Lecture 9 · 11.5.2021 · 14:15-16:00 via Zoom

Last friday: stochastic process $(X_n)_{n\geqslant 0}$, $(\mathscr{F}_n)_{n\geqslant 0}$ filtration (e.g. increasing family of σ -algebras), adpted and previsible processes, and lastly the concept of stopping time. All of this in discrete time, i.e. when the time index n takes value in \mathbb{N} or $\mathbb{N}_0 = \mathbb{Z}^+$.

Recall a r.v. $T: \Omega \to \mathbb{N}_0^* = \mathbb{N}_0 \cup \{+\infty\}$ is a stopping time (wrt. to a given filtration $(\mathscr{F}_n)_{n\geqslant 0}$) iff for all $n \in \mathbb{N}_0^*$ we have $\{T \le n\} \in \mathscr{F}_n$ where $\mathscr{F}_\infty = \sigma(\mathscr{F}_n: n \geqslant 0)$.

Remark. We have always that $\{T \le +\infty\} = \Omega \in \mathcal{F}_{\infty}$, moreover if $\{T \le n\} \in \mathcal{F}_n$ for all $n \in \mathbb{N}_0$ then

$$\{T=+\infty\}=\cap_{n\geqslant 0}\{T\geqslant n\}\in\sigma((\mathscr{F}_n)_{n\geqslant 0})\in\mathscr{F}_{\infty}.$$

The σ -algebra \mathcal{F}_T of the stopping time T is defined as

$$\mathcal{F}_T := \{ A \in \mathcal{F} : A \cap \{ T \leq n \} \in \mathcal{F}_n \text{ for all } n \in \mathbb{N}_0^* \}.$$

(Exercise: prove that it is indeed a σ -algebra)

Proposition. Let S, T two stopping times

- *a)* If $S \leq T$ (i.e. pointwise for all $\omega \in \Omega$) then $\mathscr{F}_S \subseteq \mathscr{F}_T$;
- b) $S \wedge T := \min(S, T)$ and $S \vee T := \max(S, T)$ are again stopping times and

$$\mathscr{F}_{S \wedge T} = \mathscr{F}_T \cap \mathscr{F}_S, \qquad \mathscr{F}_{T \vee S} = \sigma(\mathscr{F}_T \cup \mathscr{F}_S);$$

c) If $(X_n)_{n\geqslant 0}$ is an adapted process and $T<\infty$, then

$$X_T \in \mathscr{F}_T$$

where $X_T(\omega) := X_{T(\omega)}(\omega)$ is the r.v. representing the process X observed at the random time T. (Note that we look at the process $(X_n)_{n\geqslant 0}$ as the function $X: \mathbb{N}_0 \times \Omega \to \mathbb{R}$ such that $X(n,\omega) = X_n(\omega)$, it is easy to show that this function is measurable from $\mathbb{N}_0 \times \Omega$ to \mathbb{R} because \mathbb{N}_0 is <u>countable</u>, then $X_T(\omega) = X(T(\omega), \omega)$ is again a measurable function as composition of measurable functions)

d) A r.v. Z is \mathcal{F}_T -measurable iff the process $(Z_n := Z \mathbb{1}_{\{T=n\}})_{n \in \mathbb{N}_0^*}$ is adapted. In this case we have the relation $Z = Z_T$.

Proof. Exercise.

All these properties justify the notation \mathcal{F}_T for the σ -algebra generated by stopping time T.

Example.

• If $T(\omega) = n$ for all $\omega \in \Omega$, then T is a stopping time. In particular every deterministic time n is a stopping time.

• If (E, \mathcal{E}) is a measure space and $A \in \mathcal{E}$ and $(X_n)_{n \ge 0}$ is an adapted process with values in (E, \mathcal{E}) then the entrance time in A for $(X_n)_{n \ge 0}$ defined as

$$T_A := \inf \{ n \ge 0 : X_n \in A \} : \Omega \to \mathbb{N}_0^*$$

with $\inf (\emptyset) = +\infty$, is a stopping time. Indeed note that

$$\{T_A \leq n\} = \bigcup_{k=0,\ldots,n} \underbrace{\{X_k \in A\}}_{\in \mathscr{F}_k} \in \sigma(\mathscr{F}_0,\ldots,\mathscr{F}_n) = \mathscr{F}_n$$

for all $n \in \mathbb{N}_0$. So T_A is indeed a stopping time.

• Let $(X_n)_{n\geq 0}$ an adapted real valued process then

$$T = \inf\{n \ge 0: X_{n+1} \ge 100\}$$

it is not necessarily a stopping time since in general $\{T = n\} \in \mathcal{F}_{n+1} \not\subseteq \mathcal{F}_n$. In general is just a random time, i.e. a random variable $\Omega \to \mathbb{N}_0^*$.

Using stopping times one can prove an interesting "impossibility" theorem.

Theorem. (Wald's identity) Let $(X_n)_{n\geqslant 1}$ an i.i.d. sequence of integrable real valued r.v.s. Let T be stopping time for the filtration $(\mathcal{F}_n)_{n\geqslant 0}$ generated by the $(X_n)_{n\geqslant 1}$ (i.e. $\mathcal{F}_n=\mathcal{F}_n^X=\sigma(X_1,\ldots,X_n)$ with $\mathcal{F}_0=\{\emptyset,\Omega\}$). Let

$$S_n = X_1 + \cdots + X_n$$

for $n \ge 1$ with $S_0 = 0$. Then the process $(S_n)_{n \ge 0}$ is adapted to $(\mathcal{F}_n)_{n \ge 0}$ and if $\mathbb{E}[T] < \infty$ (i.e. T is an integrable stopping time) then the r.v. S_T is integrable and

$$\mathbb{E}[S_T] = \mathbb{E}[T] \, \mathbb{E}[X_1]$$

in particular if $\mathbb{E}[X_1] = 0$ then $\mathbb{E}[S_T] = 0$.

Remark. This theorem can be interpreted as follows: in a fair game (i.e. a game with average gain $\mathbb{E}[X_n] = 0$ at every round) with independent repeated trials any reasonable strategy (modeled by a stopping time T) give zero average gain.

Remark. Note that if T = n then by linearity we have

$$\mathbb{E}[S_n] = \mathbb{E}[X_1 + \cdots + X_n] = n \,\mathbb{E}[X_1].$$

So Wald's identity says that this results also hold for general stopping times replacing n with $\mathbb{E}[T]$ on the r.h.s.

Remark. Let us consider the stopping time

$$T = \inf\{n \ge 0: S_n \ge S_0 + 100\},\$$

i.e. my strategy to stop is to quit the game when I gained 100 euros. On the set $\{T < \infty\}$ we have

$$S_T \geqslant S_0 + 100$$

so if $T < \infty$ a.s. we could expect that $\mathbb{E}[S_T] \geqslant \mathbb{E}[S_0 + 100] \geqslant 100$ even if $\mathbb{E}[X_1] = 0$ (for example). We have a problem here, since the theorem make us expect that $\mathbb{E}[S_T] = 0$. In order not to have a contradiction we are bound to conclude that $\mathbb{E}[T] = +\infty$, i.e. the stopping time is not integrable. Therefore we see from this example that the integrability hypothesis on T is essential.

Remark. The integrability hypothesis on T is essential from a technical point view since it guarantees that S_T is an integrable random variable as claimed. We will see it in the proof.

Proof. The first thing to check is integrability of S_T :

$$S_T(\omega) = \sum_{n>1} X_n(\omega) \mathbb{1}_{n \leqslant T(\omega)}, \qquad T(\omega) = \sum_{n>1} \mathbb{1}_{n \leqslant T(\omega)}$$

then

$$\mathbb{E}[|S_T|] \leqslant \mathbb{E}\left[\sum_{n \geqslant 1} |X_n| \, \mathbb{1}_{n \leqslant T}\right] \xrightarrow{\text{Fubini} \atop \text{or} \atop \text{mon conv}} \sum_{n \geqslant 1} \, \mathbb{E}[|X_n| \, \mathbb{1}_{n \leqslant T}]$$

Now note that $\{n \le T\} \in \mathcal{F}_{n-1}$ and that X_n is independent of $\mathcal{F}_{n-1} = \sigma(X_1, \dots, X_{n-1})$. Therefore $|X_n|$ is independent of $\mathbb{1}_{n \le T}$ and we have

$$\sum_{n\geqslant 1} \mathbb{E}[|X_n| \, \mathbbm{1}_{n\leqslant T}] \xrightarrow{\text{indep}} \sum_{n\geqslant 1} \mathbb{E}[|X_n| \,] \, \mathbb{E}[\,\mathbbm{1}_{n\leqslant T}] \xrightarrow{\text{ident.distr.}} \mathbb{E}[|X_1| \,] \sum_{n\geqslant 1} \mathbb{E}[\,\mathbbm{1}_{n\leqslant T}]$$

$$\xrightarrow{\text{Fubini}} \mathbb{E}[|X_1| \,] \, \mathbb{E}\left[\sum_{n\geqslant 1} \, \mathbbm{1}_{n\leqslant T}\right] \xrightarrow{\text{def of } T} \mathbb{E}[|X_1| \,] \, \mathbb{E}[T] < \infty.$$

This shows that S_T is integrable. A similar computation now using Fubini–Tonelli shows that

$$\mathbb{E}[S_T] = \mathbb{E}\left[\sum_{n \ge 1} X_n \mathbb{1}_{n \le T}\right] \xrightarrow{\text{Fub-Ton}} \sum_{n \ge 1} \mathbb{E}[X_n \mathbb{1}_{n \le T}] = \sum_{n \ge 1} \mathbb{E}[X_n] \mathbb{E}[\mathbb{1}_{n \le T}]$$
$$= \mathbb{E}[X_1] \sum_{n \ge 1} \mathbb{E}[\mathbb{1}_{n \le T}] = \mathbb{E}[X_1] \mathbb{E}[T]$$

where all the exchange of integrals and summations are justified via Fubini–Tonelli by the integrability assumptions and the computation above with the absolute values.

This theorem shows that sums $(S_n)_{n\geq 0}$ of i.i.d r.v. which are integrable and with mean zero satisfy

$$\mathbb{E}[S_T] = S_0$$

for all integrable stopping times T.

A natural question then is to characterise the class \mathcal{M} of stochastic processes $(X_n)_{n\geq 0}$ which are adapted, integrable (i.e. $X_n \in L^1(\mathbb{P})$ for all $n \geq 0$) and such that

$$\mathbb{E}[X_T] = \mathbb{E}[X_0],\tag{1}$$

for all almost surely bounded stopping times T. A stopping time is almost surely bounded if $T \in L^{\infty}(\mathbb{P})$, i.e. it exists a constant $K < \infty$ such that $\mathbb{P}(|X| < K) = 1$.

If we interpret one of such stochastic processes as the total gain in a game, then it represents a fair game where there are no winning (or losing) stopping strategies.

Eq. (1) give a "global" characterisation of these "fair games". Then we can relate this to a "local" point of view which characterise the behaviour of the process at every time. The local char. is easier to check.

Remark. Note that if T is a.s. bounded and $(X_n)_{n\geqslant 0}$ is integrable then also X_T is integrable, indeed

$$X_T = \sum_{n \geqslant 1} X_n \, \mathbb{1}_{T=n},$$

and therefore

$$|X_T| \leq \sum_{n \geq 1} |X_n| \, \mathbbm{1}_{T=n} = \sum_{a.s.}^K |X_n| \, \mathbbm{1}_{T=n} \leq \sum_{n=1}^K |X_n| \in L^1(\mathbb{P})$$

where *K* is any number such that $T \le K$ a.s. and $\sum_{n=1}^{K} |X_n|$ is a finite sum of integrable r.v. and therefore is integrable:

$$\mathbb{E}|X_T| \leqslant \mathbb{E}\sum_{n=1}^K |X_n| \leqslant \sum_{n=1}^K \mathbb{E}[|X_n|] < \infty.$$

Lemma. An adapted and integrable process $(X_n)_{n\geq 0}$ satisfies (1) iff for all $n\geq 0$ we have

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$$
.

We will do the proof on friday.