
V3F1/F4F1 Stochastic Processes – SS2021
Massimiliano Gubinelli

Lecture 24 . 9.7.2021 . 10:15–12:00 via Zoom

Next friday's lecture: revision of the course. Please bring your questions/doubts.

Last lecture: Markov chains in discrete state space: recurrence/transience.

Intermezzo: computations of probabilities related to a Markov chain
The Markov property (also in the strong) version is a powerful tool to compute interesting quan-
tities related to a Markov chain.
We will assume in this part to be on the canonical space of a Markov chain (Xn)n⩾0 on a general
state space (E, ℰ) and we will denote as usual with (ℙx)x∈E the family of laws of the process
starting at x∈E.
Take A,B∈ℰ with A∩B≠∅. We would like to compute the probability

ℙx(X reaches A before B).

Let TA be the hitting time of the set A, i.e. the stopping time

TA =inf {n⩾0:Xn ∈ A}

and similarly TB, both can be +∞ in general. The event of interest is {TA <TB}. The way we can
study this probability for a given initial state x∈E is to generalize the problem and try to solve it
for all initial states x∈E so we let

u(x)=ℙx(TA <TB), x∈E

and we look it as an unknown function u:E →[0,1]. What we know about it?

• If x∈ A then u(x)=1;

• If x∈B then u(x)=0;

If x∈(A∪B)c then we can reason as follows. Under ℙx we will have TA⩾1 and TB⩾1. Let's make
a drawing:

A
B

x=X0

TA

TB

X1

Provided x∈(A∪B)c after the first step, we will be in X1 and therefore have probability u(X1) to
reach A before B, so we guess that we should have the following equation

u(x)=𝔼x[u(X1)]=�
E

u(y)P(x, dy)=(Pu)(x)
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This was an heuristic explanation, we can prove it via the Markov property. Indeed note that

1TA<TB =1TA<TB ∘𝜃1

provided X0∈(A∪B)c. Recall that 𝜃1(𝜔)=(𝜔1,𝜔2, . . . ), i.e. the trajectory of the process without
the initial point. Taking expectation wrt. ℙx we get

u(x)=𝔼x[1TA<TB]=𝔼x[1TA<TB ∘𝜃1]=𝔼x[𝔼x[1TA<TB ∘𝜃1|ℱ1]]

=
Markov

𝔼x[𝔼X1[1TA<TB]]=𝔼x[u(X1)]

which is what we claimed. This is called a one-step computation. A very useful technique for
Markov chains. Recall that the generator ℒ is defined as ℒ=P− Id, therefore we have that

ℒu(x)=Pu(x)−u(x)=0, x∈(A∪B)c.

Summarizing we have found that the function u:E →[0,1] is a solution of the problem:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{

ℒu(x)=0 x∈(A∪B)c;
u(x)=0 x∈B;
u(x)=1 x∈ A.

(1)

In many cases we can actually find a unique solution to this linear equation, which usually boils
down to solve some finite difference equation with boundary conditions. For example think about
this problem for the simple random walk on ℤ.
Note that the first condition implies that u is harmonic in (A∪B)c for the operator ℒ.
In general the system (1) does not have unique solutions and therefore it is not enough to deter-
mine the probabilities u.
Let v:E →[0,1] be another solution of (1). Since v is harmonic in (A∪B)c then we know that the
process

v(Xn)= v(X0)+Mn
v +�

k=0

n−1

(ℒv)(Xk)

is a martingale by the martingale problem solved by X. By computing this at n∧TA ∧TB we have
that Xn∧TA∧TB =Xn

TA∧TB and

v(Xn
TA∧TB)= v(X0

TA∧TB)+Mn
v,TA∧TB + �

k=0

n∧TA∧TB−1

(ℒv)(Xk)= v(X0
TA∧TB)+Mn

v,TA∧TB

since ∑k=0
n∧TA∧TB−1 (ℒv)(Xk) = 0 because Xk ∈ (A ∪ B)c for all k = 0, . . . , n ∧ TA ∧ TB − 1. So we

conclude that v(Xn
TA∧TB) is a martingale. Then

𝜈(x)=𝔼x[v(X0
TA∧TB)]=𝔼x[v(Xn

TA∧TB)]

=𝔼x[v(Xn
TA∧TB)1TA<TB]+𝔼x[v(Xn

TA∧TB)1TA=TB=+∞]+𝔼x[v(Xn
TA∧TB)1TA>TB]

⩾𝔼x[v(Xn
TA∧TB)1TA<TB]+𝔼x[v(Xn

TA∧TB)1TA>TB]

Letting n→∞ this quantity converges to

𝜈(x)⩾𝔼x[v(XTA)1TA<TB]+𝔼x[v(XTB)1TA>TB]=𝔼x[1TA<TB]=u(x)
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since XTA ∈ A if TA <∞ and similarly for TB. We conclude that

𝜈(x)⩾u(x).

This holds actually for any solution 𝜈 which is positive and bounded. This means that u is singled
out among all the solutions to (1) as the smallest positive and bounded solution.
We can packaged these considerations in a small theorem.

Theorem. Let ℒ be the generator of a Markov process X. Then the problem (1) has a unique
smallest positive and bounded solution given by

u(x)=ℙx(TA <TB).

We can use the same approach for other quatities, not necessarily probabilities. For example in
the setting above consider the quantity

u(x)=𝔼x[TA]

which is now a function u: E → ℝ+. The one-step analysis for this quantity goes as follows: if
X0 ∈ A then certainly TA >1 and therefore

TA(𝜔)=1+TA(𝜃1(𝜔))

which means that we have now for x∈ Ac

u(x)=𝔼x[TA]=𝔼x[1+TA ∘𝜃1]=1+𝔼x[𝔼X1[TA]]=1+𝔼x[u(X1)]=1+(Pu)(x)

moreover if x∈ A then u(x)=0. We have again a linear system for u:

{{{{{{{{{{{{{{{{{{{{ ℒu(x)=−1 x∈ Ac;
u(x)=0 x∈ A. (2)

and again we can prove that u(x) = 𝔼x[TA] is the smallest positive solution (not necessarily
bounded) for this equation, indeed if v:E →ℝ+ is another solution then the process

Mn = v(Xn
TA)+(n∧TA)

is now a positive martingale and then

v(x)=𝔼x[v(X0
TA)]=𝔼x[M0]=𝔼x[Mn]=𝔼x[v(Xn

TA)+(n∧TA)]⩾𝔼x[(n∧TA)]

and taking n→∞ by monotone convergence one has u(x)⩽v(x).
Note that TA =∑k=0

TA−1 1. More generally we can introduce the quantity

u(x)=𝔼x[[[[[[[[[[[[[[[[[�
k=0

TA−1

g(Xk)+q(XTA)1TA<∞]]]]]]]]]]]]]]]]]

for given positive functions g:E → ℝ+ and q:E → ℝ+ and a set A ∈ ℰ. It is easy to see that this
general case comprises the above two special cases for specific choices of g,q, A.
For this general form the equation is

{{{{{{{{{{{{{{{{{{{{ ℒu(x)=−g(x) x∈ Ac;
u(x)=q(x) x∈ A. (3)
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Which is left an exercise to show. For any solution 𝜈 of this system the process

Mn =𝜈(Xn
TA)+�

k=0

n−1

g(Xk
TA)

is a positive martingale and 𝜈⩾u.

Doob's h-transform
Let h:E →ℝ⩾0 be a positive harmonic function such that h(x0)= 1 for a given x0 ∈ E. Then the
process Mn = h(Xn) is a positive martingale under ℙx0 with M0 = 1 and therefore 𝔼x0[Mn]= 1 for
all n. On ℱn we can define the probability ℚn by

ℚn(A)=𝔼x0[1Ah(Xn)] A∈ℱn.

The family (ℚn)n⩾0 is a consistent family of probabilities on ∪kℱk, i.e. A∈ℱk then for any n⩾k
we have A∈ℱn

ℚn(A)=𝔼x0[1Ah(Xn)]=𝔼x0[1A𝔼x[h(Xn)|ℱk]]=𝔼x0[1Ah(Xk)]=ℚk(A).

Then by Caratheodory extension theorem there exists a unique probability measure ℚ on ℱ∞ ≔
𝜎(ℱk:k ⩾ 0) such that ℚ(A)= ℚn(A) for A ∈ℱn. Since we assume to be in the canonical space
of the Markov chain we have ℱ∞ =ℱ.
The measure ℚ defined in this way is called the Doob's h-transform of ℙ. We have

dℚ|ℱn

dℙx0|ℱn
= dℚn

dℙx0|ℱn
=h(Xn), n⩾0.

Let TZ the hitting time of the zero set Z ={x∈E:h(x)=0} of h. Then

ℚ(TZ <∞)= lim
n→∞

ℚ(TZ ⩽n)= lim
n→∞

ℚn(TZ ⩽n)

= lim
n→∞

𝔼x0[h(Xn)1TZ⩽n]= lim
n→∞

𝔼x0[𝔼[h(Xn)|ℱTZ∧n]1TZ⩽n]

(by optional stopping)

= lim
n→∞

𝔼x0[h(XTZ∧n)1TZ⩽n]= lim
n→∞

𝔼x0[h(XTZ)1TZ⩽n]=0

since h(XTZ) = 0! So ℚ(TZ < ∞) = 0 which means that under the measure ℚ the process never
reaches Z . That could not be true under ℙ. Under the measure ℚ the way the process moves
around is different! It tries to avoid Z .

Under the measure ℚ the process (Xn)n⩾0 is still Markov process (!!!) and actually the solution of
a martingale problem with generator

ℒhf =h−1ℒ(hf )

where h−1(x)=1/h(x). Let's show it: Take f =h−1g

Mn
f = f (Xn)− f (X0)−�

k=0

n−1

ℒhf (Xk)=h−1(Xn)g(Xn)−h−1(X0)g(X0)−�
k=0

n−1

h−1(Xk)(ℒg)(Xk)
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We need to prove to be a martingale under ℚ. Take A∈ℱn,

𝔼ℚ��Mn+1
f −Mn

f �1A�=𝔼x0�h(Xn+1)�Mn+1
f −Mn

f �1A�

=𝔼x0[h(Xn+1)(h−1(Xn+1)g(Xn+1)−h−1(Xn)Pg(Xn))1A]

=𝔼x0[(g(Xn+1)−h(Xn+1)h−1(Xn)Pg(Xn))1A]

=𝔼x0[(𝔼[g(Xn+1)|ℱn]−𝔼[h(Xn+1)|ℱn]h−1(Xn)Pg(Xn))1A]

=𝔼x0[(Pg(Xn)−Pg(Xn))1A]=0

which shows the martingale property.
Note that

ℒhf =h−1(P− Id)(hf )=h−1(P(hf )−hf )=h−1P(hf )− f

which means also that the transition kernel of the Markov chain (Xn)n⩾0 under the measure ℚ is
given by Ph with

(Phf )(x)=(h−1P(hf ))(x)= 1
h(x)�

E
h(y) f (y)P(x, dy)

for all x∈Z c. We can take as state space the set E\Z =Z c, i.e the set where h(x)>0.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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