
V3F1/F4F1 Stochastic Processes – SS2021
Massimiliano Gubinelli

Lecture 9 . 11.5.2021 . 14:15–16:00 via Zoom

Last friday: stochastic process (Xn)n⩾0, (ℱn)n⩾0 filtration (e.g. increasing family of 𝜎-algebras),
adpted and previsible processes, and lastly the concept of stopping time. All of this in discrete
time, i.e. when the time index n takes value in ℕ or ℕ0=ℤ+.
Recall a r.v. T :Ω→ℕ0

∗ =ℕ0∪{+∞} is a stopping time (wrt. to a given filtration (ℱn)n⩾0) iff for
all n∈ℕ0

∗ we have {T ⩽n}∈ℱn where ℱ∞ =𝜎(ℱn:n⩾0).

Remark. We have always that {T ⩽+∞}=Ω∈ℱ∞, moreover if {T ⩽n}∈ℱn for all n∈ℕ0 then

{T =+∞}=∩n⩾0{T ⩾n}∈𝜎((ℱn)n⩾0)∈ℱ∞.

The 𝜎-algebra ℱT of the stopping time T is defined as

ℱT ≔{A∈ℱ: A∩{T ⩽n}∈ℱn for all n∈ℕ0
∗}.

(Exercise: prove that it is indeed a 𝜎-algebra)

Proposition. Let S,T two stopping times

a) If S ⩽T (i.e. pointwise for all 𝜔∈Ω) then ℱS ⊆ℱT;

b) S ∧T ≔min(S,T)and S ∨T ≔max(S,T) are again stopping times and

ℱS∧T =ℱT ∩ℱS, ℱT ∨S =𝜎(ℱT ∪ℱS);

c) If (Xn)n⩾0 is an adapted process and T <∞, then

XT ∈̂ℱT

where XT(𝜔)≔ XT(𝜔)(𝜔) is the r.v. representing the process X observed at the random
time T. (Note that we look at the process (Xn)n⩾0 as the function X: ℕ0 × Ω → ℝ such
that X(n, 𝜔) = Xn(𝜔), it is easy to show that this function is measurable from ℕ0 × Ω to
ℝ because ℕ0 is countable, then XT(𝜔)=X(T(𝜔),𝜔) is again a measurable function as
composition of measurable functions)

d) A r.v. Z is ℱT-measurable iff the process (Zn ≔Z 1{T =n})n∈ℕ0
∗ is adapted. In this case we

have the relation Z =ZT.

Proof. Exercise. □

All these properties justify the notation ℱT for the 𝜎-algebra generated by stopping time T .

Example.

• If T(𝜔)=n for all 𝜔∈Ω, then T is a stopping time. In particular every deterministic time
n is a stopping time.
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• If (E, ℰ) is a measure space and A ∈ ℰ and (Xn)n⩾0 is an adapted process with values in
(E,ℰ) then the entrance time in A for (Xn)n⩾0 defined as

TA ≔inf {n⩾0:Xn ∈ A}:Ω→ℕ0
∗

with inf (∅)=+∞, is a stopping time. Indeed note that

{TA ⩽n}=∪k=0, . . . ,n{Xk ∈ A}�
∈ℱk

∈𝜎(ℱ0, . . . ,ℱn)=ℱn

for all n∈ℕ0. So TA is indeed a stopping time.

• Let (Xn)n⩾0 an adapted real valued process then

T =inf {n⩾0:Xn+1 ⩾100}

it is not necessarily a stopping time since in general {T =n}∈ℱn+1⊆ℱn. In general is just
a random time, i.e. a random variable Ω→ℕ0

∗.

Using stopping times one can prove an interesting “impossibility” theorem.

Theorem. (Wald's identity) Let (Xn)n⩾1 an i.i.d. sequence of integrable real valued r.v.s. Let T
be stopping time for the filtration (ℱn)n⩾0 generated by the (Xn)n⩾1 (i.e. ℱn =ℱn

X =𝜎(X1, . . . ,Xn)
with ℱ0={∅,Ω}). Let

Sn =X1+ ⋅ ⋅ ⋅ +Xn

for n ⩾ 1 with S0 = 0. Then the process (Sn)n⩾0 is adapted to (ℱn)n⩾0 and if 𝔼[T]<∞ (i.e. T is
an integrable stopping time) then the r.v. ST is integrable and

𝔼[ST]=𝔼[T]𝔼[X1]

in particular if 𝔼[X1]=0 then 𝔼[ST]=0.

Remark. This theorem can be interpreted as follows: in a fair game (i.e. a game with average
gain 𝔼[Xn]=0 at every round) with independent repeated trials any reasonable strategy (modeled
by a stopping time T) give zero average gain.

Remark. Note that if T =n then by linearity we have

𝔼[Sn]=𝔼[X1+ ⋅ ⋅ ⋅ +Xn]=n𝔼[X1].

So Wald's identity says that this results also hold for general stopping times replacing n with 𝔼[T]
on the r.h.s.

Remark. Let us consider the stopping time

T =inf {n⩾0:Sn ⩾S0 +100},

i.e. my strategy to stop is to quit the game when I gained 100 euros. On the set {T <∞} we have

ST ⩾S0+100
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so if T <∞ a.s. we could expect that 𝔼[ST]⩾𝔼[S0+100]⩾100 even if 𝔼[X1]=0 (for example).
We have a problem here, since the theorem make us expect that 𝔼[ST]=0. In order not to have
a contradiction we are bound to conclude that 𝔼[T]=+∞, i.e. the stopping time is not integrable.
Therefore we see from this example that the integrability hypothesis on T is essential.

Remark. The integrability hypothesis on T is essential from a technical point view since it guar-
antees that ST is an integrable random variable as claimed. We will see it in the proof.

Proof. The first thing to check is integrability of ST :

ST(𝜔)= �
n⩾1

Xn(𝜔)1n⩽T(𝜔), T(𝜔)= �
n⩾1

1n⩽T(𝜔)

then

𝔼[|ST |]⩽𝔼[[[[[[[[[[[[�
n⩾1

|Xn|1n⩽T]]]]]]]]]]]]⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
Fubini

or
mon.conv.

�
n⩾1

𝔼[|Xn|1n⩽T]

Now note that {n⩽T}∈ℱn−1 and that Xn is independent of ℱn−1=𝜎(X1, . . . ,Xn−1). Therefore |Xn|
is independent of 1n⩽T and we have

�
n⩾1

𝔼[|Xn|1n⩽T] ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
indep

�
n⩾1

𝔼[|Xn| ]𝔼[1n⩽T]⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
ident.distr.

𝔼[|X1| ]�
n⩾1

𝔼[1n⩽T]

⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
Fubini
or
mon.conv.

𝔼[|X1| ]𝔼[[[[[[[[[[[[�
n⩾1

1n⩽T]]]]]]]]]]]]⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
def of T

𝔼[|X1| ]𝔼[T]<∞.

This shows that ST is integrable. A similar computation now using Fubini–Tonelli shows that

𝔼[ST]=𝔼[[[[[[[[[[[[�
n⩾1

Xn1n⩽T]]]]]]]]]]]]⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
Fub−Ton

�
n⩾1

𝔼[Xn1n⩽T]= �
n⩾1

𝔼[Xn]𝔼[1n⩽T]

=𝔼[X1]�
n⩾1

𝔼[1n⩽T]=𝔼[X1]𝔼[T]

where all the exchange of integrals and summations are justified via Fubini–Tonelli by the inte-
grability assumptions and the computation above with the absolute values. □

This theorem shows that sums (Sn)n⩾0 of i.i.d r.v. which are integrable and with mean zero satisfy

𝔼[ST]=S0

for all integrable stopping times T .
A natural question then is to characterise the class ℳ of stochastic processes (Xn)n⩾0 which are
adapted, integrable (i.e. Xn ∈L1(ℙ) for all n⩾0) and such that

𝔼[XT]=𝔼[X0], (1)

for all almost surely bounded stopping times T . A stopping time is almost surely bounded if
T ∈L∞(ℙ), i.e. it exists a constant K <∞ such that ℙ(|X|<K)=1.
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If we interpret one of such stochastic processes as the total gain in a game, then it represents a fair
game where there are no winning (or losing) stopping strategies.
Eq. (1) give a “global” characterisation of these “fair games”. Then we can relate this to a “local”
point of view which characterise the behaviour of the process at every time. The local char. is
easier to check.

Remark. Note that if T is a.s. bounded and (Xn)n⩾0 is integrable then also XT is integrable, indeed

XT = �
n⩾1

Xn1T =n,

and therefore

|XT | ⩽ �
n⩾1

|Xn|1T =n ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
a.s.

�
n=1

K

|Xn|1T =n ⩽ �
n=1

K

|Xn| ∈L1(ℙ)

where K is any number such that T ⩽ K a.s. and ∑n=1
K |Xn| is a finite sum of integrable r.v. and

therefore is integrable:

𝔼|XT | ⩽𝔼�
n=1

K

|Xn| ⩽ �
n=1

K

𝔼[|Xn|]<∞.

Lemma. An adapted and integrable process (Xn)n⩾0 satisfies (1) iff for all n⩾0 we have

𝔼[Xn+1|ℱn]=Xn.

We will do the proof on friday.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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