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Conditional expectation (end)

Last week we proved existence of cond. exp for L2 random variables via orthogonal projection
in the Hilbert space L2 and then extended it to all r.v. in L1 via usual arguments of measure
theory, namely monotone approximation for positive r.v. and then decomposition into positive
and negative parts for general integrable r.v.

Warning: 𝔼[X],𝔼[X|𝒢] are two very different objects. 𝔼[X] is a number giving the result
of computing an integral. 𝔼[X|𝒢] it is a random variabl with certain properties.

Properties of conditional expectation

Proposition. For all X, Y ∈ L1(ℱ) and all 𝒢, ℋ ⊆ ℱ (sub-𝜎-algebras of ℱ) we have the fol-
lowing properties of conditional expectation (all valid only ℙ-a.s.):

a) Linearity: for all 𝜆,𝜇∈ℝ we have

𝔼[𝜆X +𝜇Y |𝒢](𝜔)=𝜆𝔼[X|𝒢](𝜔)+𝜇𝔼[Y |𝒢](𝜔);

(in particular 𝔼[𝜆|𝒢]=𝜆)

b) Positivity: for any X ⩾0 ℙ-a.s. we have

𝔼[X|𝒢]⩾0;

c) Monotone convergence: for any non-decreasing sequence (Xn)n⩾1 of integrable r.v. such
that X =limnXn =supnXn we have

𝔼[X|𝒢]=sup
n

𝔼[Xn|𝒢].

d) Jensen's inequality. For any 𝜑:ℝ→ℝ convex and such that 𝜑(X)∈L1 we have

𝔼[𝜑(X)|𝒢]⩾𝜑(𝔼[X|𝒢])

(to prove this use that 𝜑(x) can be bounded below by a suitable straight line, see the proof
for the standard expectation)

e) Contractivity in Lp with p⩾1: if X ∈Lp then 𝔼[X|𝒢]∈Lp and

‖𝔼[X|𝒢]‖Lp ⩽‖X‖Lp.

f ) Telescoping: If ℋ⊆𝒢 then the smallest 𝜎-algebra wins:

𝔼[𝔼[X|ℋ]|𝒢]=𝔼[X|ℋ]=𝔼[𝔼[X|𝒢]|ℋ]

(in general one has 𝔼[𝔼[X|ℋ]|𝒢]≠𝔼[𝔼[X|𝒢]|ℋ]).
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g) If Z ∈̂𝒢 (i.e. measurable wrt. 𝒢), 𝔼[|X|]<∞ and 𝔼[|XZ |]<∞ then

𝔼[XZ |𝒢]=Z 𝔼[X|𝒢],

you can take out of the cond. exp. any 𝒢 measurable r.v. in particular 𝔼[Z |𝒢]=Z.

Remark. We will use the notation Z ∈̂𝒢 to denote that the r.v. Z is 𝒢 measurable.

An important lemma on the relation between cond. exp. and UI.

Lemma 1. Let X ∈L1(ℱ) and for any 𝒢⊆ℱ define X𝒢=𝔼[X|𝒢]. Then the family

𝒳={X𝒢:𝒢⊆ℱ}

is an uniformly integrable family of random variables.

Proof. Recall UI: we have to prove that for any 𝜀>0 there exists L >0 such that

sup
X𝒢∈𝒳

𝔼[|X𝒢|1|X𝒢|⩾L]⩽𝜀.

Observe that X𝒢 ∈̂𝒢 and therefore {|X𝒢| ⩾L}∈𝒢, as a consequence

𝔼[|X𝒢|1|X𝒢|⩾L]=𝔼[|𝔼[X|𝒢]|1|X𝒢|⩾L] ⩽
Jensen

𝔼�𝔼[|X||𝒢]1|X𝒢|⩾L�
∈̂𝒢

�

⩽𝔼[𝔼[|X|1|X𝒢|⩾L|𝒢]]=𝔼[|X|1|X𝒢|⩾L]

since 𝔼[𝔼[Y |𝒢]]=𝔼[𝔼[Y |𝒢]1Ω]=𝔼[Y1Ω]=𝔼[Y] using the definition since Ω∈𝒢. We have
now

𝔼[|X𝒢|1|X𝒢|⩾L]⩽𝔼[|X|1|X𝒢|⩾L].

Since the r.v. X is UI (since any integrable r.v. is) we have that there exists 𝛿>0 so that for any
A∈ℱ with ℙ(A)⩽𝛿(𝜀) we have 𝔼[|X|1A]⩽𝜀.
Then it suffices to take L =L(𝛿) large so that

ℙ(|X𝒢|⩾L) ⩽
Markov

𝔼[|X𝒢|]
L ⩽

Contractivity in L1

𝔼[|X|]
L ⩽𝛿

to finally have that for L =L(𝛿(𝜀)) we have

𝔼[|X𝒢|1|X𝒢|⩾L]⩽𝔼[|X|1|X𝒢|⩾L]⩽𝜀

independently of 𝒢. This proves UI of the family 𝒳. □

Relations with independence
Recall the notion of independence: two events A,B are independent wrt. ℙ if

ℙ(A∩B)=ℙ(A)ℙ(B).

Generalisations involving families of 𝜎-algebras or rand. vars. are also possible.
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Definition.

a) A family (𝒜i)i∈I of sub-𝜎-algebras of ℱ are independent iff for any choice of J ⊆ I finite
and any Ai ∈𝒜i, i∈J we have

ℙ(∩j∈JAj)=�
j∈J

ℙ(Aj).

(pair-wise independence is not sufficient for general independence)

b) We say that a r.v. X is independent from a 𝜎-algebra 𝒢 if {𝜎(X),𝒢} are independent.

c) A family of r.v. (Xi)i∈I is independent if the family (𝜎(Xi))i∈I of 𝜎-algebras is indepen-
dent.

Proposition.

a) If X ∈L1(ℱ) is independent of 𝒢 then

𝔼[X|𝒢]=𝔼[X].

b) If ℋ,𝒢 are independent and 𝒢′⊆𝒢 and X ∈L1(𝒢) then

𝔼[X|ℋ,𝒢′]=𝔼[X|𝒢′]

(where 𝔼[X|ℋ, 𝒢′] ≔ 𝔼[X|𝜎(ℋ, 𝒢′)]). That is we can ignore additional independent
information in the conditioning.

c) If X1, . . . ,Xn is a finite family of real independent r.vs. and f (X1, . . . ,Xn)∈L1(ℱ) then

𝔼[ f (X1, . . . ,Xn)|X1]=𝜑(X1)

where the function 𝜑 is explicitly given by

𝜑(x)=𝔼[ f (x,X2, . . . ,Xn)], x∈ℝ.

(Note that 𝜑(X1)≠𝔼[ f (X1,X2, . . . ,Xn)]) With another more detailed notation we have

𝔼[ f (X1, . . . ,Xn)|X1](𝜔)=𝜑(X1(𝜔))=�
Ω

f (X1(𝜔),X2(𝜔′), . . . ,Xn(𝜔′))ℙ(d𝜔′).

Proof. a) Exercise.
b) We can assume that X ⩾0 (the general case can be handled by decomposition). Let G∈𝒢′ and
H ∈ℋ, by definition of cond. exp:

𝔼[𝔼[X|ℋ,𝒢′]1G1H]=𝔼[X1G1H]

By independence of 𝒢 and ℋ:

𝔼[X1G1H]=𝔼[X1G]𝔼[1H]

and by definition of 𝔼[X|𝒢′] we have

𝔼[X1G]𝔼[1H]=𝔼[𝔼[X|𝒢′]1G]𝔼[1H].
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By using independence of 𝒢 and ℋ again we have

𝔼[𝔼[X|𝒢′]1G]𝔼[1H]=𝔼[𝔼[X|𝒢′]1G1H].

Therefore

𝔼[X1G∩H]=𝔼[𝔼[X|ℋ,𝒢′]1G∩H]=𝔼[𝔼[X|𝒢′]1G∩H].

To conclude it is enough to show that this equality is valid when we replace G ∩ H by any ele-
ment of 𝜎(𝒢′,ℋ). This is the point where we can use the monotone class theorem: the property
expressed by the above equality is true for 1G∩H, it is linear and pass to the monotone limits
(because X ⩾0 and therefore also 𝔼[X|𝒢′]⩾0). So we conclude it holds for all the sets in the 𝜎-
algebra generated by 𝒢′∩ℋ, namely 𝜎(𝒢′,ℋ).
c) To prove the explicit form of 𝜑 just use Fubini theorem on the joint law of X1 and (X2, . . . ,Xn).
Actually consider the case n=2 is sufficient for a general proof. Note that checking the definition
of cond. exp. in this case is equivalent to check that for any bounded and measurable h:ℝ→ℝ
we have

𝔼[h(X1) f (X1, . . . ,Xn)]=𝔼[h(X1)𝜑(X1)].

Indeed recall that any 𝜎(X1)-measurable r.v. Z has the form Z =h(X1). By definition of expecta-
tion we have

𝔼[Zf (X1, . . . ,Xn)]=𝔼[h(X1) f (X1, . . . ,Xn)]

=�
ℝn

h(x1) f (x1,x2, . . . ,xn)�
i=1

n

ℙXi(dxi)

=�
ℝ

h(x1)[[[[[[[[[[[[[[�
ℝn−1

f (x1,x2, . . . ,xn)�
i=2

n

ℙXi(dxi)]]]]]]]]]]]]]]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
𝜑(x1)=𝔼[ f (x1,X2, . . . ,Xn)]

ℙX1(dx1)

=�
ℝ

h(x1)𝜑(x1)ℙX1(dx1)=𝔼[h(X1)𝜑(X1)]

=𝔼[Z 𝜑(X1)]

this holds for any Z ∈̂𝜎(X1) and therefore we can conclude that 𝔼[ f (X1, . . . ,Xn)|X1]=𝜑(X1).
□

Example. Let (Xi)i=1, . . . ,n a vector of i.i.d. integrable random variables and let

S =�
i=1

n

Xi.

We want to compute 𝔼[X1|S]. The first observation is that there must exist a measurable function
g:ℝ→ℝ such that

𝔼[X1|S]=𝔼[Xk|S]=g(S)

for any k = 1, . . . , n. The function g is independent of the index of the variable: intuitively no
variable can be distinguished from each other. Indeed by definition we must have

𝔼[X1h(S)]=𝔼[g(S)h(S)]
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for any bounded measurable function h:ℝ→ℝ. However

𝔼[X1h(S)]=𝔼[X1h(X1 + ⋅ ⋅ ⋅ +Xn)]=𝔼[X𝜎(1)h(X𝜎(1) + ⋅ ⋅ ⋅ +X𝜎(n))]

where 𝜎∈Sn is a permutation of {1, . . . ,n}. This is true since the law of the vector (X1, . . . ,Xn) is
equal to the law of the vector (X𝜎(1), . . . , X𝜎(n)) and coincide with a product measure on n equal
measures

ℙ(X𝜎(1), . . . ,X𝜎(n)) =ℙX𝜎(1) ⊗ ⋅ ⋅ ⋅ ⊗ℙX𝜎(n) =ℙX1 ⊗ ⋅⋅ ⋅ ⊗ℙX1 =(ℙX1)⊗n.

We say in this case that the vector (X1, . . . , Xn) is exchangeable, i.e. its law is invariant under
permutations. Therefore by choosing 𝜎 appropriately we have

𝔼[X𝜎(1)h(X𝜎(1) + ⋅ ⋅ ⋅ +X𝜎(n))]=𝔼[X𝜎(1)h(X1 + ⋅ ⋅ ⋅ +Xn)]

=𝔼[Xkh(X1+ ⋅ ⋅ ⋅ +Xn)]=𝔼[Xkh(S)]

which implies that

𝔼[X1|S]=𝔼[Xk|S]

for any k =1, . . . ,n.
Now by linearity we have

S =𝔼[S|S]=𝔼[X1 + ⋅ ⋅ ⋅ +Xn|S]=𝔼[X1|S]+ ⋅ ⋅ ⋅ +𝔼[Xn|S]=n𝔼[X1|S]=ng(S)

as a consequence we have proven that g(S)=S/n and in particular

𝔼[X1|S]= S
n .

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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