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Conditional expectation (end)

Example. Let (Xn,m)n,m⩾0 a double sequence of i.i.d. r.v. with values in ℕ⩾0={0,1,2,...}
(in particular ℙ(X1,1 <∞)=1). Let Z0=1 and then I define recursively

Zn =Xn,1 + ⋅ ⋅ ⋅ +Xn,Zn−1,

for n⩾1. Note that Zn is a integer valued random variable.
The r.v.s (Zn)n⩾0 model the evolution of the size of population of individuals where at
every step n the m-th individual give rise to Xn,m ∼ X1,1 individuals which go the next
generation.
We want to compute the generating function fn(𝜃)≔𝔼[𝜃Zn] of Zn for every 𝜃∈(0,1).
Note that we can more rigorously define

Zn = �
m⩾1

1Zn−1⩾m Xn,m,

and observe that Z0 it is a.s. finite and if Zn−1 is a.s. finite then the above sum is also made
a.s. of finitely many summands and therefore Zn is a.s. finite if ℙ(X1,1 <∞)=1, i.e. this
proves that ℙ(Zn <∞)=1 for all n⩾0 by induction, assuming ℙ(X1,1 <∞)=1.
We know that f0(𝜃)=𝔼[𝜃Z0]=𝜃. Let us call f (𝜃)≔𝔼[𝜃X1,1]. How we compute

fn(𝜃)=𝔼[𝜃Zn]=𝔼[𝜃Xn,1+⋅ ⋅ ⋅+Xn,Zn−1]?

We note that (Xn,m)m⩾1 is independent of Zn−1 ∈̂ 𝜎(Xk,m: 0 ⩽ k ⩽ n − 1, m ⩾ 1) since the
family (Xn,m)n,m⩾0 is iid. In this case we can condition the averange on the value of Zn−1:
by the theorem we proved in the last lecture (Prop 14 in Note 2)

𝔼[𝜃Xn,1+⋅ ⋅ ⋅+Xn,Zn−1]=𝔼[𝔼[𝜃Xn,1+⋅ ⋅ ⋅+Xn,Zn−1|Zn−1]]=𝔼[𝜑(Zn−1)]

with

𝜑(z)=𝔼[𝜃Xn,1+⋅ ⋅ ⋅+Xn,z], z=0,1, 2, . . .

But now we can compute this easily since cond. exp. has disappeared thanks to indepen-
dence, for z ⩾0

𝜑(z)=𝔼[𝜃Xn,1]⋅ ⋅ ⋅𝔼[𝜃Xn,z]=(𝔼[𝜃X1,1])z =( f (𝜃))z

which means that

fn(𝜃)=𝔼[𝜃Xn,1+⋅ ⋅ ⋅+Xn,Zn−1]=𝔼[𝜑(Zn−1)]=𝔼[( f (𝜃))Zn−1]= fn−1( f (𝜃)).
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Therefore we have shown that fn solve the recursive equation

f0(𝜃)=𝜃, fn(𝜃)= fn−1( f (𝜃))

which has unique solution fn(𝜃)= f ∘n(𝜃). This is very useful if one would like to under-
stand what happens to Zn as n→∞, i.e. how the population behave on long time. Intersting
question: does it become extinct with probability 1. Note that if Zn = 0 then Zk = 0 for
all k ⩾n.

Regular conditional probabilities
Given a 𝜎-algebra 𝒢⊆ℱ we can consider the family of r.v.

A∈ℱ↦ℙ(A|𝒢)≔𝔼[1A|𝒢]∈L∞(Ω,𝒢,ℙ)⊆L∞(Ω,ℱ,ℙ)

These r.v. satisfy almost surely the following equalities:

a) ℙ(∅|𝒢)=0, ℙ(Ac|𝒢)=1−ℙ(A|𝒢)

b) ℙ(∪nAn|𝒢)=∑n ℙ(An|𝒢) for a family (An)n⩾1 ⊆ℱ of pairwise disjoint events.

These relations shows that the map A∈ℱ↦ℙ(A|𝒢) behaves like a probability measure.
So we would like to think to ℙ(⋅|𝒢) as a random probability measure ℙ𝒢, i.e. something
like

ℙ𝒢:𝜔∈Ω↦ℙ𝒢(𝜔)∈Π(Ω,ℱ)

where Π(Ω,ℱ) is the set of all probability measures on (Ω,ℱ). This is in this generality
not possible, because the proprerties a),b) are true only a.s., that is for any choice of A or
of (An)n one has different exceptional set 𝒩A,𝒩(An)n in which the property is not satisfied
and unfortunately one cannot construct an exceptional universal measurable set valid for
all the possible choices of A, (An), because we have uncountably many choices here.
In some situations however this is possible. In this case we say that the family
(ℙ(A|𝒢))A∈ℱ admits a regular conditional version, or that we have a regular condi-
tional probability for ℙ given 𝒢. This means that there exists a map

ℙ𝒢:Ω→Π(Ω,ℱ)⊆(Ω×ℱ→[0,1])

such that for all A∈ℱ it holds

ℙ𝒢(𝜔, A)=ℙ(A|𝒢)(𝜔), ℙ−a.e.𝜔∈Ω.

In case we have a regular conditional probability, then for any X ∈ L1(Ω, ℱ, ℙ) we can
express the conditional expectation wrt. 𝒢 as an integral:

𝔼[X |𝒢](𝜔)=� X(𝜔′)ℙ𝒢(𝜔,d𝜔′), ℙ−a.e.𝜔∈Ω.

(this is not difficult to prove from the definition of reg. cond. prob. and cond. exp.)
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Regular conditional probabilities are guaranteed to exist when (Ω, ℱ) is a Polish
space: i.e. complete, metrisable topological space endowed with the Borel 𝜎-algebra.
Example: ℝ, ℝn, ℝℕ, C([0,1],ℝn).

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Filtrations & stopping times

Definition. A (discrete time) stochastic process is just a family (Xn)n⩾0 of random vari-
ables indexed by ℕ⩾0 (or ℕ⩾1).

We think to the index n at time and to the sequence X1,X2,... as the description of random
phenoma which evolves in time. Time take with it a notion of “past”, “present” and
“future”.
This is encoded in the notion of filtration:

Definition. A filtration (ℱn)n⩾0 is an increasing family of sub-𝜎-algebras of ℱ, i.e.

ℱn ⊆ℱn+1

for all n⩾0. We let ℱ∞ =𝜎(ℱn:n⩾0), that is the smallest 𝜎-algebra which contains all
the (ℱn)n.

A filtration represents the flow of time, in the sense that ℱn is the information I dispose at
time n.

Example. If X = (Xn)n⩾0 is a stochastic process then we can always consider its natural
filtration (ℱn

X)n⩾0

ℱn
X =𝜎(X0,X1, . . . ,Xn).

It is easy to check that indeed ℱn
X ⊆ℱn+1

X . This filtration encode the information given by
the observation of the process X as time passes.

Example. Let Ω=(0,1] and define

ℱn ={(k/2n, (k +1)/2n]:k =0, . . . , 2n −1}⊆ℱ=ℬ([0,1])

then (ℱn)n⩾0 is a filtration and ℱ∞=ℱ. Here n represent the precision of our observation
of a point in [0, 1].

Definition. We say that a process X =(Xn)n⩾0 is adapted to the filtration (ℱn)n⩾0 iff

Xn ∈̂ℱn
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for all n⩾0. A process X is previsible to the filtration (ℱn)n⩾0 iff

Xn+1 ∈̂ℱn

for all n⩾0.
The natural filtration ℱX of a process X is the smallest filtration for which the process is
adapted.

I want to define now stopping times. A stopping time is a rule to determine how to stop
given what happened in the past.

Definition. A stopping time T :Ω→ℕ∗≔ℕ∪{+∞} for the filtration (ℱn)n⩾0 is a r.v. with
values in ℕ∗ such that

{T ⩽n}∈ℱn,

for all n⩾0.
This is equivalent to require that {T =n}∈ℱn for all n⩾0.

Example. The first time T we observe “head” in a repeated launch of a coin, is a stopping
time wrt. the natural filtration of this problem. However, the last time S I observe “head”
is not a stopping time.

The notion of stopping time encode a “fair” stopping rule, i.e. a rule which does not use
information from future to make a decision (to stop or no).

Definition. The 𝜎-algebra ℱT of the stopping time T wrt. the filtration (ℱn)n⩾0 is defined
as

ℱT ≔{A∈ℱ: A∩{T ⩽n}∈ℱn for all n∈ℕ∗}

Exercise. Show that ℱT is a 𝜎-algebra.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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