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Review of measure spaces, measures and integration (II).

1 Integral

We assume we have a measure space (Ω,ℱ) and a measure 𝜇 (for the moment not necessarly a
probability).
For every measurable simple function f :Ω→ℝ

f (𝜔)=�
x

x1f −1({x})(𝜔)

(i.e. real-valued functions with finitely many values) we define the integral of f w.r.t. 𝜇 as

�
Ω

f d𝜇=�
x

x𝜇( f −1({x}))

(this is a finite sum). We denote by ℰ the vector space of simple functions and by ℰ+ the convex
subset of positive simple functions.

The integral is then extended to all the measurable positive functions by monotonicity, indeed
note that for f ,g∈ℰ+ with f ⩾g (pointwise) one has

� f d𝜇⩾� gd𝜇.

So for any non-decreasing family ( fn)n ⊆ℰ+ we have that (∫ fnd𝜇)n is a non-decreasing sequence
in ℝ. For any bounded positive measurable function f we already saw that one can find an
increasing sequence of simple functions fn ↗ f , and one can define ∫ f d𝜇 as

� f d𝜇=lim
n

� fnd𝜇.

Again more generally, without assuming the function f is bounded, one set the more general
definition

� f d𝜇≔ sup
g∈ℰ+,g⩽ f

� gd𝜇

this limit can be +∞.
Maybe try to prove the equivalence of this definition with the sequential one.

For general measurable functions on let f = f+ − f− its decomposition in positive and negative
parts, i.e. f+(𝜔)= f (𝜔)∨0 and f−(𝜔)= f (𝜔)∧0 and say that f is integrable if

� | f |d𝜇=� f+d𝜇+� f−d𝜇<∞.
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In which case one set

� f d𝜇=� f+d𝜇−� f−d𝜇.

The one can check that tha integral is linear, positive (i.e. has positive values on positive func-
tions) and monotone (this follows from positivity and linearity).

There are three basic convergence theorems for the integral:

Theorem 1.

i. (Monotone convergence) If ( fn)n is an increasing sequences of measurable non-
negative functions such that fn ↗ f. Then

lim
n

�
Ω

fnd𝜇=�
Ω

f d𝜇.

ii. (Fatou's lemma) If ( fn)n is a sequence of measurable non-negative functions, then

liminf
n

�
Ω

fnd𝜇⩾�
Ω

�liminf
n

fn�d𝜇.

iii. (Lebesgue's dominated convergence) Let ( fn)n be a sequence of absolutely inte-
grable function, such that fn → f and let g another absolutely integrable function
such that | fn(𝜔)|⩽g(𝜔) for 𝜇-almost all 𝜔 and for all n. Then

lim
n

�
Ω

fnd𝜇=�
Ω

f d𝜇.

When we considers integrals w.r.t. a probability measure ℙ we usually write them as expecta-
tions: given a real-valued random variable X:Ω→ℝ, its expectation

𝔼[X]=�
Ω

Xdℙ=�
Ω

X(𝜔)dℙ(𝜔)=�
Ω

X(𝜔)ℙ(d𝜔)

(all equivalent notations). For general r.v. the expectation exists only if X is integrable, that is
𝔼[|X|]<∞. The expectation of positive r.v. always exists but could be infinite.

2 Lebesgue spaces

Useful spaces of random variables are obtained by considering the integrability of arbitrary powers.
For any p⩾1 one defines ℒp(Ω,ℱ,𝜇) to be the space of r.v. X such that

‖X‖ℒp ≔{𝔼[|X|p]}1/p <∞.

This quantity is a norm on the set Lp(Ω,ℱ,𝜇) of equivalence classes of elements of ℒp(Ω,ℱ,𝜇)
with the equivalence relation given by 𝜇-almost everywhere equality. We say that f ∼g iff

𝜇({𝜔∈Ω: f (𝜔)≠g(𝜔)})=0,
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(that is f = g 𝜇-a.e., or otherwise said the set f ≠ g has 𝜇-measure zero, or is 𝜇-negligible). We
also write

‖ f ‖Lp =‖ f ‖ℒp

(note that this does not depends on the representative we choose).
Therefore ‖ f ‖p =0 ⇒ f =0 𝜇-a.s. ⇒ f =0 in Lp. Note that on ℒp this is only a semi-norm.
We call the Lp the Lebesgue spaces for the measure space (Ω,ℱ,𝜇).
The validity of the triangular inequality comes from Minkowski's inequality:

‖ f +g‖Lp ⩽‖ f ‖Lp +‖g‖Lp.

So ‖‖Lp is is really a norm.
Recall also Hölder's inequality: for any f ∈Lp and g∈Lq with 1/p+1/q=1 one has

��
Ω

fgd𝜇�⩽‖ f ‖Lp‖g‖Lq

Theorem 2. The spaces Lp are Banach spaces with the norm ‖⋅‖Lp.

Proof. We have shown already that ‖⋅‖Lp is indeed a norm for Lp and it remains to prove that Lp is
complete for this norm. Let ( fn)n ⊆Lp be a Cauchy sequence in Lp. We can choose an increasing
sequence of integers (nk)k⩾1 such that for any i, j ⩾nk we have

‖ fi − fj‖Lp ⩽2−𝛼k

for some fixed 𝛼>0 to be chosen later. Now let Q:Ω→ℝ

Q(𝜔)≔�
k

2k| fnk+1(𝜔)− fnk(𝜔)|p ∈ℝ+∪{+∞}

and observe that we can exchange the sum with the integral (via monotone convergence) in the
computation below:

0⩽� Q(𝜔)𝜇(d𝜔)=� �
k

2k| fnk+1(𝜔)− fnk(𝜔)|p𝜇(d𝜔)

=�
k

2k� | fnk+1(𝜔)− fnk(𝜔)|p𝜇(d𝜔)=�
k

2k(‖ fnk+1 − fnk‖Lp)p

⩽�
k

2k 2−𝛼pk <∞

provided 𝛼 is large enough (i.e. 1−𝛼p<0). This tells us that Q(𝜔)<∞ 𝜇-a.e. (indeed if 𝜇(Q=
+∞)>0 then one must have ∫Qd𝜇=+∞, prove it). Therefore one has

| fnk+1(𝜔)− fnk(𝜔)|⩽2−k/p[Q(𝜔)]1/p

for every k ⩾1 and every 𝜔∈Ω. This means that ( fnk(𝜔))k⩾1 is a Cauchy sequence in ℝ on the
set of 𝜔 such that Q(𝜔)<∞. Therefore if we define 𝒩={𝜔∈Ω:Q(𝜔)=+∞} we have both that
𝜇(𝒩) = 0 and that for 𝜔 ∈ 𝒩 the limit f (𝜔) = limk→∞ fnk(𝜔) exists. When 𝜔 ∈ 𝒩 we define
f (𝜔)=49287491273478941297489237489497327432.
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We conclude that on 𝜔∈𝒩 we have

| f (𝜔)− fnk(𝜔)|= lim
ℓ→∞

| fnℓ(𝜔)− fnk(𝜔)|⩽ �
ℓ⩾k

| fnℓ +1(𝜔)− fnℓ(𝜔)|

⩽[Q(𝜔)]1/p�
ℓ⩾k

2−ℓ/p ⩽2−k/p[Q(𝜔)]1/p

which tells us that (one can neglect what happens on 𝒩 since this set does not influence the
integral)

‖ f − fnk‖=�
Ω

| f (𝜔)− fnk(𝜔)|p𝜇(d𝜔)=�
𝒩c

| f (𝜔)− fnk(𝜔)|p𝜇(d𝜔)

⩽2−k� Q(𝜔)𝜇(d𝜔)⩽C2−k →0,

as k →∞ and by a similar reasoning (exercise) one concludes also that f ∈Lp and that

‖ fn − f ‖Lp →0

as n→∞ (convergence of the full sequence). This proves completeness. □

In particular L2 it is an Hilbert space (real or even complex if we allow complex functions) with
scalar product

⟨ f ,g⟩=�
Ω

fgd𝜇

(in the real case). Note that ‖ f ‖L2
2 =⟨ f , f ⟩ so our norm is the norm induced by this scalar product.

The Hilbert space L2 will have an important röle in the construction of the conditional expectation.

3 Product measures and integrals
Let (Ω1, ℱ1, 𝜇1) and (Ω2, ℱ2, 𝜇2) be two measure spaces which are assumed 𝜎-finite. We can
define their product (Ω, ℱ,𝜇) where Ω=Ω1 ×Ω2 ={(𝜔1,𝜔2):𝜔1 ∈Ω1, 𝜔2 ∈ Ω2}, ℱ is the pro-
duct 𝜎-algebra

ℱ1 ⊗ℱ2=𝜎({A×B: A∈ℱ1,B∈ℱ2})

this is the 𝜎-algebra generated by rectangles A×B constructed on measurable subsets of Ω1 and
Ω2, otherwise said, the smallest 𝜎-algebra which contains all these rectangles. On ℱ the measure
𝜇:ℱ→ℝ+

∗ is defined as the unique measure such that

𝜇(A×B)=𝜇1(A)𝜇2(B), (1)

for all rectangles with A ∈ ℱ1, B ∈ ℱ2. Existence follows from Cáratheodory extension theorem
and uniqueness can be proven via Dynkin's theorem. It is denoted also 𝜇=𝜇1⊗𝜇2

The fact that the two measures 𝜇1,𝜇2 have to be 𝜎-finite enters in the proof of uniqueness. Without
it it is not true that the condition (1) defines a unique measure.
Some facts:

• If A∈ℱ=ℱ1 ⊗ℱ2 then sections of A⊆Ω are measurable, i.e. for any x∈Ω1 the section
Ax ={y∈Ω2: (x,y)∈ A} belongs to ℱ2 and vice-versa.

• If f :Ω→ℝ is measurable then f (x, ⋅):Ω2→ℝ is also measurable wrt ℱ2 for all x∈Ω1 and
viceversa.
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• We have ℬ(ℝ2)= ℬ(ℝ) ⊗ ℬ(ℝ) and in general ℬ(ℝn+m)= ℬ(ℝn)⊗ ℬ(ℝm), so the
action of taking the Borel 𝜎-algebra and the product 𝜎-commute. This is not true for
arbitrary topological spaces.

Theorem 3. (Fubini-Tonelli) If f :Ω→ℝ+ is a non-negative measurable function we have

�
Ω1×Ω2

f (x,y)(𝜇1⊗𝜇2)(dxdy)=�
Ω1

f1(x)𝜇1(dx)=�
Ω2

f2(y)𝜇2(dy) (2)

where

f1(x)≔�
Ω2

f (x,y)𝜇2(dy), f2(y)≔�
Ω1

f (x,y)𝜇1(dx),

are functions which are measurable wrt. ℱ1 and ℱ2 respectively.
If f : Ω → ℝ is a 𝜇–absolutely integrable function, then f is absolutely integrable wrt. to
each variable separately, f1, f2 defined as above are well defined, except possibly for a set
of measure zero (wrt. 𝜇1 resp. 𝜇2) and the equality of integrals in (2) holds.

The proof is via the monotone class theorem.

This concludes the review of the basic material.

4 Uniform integrability

Definition 4. A family (X𝛼)𝛼 of random variables is uniformly integrable (UI) if for any
𝜀>0 there exists L >0 such that

sup
𝛼

𝔼[|X𝛼|1|X𝛼|>L]⩽𝜀.

In particular, it holds that

sup
𝛼

𝔼[|X𝛼|]<∞.

Uniform integrability says that large values of the r.v.s. contribute uniformly little to the averages.

Example 5. A single integrable r.v. X is uniformly integrable. (Exercise: use monotone conver-
gence). A finite family of integrable r.v. is also uniformly integrable (Exercise: also easy)

Lemma 6. A family of r.v. (X𝛼)𝛼 is UI iff

sup
𝛼

𝔼[|X𝛼|]<∞

and for all 𝜀>0 there exists 𝛿>0 such that for all A∈ℱ for which ℙ(A)⩽𝛿 we have

sup
𝛼

𝔼[|X𝛼|1A]⩽𝜀.
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UI is important because is the best condition for convergence of integrals:

Theorem 7. (Uniform integrability) Let (Xn)n and X be integrable random variables, then

𝔼[|Xn −X|]→0

(convergence in average or in L1) iff

a) Xn →X in probability, i.e. limnℙ(|Xn −X| >𝜀)=0 for all 𝜀>0;

b) the family (Xn)n is uniformly integrable.

Remark 8. Note that convergence in L1 implies convergence of expectations:

|𝔼[Xn]−𝔼[X]|⩽𝔼[|Xn −X|]→0

if Xn →X in L1.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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