
V3F1/F4F1 Stochastic Processes – SS2021
Massimiliano Gubinelli

Lecture 25 . 13.7.2021 . 14:15–16:00 via Zoom

This Friday's lecture: revision of the course. Please bring your questions/doubts.

Doob's h-transform (applications)
Recall what we have seen last week: given a markov chain (ℙx)x∈E on a canonical space with state
space E and transition kernel P, a positive harmonic function h:E →ℝ⩾0 and a point x0 ∈E such
that h(x0)=1. We can construct a new probability measure ℚ such that

ℚ(A)=𝔼x0[h(Xn)1A], A∈ℱn.

The measure ℚ is the Doob's h-transform of ℙ with h. Under ℚ the canonical process (Xn)n⩾0 is
a Markov chain with transition kernel

Phf =h−1(Phf )

on the state space Z c ={x∈E:h(x)>0}⊆E.
Let's now see how to use this construction to solve certain conditioning problem for Markov
chains. Let us keep the setting as above and let A∈ℰ and assume that ℙx0(TA=+∞)>0. Then let

h(x)= ℙx(TA =+∞)
ℙx0(TA =+∞), x∈E.

By construction this is a positive bounded harmonic function in Ac, i.e. Ph(x)=h(x) for all x∈ Ac

with h(x0)=1 and h(x)=0 on A. In particular the process (h(Xn
TA))n⩾0 is a martingale with average

1 under ℙx0 (use the martingale problem of X to check it). We can the proceed to construct the
measure ℚ as we did last week (with a small change due to stopping time), i.e.

ℚ(B)=𝔼x0[h(Xn
TA)1B], B∈ℱn.

What represents this measure ℚ?
For any B∈ℱn (for some n⩾0) we have

ℙx0(B|TA =+∞)= ℙx0(B,TA =+∞)
ℙx0(TA =+∞) = 𝔼x0[1B𝔼x0[1TA=+∞|ℱn]]

ℙx0(TA =+∞)

Now we use the Markov property to write

𝔼x0[1TA=+∞|ℱn]=𝔼x0[(1TA=+∞ ∘𝜃n)1TA⩾n|ℱn]=𝔼x0[(1TA=+∞ ∘𝜃n)|ℱn]1TA⩾n

=ℙXn(TA =+∞)1TA⩾n =ℙx0(TA =+∞)h(Xn)1TA⩾n =ℙx0(TA =+∞)h(Xn
TA)

Therefore we have

ℙx0(B|TA =+∞)=𝔼x0[1Bh(Xn
TA)]=ℚ(B)

which tells us that the measure ℚ gives the probabilities for X conditioned never to touch the set
A, i.e. on the event {TA =+∞}.

Remark. These considerations can be generalized to more general events by allowing the har-
monic function to depend explicitly on time, i.e. taking h(n, Xn). In this case however the h-
transformed chain will not be anymore time-homogeneous.
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Invariant measures for irreducible chains
One important problem in the theory of Markov chains is their behaviour for long times. What
happens if we wait a long time and then look at the Markov chain? Does it settle down in an
“equilibrium” situation. Think about mixing a fluid, or mixing a deck of cards, or in general
looking at the result of very many small random actions.
The idea of “equilibrium” for a homogenenous Markov chain is enconded in the concept of
invariant measure.

Definition. A positive measure 𝜇 (not necessarily a probability measure) on the state space (E,
ℰ) is an invariant measure for the Markov chain with transition kernel P iff

𝜇P=𝜇.

If 𝜇 is an invariant probability measure and we start the Markov chain with initial law 𝜇, i.e.
X0 ∼𝜇 then we have that

ℙ(Xn ∈ A)=𝜇P(n)1A =𝜇P⋅ ⋅ ⋅P�
n

1A =𝜇(A)

so in particular the law of Xn does not depends on A, and more generally we also have that

𝔼[F ∘𝜃k]=𝔼[F], k ⩾0

for any bounded measurable F:Ω→ℝ. In particular if f :En →ℝ bounded then

𝔼[ f (Xk,Xk+1, . . . ,Xk+n)]=𝔼[ f (X0,X1, . . . ,Xn)]

for all k ⩾0.
The law of the Markov chain is invariant under time shift. This is the reason why the probability
𝜇 is called invariant, because it give rise to a Markov chain which is invariant in law under time
translations.
Now a natural question to ask is: does the equation

𝜇P=𝜇 (1)

has solutions (in the space of positive measures and in the space of probabilities)? And if yes,
does it have a unique solution?
Both questions are non-trivial in general. There could be no solutions, no probability measures
solutions, a unique solution which is not a probability, and a unique probability.

Exercise: construct a chain which has no invariant measures.

We will address these questions in the case of discrete Markov chains, i.e. E is a discrete space.

Remark. Note that if (1) has a solution 𝜇 then 𝜆𝜇 for 𝜆>0 is also a solution because the equation
is linear. Also if 𝜇, 𝜈 are two solutions then 𝜇 + 𝜈 is also a solution and the set of invariant
probabilities is a convex set.

Theorem. If a discrete chain is irreducible, then

• any invariant measure 𝜌 is everywhere strictly positive, i.e. 𝜌(y)>0 for all y∈E.
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• any two invariant measures differ by a multiplicative constants.

• there exists at most one invariant probability.

Proof. Let 𝜌 be a non-trivial invariant measure, then there must be x ∈ E such that 𝜌(x) > 0.
By irreducibility for any y ∈ E there exists n > 0 such that P(n)(x, y) > 0, now we also have by
invariance

𝜌(y)=(𝜌P)(y)= ⋅ ⋅ ⋅ = (𝜌P⋅ ⋅ ⋅P�
n

)(y)=(𝜌P(n))(y)= �
z∈E

𝜌(z)P(n)(z,y)⩾𝜌(x)P(n)(x,y)>0

so we conclude that 𝜌(y) > 0 for all y ∈ E. Any non-trivial invariant measure must be strictly
positive everywhere.
[Let's complete it on Friday]

□

Example. Take the simple random walk on ℤ, with P(x,y)= 1
2 with |x−y|=1 and =0 otherwise.

Then the measure 𝜌(x)=1 is an invariant measure and the chain is irreducible. Therefore there
cannot be any invariant probability measures. Any invariant measure is a constant measure.

If the chain is recurrent then for any x∈E we can define a measure 𝜈x on E by the formula

𝜈x(y)≔𝔼x[[[[[[[[[[[[[[[[[�
n=1

Sx

1Xn=y]]]]]]]]]]]]]]]]], y∈E

where Sx =inf {n⩾1:Xn = x}, the return time to x.

Theorem. If the chain is irreducible and recurrent then 𝜈x is an invariant measure for any x∈E.

Proof. We need to show that 𝜈xP=𝜈x: for all y∈E

𝜈x(y)=𝔼x[[[[[[[[[[[[[[[[[�
n=1

Sx

1Xn=y]]]]]]]]]]]]]]]]]= �
z∈E

𝔼x[[[[[[[[[[[[[[[[[�
n=1

Sx

1Xn=y,Xn−1=z]]]]]]]]]]]]]]]]]

=�
z∈E

𝔼x[[[[[[[[[[[[[[�
n=1

∞

1Sx⩾n𝔼[1Xn=y,Xn−1=z|ℱn−1]]]]]]]]]]]]]]]

=�
z∈E

𝔼x[[[[[[[[[[[[[[�
n=1

∞

1Sx⩾n1Xn−1=z]]]]]]]]]]]]]]P(z,y)

=�
z∈E

𝔼x[[[[[[[[[[[[[[�
n=0

∞

1Sx−1⩾n1Xn=z]]]]]]]]]]]]]]P(z,y)= �
z∈E

𝔼x[[[[[[[[[[[[[[[[[�
n=0

Sx−1

1Xn=z]]]]]]]]]]]]]]]]]P(z,y)

=�
z∈E

𝔼x[[[[[[[[[[[[[[[[[�
n=1

Sx

1Xn=z]]]]]]]]]]]]]]]]]P(z,y)

=�
z∈E

𝜈x(z)P(z,y)=(𝜈xP)(y)
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Where we use the Markov property and the fact that X0 =XSx = x since by recurrence Sx <∞ a.s.
We proved the claim. □

By irreducibility we must have for any x,y∈E

𝜈y =Cx,y𝜈x

for some constant Cx,y. Note that for all y∈E

𝜈y(E)=𝔼y[[[[[[[[[[[[[[[[[[
[�

n=1

Sy

1Xn∈E]]]]]]]]]]]]]]]]]]
]=𝔼y[Sy], 𝜈y(y)=1,

therefore if the chain is positive recurrent, that is if 𝔼x[Sx]<∞ for all x∈E then

Cx,y = 𝜈y(E)
𝜈x(E) = 𝔼y[Sy]

𝔼x[Sx]

and we can define a probability measure

𝜋x(z)= 𝜈x(z)
𝜈x(E) = 𝜈x(z)

𝔼x[Sx]

and note that by irreducibility 𝜋x =𝜋y =𝜋 for all x,y∈E which gives that

𝜋(z)=𝜋z(z)= 𝜈z(z)
𝔼z[Sz]

= 1
𝔼z[Sz]

Corollary. If the chain is positive recurrent and irreducible then the probability measure

𝜋(x)= 1
𝔼x[Sx]

, x∈E,

is the only invariant probability measure of the chain.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[I will take 30 min on friday to close the open points]
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