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Conditional expectation (continuation)

Definition. Let (Ω, ℱ, ℙ) be a probability space. Let 𝒢 ⊆ ℱ a sub-𝜎-algebra of ℱ and
let X: Ω → ℝ be a (real) integrable random variable (i.e. 𝔼[|X|] < ∞). The a conditional
expectation of X with respect to the 𝜎-algebra 𝒢 (or given 𝒢) is a real integrable random
variable Z :Ω→ℝ such that

1. Z is 𝒢-measurable;

2. The equation

𝔼[X1A]=𝔼[Z1A] (1)

holds for all A∈𝒢.

Remark. We can rewrite (1) as

�
A

X(𝜔)ℙ(d𝜔)=�
A

Z(𝜔)ℙ(d𝜔)

for all A ∈ 𝒢. This means that we cannot see any difference between X and Z if the only
things we know are the events in 𝒢.

Today we are going to prove existence and give some of the basic properties of cond. exp. Many
of these properties will be the subject of the next exercise sheet. Many of the proof, especially at
the beginning must use directly the definition.

An important special case of cond. exp. is when 𝒢 = 𝜎(Y), i.e. the conditioning 𝜎-algebra is
generated by a random variable Y :Ω→(E,ℰ) with values in an arbitrary measure space (E,ℰ).
In this case the cond. expectation Z given 𝒢=𝜎(Y) has a specific form.

Theorem 1. Let X: (Ω, ℱ) → (Θ, ℋ) be a r.v. with values in (Θ, ℋ) and measurable wrt. ℱ
(as usual). Let Y : (Ω, 𝜎(X)) → (Υ, 𝒢) a r.v. which is 𝜎(X)-measurable and with values in the
measure space (Υ,𝒢).
Then there exists a measurable map h: (Θ, ℋ) → (Υ, 𝒢) such that Y = h ∘ X = h(X). That is the
following diagram commutes:

(Ω,𝜎(X)) →→→→→→→→→→→→
X

(Θ,ℋ)

Y↘ ↙h
(Υ,𝒢)

The theorem says that any r.v. Y which is 𝜎(X) measurable is actually just a (measurable) func-
tion of X, i.e. Y =h(X).

Proposition 2. If Z :Ω→ℝ is a cond. expectation of an integrable X:Ω→ℝ given 𝜎(Y) for some
r.v. Y :Ω→(E,ℰ) then there exists a measurable function h: (E,ℰ)→(ℝ,ℬ(ℝ)) such that

Z =𝔼[X|𝜎(Y)]=h(Y).

1



Remark that this is indeed what happens in the elementary situation in the last lecture.
Since this situation is quite common we have a specific notation, given two random variables X:
Ω→ℝ and Y :Ω→(E,ℰ) then we define the cond. exp. of X given Y as

𝔼[X|Y]=𝔼[X|𝜎(Y)].

In particular if Y :Ω→(E,ℰ),Y ′:Ω→(E′,ℰ′) are two r.v. such that 𝜎(Y)=𝜎(Y ′) then

𝔼[X|Y]=𝔼[X|Y ′]

almost surely.
This happens for example when Y = f (Y ′) with f : (E′,ℰ′)→(E,ℰ) (measurable) bijective.
Exercise: Can we in this case prove that indeed 𝜎(Y)=𝜎(Y ′) or we need more conditions?

Remark. In general we can define cond. exp. only for integrable r.v. (because there is
an integral involved in the definition). However if X ⩾ 0 then we can always define the
conditional expectation since the integrals in the eq. (1) are always well defined since it is
not restrictive to define in this case the cond. exp. as a positive r.v..

Existence

The goal is to prove the following theorem (introduce in the last lecture)

Theorem 3. For any X:Ω→ℝ integrable and 𝒢⊆ℱ the cond. exp. 𝔼[X|𝒢] exists.

There are two main proofs of this theorem. We will use one which goes via an intermediate
result involving the condition that X is square-integrable, this means that X ∈ ℒ2(Ω, ℱ, ℙ), i.e.
𝔼[|X|2] < ∞. In this case we can use the geometry of the Hilbert space L2 to perform the con-
struciton of the cond. exp. After that we remove the additional integrability condition via an
approximation argument.
Recall that L2(Ω,ℱ,ℙ) is a real Hilbert space with scalar product

⟨X,Y⟩=𝔼[XY], X,Y ∈L2(Ω,ℱ,ℙ).

Let us observe preliminarly the following: assume X ∈L2 and Y is a cond. exp. for X given 𝒢 and
that Y ∈L2 (this is not automatic for what we now).
Then for any Z :Ω→ℝ bounded and measurable wrt 𝒢 then one can check that

𝔼[|X −Z |2]=𝔼[X2]−2𝔼[XZ]+𝔼[Z 2]

=𝔼[X2]−2𝔼[YZ]+𝔼[Z 2]

=𝔼[|Y −Z |2]+𝔼[|X −Y |2]+2𝔼[XY]−2𝔼[Y 2]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0

=𝔼[|Y −Z |2]+𝔼[|X −Y |2]

where we used that 𝔼[XZ]=𝔼[YZ] and we also used that

𝔼[(X −Y)Y]=0,
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indeed we have

𝔼[X𝜙M(Y)]=𝔼[Y 𝜙M(Y)] (2)

with 𝜙M(x)=(−M ∧(x∨M)) is a function which is bounded, so 𝜙M(Y) is bounded for any M >0
and therefore the equality holds by definition of cond. exp since now 𝜙M(Y) is a generic bounded
r.v. which is 𝒢 measurable since Y is. Then in eq. (2) one can take the limit as M →∞ using the
fact that both X,Y are in L2. For example observe that

|𝔼[X𝜙M(Y)]−𝔼[XY]|= |𝔼[X (𝜙M(Y)−Y)]|⩽𝔼[|X (𝜙M(Y)−Y)|]

⩽(𝔼[|X|2])1/2(𝔼[|𝜙M(Y)−Y |2])1/2→0

by dominated convergence since |𝜙M(Y)−Y |2⩽2|Y |2 which is integrable. So one can show in this
way that for X,Y ∈L2 we have indeed

𝔼[XY]=𝔼[YY].

From the point of view of Hilbert space this means that ⟨X −Y ,Y⟩=0 i.e. X −Y is orthogonal to Y .
In particular we have proven that

𝔼[|X −Z |2]=𝔼[|Y −Z |2]+𝔼[|X −Y |2]

so also that Y − Z and X − Y are orthogonal for any Z which is 𝒢 measurable and bounded. By
the same approximations argument as above we have also this inequality for all Z ∈ L2(Ω, 𝒢,
ℙ)=L2(𝒢), i.e. 𝒢 measurable and square-integrable random variables.
So

𝔼[|X −Y |2]= inf
Z∈L2(𝒢)

𝔼[|X −Z |2] (3)

and the infimum is obtained for Z =Y assuming the cond. exp. Y is indeed in L2(𝒢).

Note that L2(𝒢)⊆ L2(ℱ) and moreover that it is closed subspace with the topology induced by
the L2 norm (by completeness of L2(𝒢) which is just a sub Hilbert space of L2(ℱ)).

Eq. (3) tells us that if the cond. exp. exists and it is in L2(𝒢), then it must be a minimizer of the
expression 𝔼[|X −Z |2] with Z running over all the elements of L2(𝒢).

The conditional expectation is the best approximation of X ∈L2(ℱ) by an element of L2(𝒢)
according to the L2 distance.

X

L2(ℱ)

L2(𝒢)

Z

‖X −Z‖

Y

‖X −Y‖
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This hints to a concrete strategy to construct the cond. exp., namely looking for infima of this
functional.

Lemma 4. Fix 𝒢 ⊆ℱ, then L2(𝒢) is a closed vector subspace of L2(ℱ) and for all X ∈L2(ℱ)
there exists a unique Y ∈L2(𝒢) such that

1. 𝔼[|X −Y |2]= infZ∈L2(𝒢)𝔼[|X −Z |2]

2. X −Y⊥L2(𝒢).

We call this Y the orthogonal projection of X onto L2(𝒢).

Proof. The vector space L2(𝒢) is complete wrt. the L2 norm and therefore is also closed in L2(ℱ)
because the norm (and therefore the metric topology) is the same. We have now to prove the
existence of Y with the two properties. Let

Δ= inf
Z∈L2(𝒢)

𝔼[|X −Z |2]⩾0.

I can consider a sequence (Yn)n⩾0⊆L2(𝒢) of almost minimizers of this quantity, that is

𝔼[|X −Yn|2]⩽Δ+ 1
n

as n→∞. I want to prove that this sequence is Cauchy. We have

𝔼[|X −Yn|2]+𝔼[|X −Ym|2]=2𝔼[|X − (Yn +Ym)/2|2]+ 1
2𝔼[|Yn −Ym|2]

(using 𝔼[|A + B|2] + 𝔼[|A − B|2] = 2𝔼[A2] + 2𝔼[B2]). Now observe that (Yn + Ym)/2 ∈ L2(𝒢),
which gives that

1
2𝔼[|Yn −Ym|2]⩽𝔼[|X −Yn|2]+𝔼[|X −Ym|2]−2Δ⩽ 1

n + 1
m →0

as n,m→∞ which shows that (Yn)n⩾0⊆L2(𝒢) is Cauchy. Therefore there exists Y ∈L2(𝒢) such
that Yn →Y in L2(𝒢) and therefore in L2(ℱ) and is easy to check that

𝔼[|X −Y |2]=Δ.

Take t ∈ℝ and H ∈L2(𝒢) and consider Z =Y + tH ∈L2(𝒢), then

Δ⩽𝔼[|X −Y − tH|2]=𝔼[|X −Y |2]||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=Δ

+2t𝔼[(X −Y)H]+ t 2𝔼[H2]

since this must hold for any t ∈ ℝ by taking t small this implies that 𝔼[(X − Y)H] = 0 (it is the
derivative in zero of a positive polynomial). This means that

⟨X −Y ,H⟩=𝔼[(X −Y)H]=0

for all H ∈ L2(𝒢) which is the required orthogonality condition. Uniqueness of Y follows from
the same argument we used for conditional expectation (exercise). □

This settles the existence problem when X ∈L2(ℱ) and in this case we can take 𝔼[X|𝒢]∈L2(𝒢)
to be the orthogonal projection of X in L2(𝒢). More generally we can proceed by approximation.
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Theorem 5. For all X ∈L1(ℱ) and 𝜎-algebra 𝒢⊆ℱ the conditional expectation 𝔼[X|𝒢] exists.

Proof. Let's assume first that X ⩾ 0. Let Xn = (X ∧ n) ∈ L2(ℱ) for any n ⩾ 0. In this case we
proved that Yn =𝔼[Xn|𝒢] exists. The first thing to realize is that Ym ⩾Yn for any m⩾n. Indeed by
definition we have for all A∈𝒢

𝔼[1A(Ym −Yn)]=𝔼�1A(Xm −Xn)||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
⩾0

�⩾0

and choosing A= Ak={Ym−Yn<k−1}∈𝒢 one deduce that ℙ(Ak)=0 for any k =1,... which implies
that ℙ(∪kAk) = 0 that is Ym ⩾ Yn a.s.. So (Yn)n⩾1 is almost surely increasing and therefore has a
pointwise limit Y =limnYn =supnYn (see in the notes the details).
One now checks that 𝔼[1AY]=𝔼[1AX] by taking monotone limits in 𝔼[1AYn]= 𝔼[1AXn]. This
gives 𝔼[X|𝒢]=Y when X ⩾0.
Then one extends to arbitrary X by decomposing into positive and negative parts X =X+−X−, by
letting

𝔼[X|𝒢]≔𝔼[X+|𝒢]−𝔼[X−|𝒢].

□

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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