav-
iour of Markov chains are already appearent.

For a discrete E the transition kernel P: E × ℰ → [0, 1] is equivalente to a transition matrix P:
E ×E →[0,1] which we denote with the same simbol and such that P(x,y)=P(x, {y}). It represents
the probability to see the Markov chain jumping to y conditioned to be in x. We have ∑y∈E P(x,
y)=1.

Let (Xn)n⩾0 be a Markov chain with state space E and denote with

For any x∈E we denote

Tx =T{x} =inf {n>0:Xn =x}

the return time to the point x.

We want to study the general behaviour of the chain (Xn)n⩾0 for long times. In this context it is
useful to make an additional assumption on the structure of the Markov chain. We will assume
that we work in the canonical measure space (Ω,ℱ)=(Eℕ,ℰ⊗ℕ) for the chain with (ℙx)x∈E the
family of its laws with starting point x ∈E. In this case (Xn)n⩾0 will be the canonical process in
(Ω,ℱ).

Definition. We say that the chain (Xn)n⩾0 is irreducible if there exists a positive probability to
go from any state x∈E to any other state y∈E: i.e. for all x,y∈E, x≠y ℙx(Ty <∞)>0 in which
case we write x → y. Equivalently x is connected to y iff there exists n = n(x, y) ∈ ℕ such that
P(n)(x,y)>0.

Definition 1. Given an irreducible chain we say that it is

• transient if ℙx(Tx<∞)<1 for all x∈E; (i.e. there is positive probability not to ever come
back to some state x)

• recurrent if ℙx(Tx <∞)=1 for all x∈E; (i.e. we always come back to the starting point)

• positive recurrent if 𝔼x[Tx]<∞ for all x∈E; (i.e. we come back to the starting point after
finite time in average)

Remark. We can establish an equivalence relations among the states of a genera discrete chain by
saying that x∼y (x and y are connected) if x→y and y→x (in the sense above, i.e. ℙx(Ty <∞)>0
and viceversa). This is an equivalence relation on E (verify this!) which induces a partition of the
state space E in equivalence classes. It is not difficult to show that transience and recurrence are
properties of the equivalence classes and that equivalence classes are either transient or recurrent
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(not other possibilities are given). If the chain is finite (i.e. E is finite) then at least of the classes
is recurrent. We will focus only to the chains that are irreducible which corresponds to the case
where we have only one class.

We focus now on criteria which tells us whether an irreducible chain is transient or recurrent.

x

The chain forget its past
every time it comes back to x.
It starts afresh, like it was the
first time.

Theorem. For a (non-necessarily irreducible) chain and for all x∈E it holds

ℙx(Xn =x infinitely often)=0⇔𝔼x[[[[[[[[[[[[�
n⩾1

1Xn=x]]]]]]]]]]]]<+∞⇔ℙx(Tx <∞)<1,

ℙx(Xn = x infinitely often)=1⇔𝔼x[[[[[[[[[[[[�
n⩾1

1Xn=x]]]]]]]]]]]]=+∞⇔ℙx(Tx <∞)=1.

Moreover if the chain is irreducible then for any x,y∈E

𝔼x[[[[[[[[[[[[�
n⩾1

1Xn=x]]]]]]]]]]]]<∞⇔𝔼y[[[[[[[[[[[[�
n⩾1

1Xn=y]]]]]]]]]]]]<∞.

As a consequence an irreducible Markov chain is either recurrent or transient that that it is
decided by whether

𝔼x[[[[[[[[[[[[�
n⩾1

1Xn=x]]]]]]]]]]]]= �
n⩾1

P(n)(x,x)

is finite or not for some state (and then all of them).

Proof. Let 𝜆>0. Then the quantity ∑n⩾1 e−𝜆n1Xn=x is always well defined.

We either come back to x at least once, at time Tx or never, i.e. Tx =+∞, in both cases we have

�
n⩾1

e−𝜆n1Xn=x = e−𝜆Tx + �
n>Tx

e−𝜆n1Xn=x =e−𝜆Tx + �
n⩾1

e−𝜆(n+Tx)1XTx+n=x

=e−𝜆Tx + e−𝜆Tx�
n⩾1

e−𝜆n(1Xn=x ∘𝜃Tx)
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By strong Markov property we have:

𝔼x[[[[[[[[[[[[�
n⩾1

e−𝜆n1Xn=x]]]]]]]]]]]]=𝔼x[e−𝜆Tx]+𝔼x[[[[[[[[[[[[e−𝜆Tx�
n⩾1

e−𝜆n(1Xn=x ∘𝜃Tx)]]]]]]]]]]]]

=𝔼x[e−𝜆Tx]+𝔼x[[[[[[[[[[[[𝔼x[[[[[[[[[[[[e−𝜆Tx�
n⩾1

e−𝜆n(1Xn=x ∘𝜃Tx)�ℱTx]]]]]]]]]]]]]]]]]]]]]]]]

=𝔼x[e−𝜆Tx]+𝔼x[[[[[[[[[[[[e−𝜆Tx�
n⩾1

e−𝜆n𝔼x[(1Xn=x ∘𝜃Tx)|ℱTx]]]]]]]]]]]]]

=𝔼x[e−𝜆Tx]+𝔼x[[[[[[[[[[[[e−𝜆Tx�
n⩾1

e−𝜆n𝔼XTx[1Xn=x]]]]]]]]]]]]]

=𝔼x[e−𝜆Tx]+𝔼x[e−𝜆Tx]�
n⩾1

e−𝜆n𝔼x[1Xn=x]

=𝔼x[e−𝜆Tx]((((((((((((1+𝔼x[[[[[[[[[[[[�
n⩾1

e−𝜆n1Xn=x]]]]]]]]]]]]))))))))))))
where we used also that XTx =x by definition of Tx if Tx <∞ (In case Tx =+∞ all the expression is
0 due to e−𝜆Tx =0). We have now that

𝔼x[[[[[[[[[[[[�
n⩾1

e−𝜆n1Xn=x]]]]]]]]]]]]= 𝔼x[e−𝜆Tx]
1−𝔼x[e−𝜆Tx]

since 𝔼x[e−𝜆Tx] ⩽ e−𝜆 < 1 due to the fact that Tx ⩾ 1. Now we want to take 𝜆 → 0, assume that
ℙx(Tx <∞)<1, then by monotone convergence

𝔼x[[[[[[[[[[[[�
n⩾1

1Xn=x]]]]]]]]]]]]=lim
𝜆↓0

𝔼x[[[[[[[[[[[[�
n⩾1

e−𝜆n1Xn=x]]]]]]]]]]]]=lim
𝜆↓0

𝔼x[e−𝜆Tx]
1−𝔼x[e−𝜆Tx]

= ℙx(Tx <∞)
1−ℙx(Tx <∞) <∞

and therefore ∑n⩾1 1Xn=x <∞ ℙx-a.s. which means that under ℙx the set {n⩾1:Xn =x} is almost
surely finite, i.e. ℙx(Xn = x infinitely often)=0.
On the other hand if ℙx(Xn = x infinitely often) > 0 then certainly 𝔼x[∑n⩾1 1Xn=x] = +∞ which
implies that ℙx(Tx <∞)=1.
We need then to show that if ℙx(Tx<∞)=1 then ℙx(Xn=x infinitely often)=1. This is done using
again the strong Markov property as follows. Let

A={Xn =x infinitely often}

so

Ac ={Xn =x only finitely many times}=∪L⩾0{Xn =x L times}

Let now BL ={Xn = x L times}, then for all L ⩾1

BL ={Tx <∞}∩{Xn ∘𝜃Tx =x L −1 times}

1BL =1Tx<∞ ⋅1BL−1 ∘𝜃Tx

where we understand that B0 is the event that I never come back i.e. B0 ={Tx =+∞}.
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Taking average and using the strong Markov property we have

ℙx(BL)=𝔼x[1BL]=𝔼x[𝔼x[1Tx<∞ ⋅1BL−1 ∘𝜃Tx|ℱTx]]

=𝔼x[1Tx<∞𝔼x[1BL−1 ∘𝜃Tx|ℱTx]]=𝔼x[1Tx<∞𝔼XTx[1BL−1]]=𝔼x[1Tx<∞]𝔼x[1BL−1]

=ℙx(Tx <∞)ℙx(BL−1).

This shows that

ℙx(BL)=(ℙx(Tx <∞))Lℙx(Tx =+∞)=0,

since ℙx(Tx <∞)=1 which implies ℙx(Tx =∞)=0. This proves that

ℙx(Ac)= �
L⩾0

ℙx(BL)=0.

From these chain of implications we can deduce those in the statement of the theorem. For the
last part under the assumption of irreducibility we need to show that

𝔼x[[[[[[[[[[[[�
n⩾1

1Xn=x]]]]]]]]]]]]<∞⇒𝔼y[[[[[[[[[[[[�
n⩾1

1Xn=y]]]]]]]]]]]]<∞,

for any two states x, y ∈ E. By irreducibility there exist n0 and n1 such that P(n0)(x, y) > 0 and
equally that P(n1)(y,x)>0. Therefore we also have that

P(n0+m+n1)(x,x)= �
z,z′∈E

P(n0)(x, z)P(m)(z, z′)P(n1)(z′,x)

⩾P(n0)(x,y)P(m)(y,y)P(n1)(y,x).

Now note that (check)

𝔼x[[[[[[[[[[[[�
n⩾1

1Xn=x]]]]]]]]]]]]= �
n⩾1

𝔼x[1Xn=x]= �
n⩾1

P(n)(x,x)

⩾�
m⩾1

P(n0+m+n1)(x,x)⩾P(n0)(x,y)�
m⩾1

P(m)(y,y)P(n1)(y,x)

=P(n0)(x,y)P(n1)(y,x)𝔼y[[[[[[[[[[[[�
n⩾1

1Xn=y]]]]]]]]]]]]
which implies the claim since P(n0)(x,y)P(n1)(y,x)>0. □

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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