
Guile and Guix Days in Strasbourg, June 21–22 2019

Massimiliano Gubinelli

GNU TeXmacs 2/38

� Visual structured editor: WYSWYG & WYSWYM

� Inspired by TEX and EMACS

� High-quality typesetting algorithms (including microtypography)

� Special features for mathematical typesetting and input

� Support for interactive sessions: Scheme, Python, R, Octave, Maxima, Axiom, Mathemagix
(and other CAS).

� Multi-platform: Unix, MacOS, Windows (via QT)

� Own format (XML like). Native output to PDF and PS. Export to LATEX, HTML

� Internal image editor, interfaces to SVN and GIT, versioning tool, database tool, encryption
of documents.

� Website and documentation written in TeXmacs

Gallery

The legacy X11 backend

The QT backend, high quality typesetting

Structured editing, high quality math typesetting

Presentation mode

Panorama mode

Graphics editor

Microtypography, synthetic math fonts

Interfaces to external packages (here DraTEX)

Interfaces to external packages (here MATHEMAGIX and MAXIMA)

Support for oriental scripts

Development 14/38

� Started in 1998 by JORIS VAN DER HOEVEN

• v0.2.3β released 26 Oct 1999

• v1.0 (2002)

• QT backend in v1.0.7 (2008)

• native PDF support in v1.99.1 (2013)

• currently version 1.99.9 (soon 2.1)

� Written in C++ (~300.000 loc) and SCHEME (~150.000 loc) (from [openhub]).

� Fully modular, external dependencies (mostly) isolated via tight interfaces.

� Two UI backends: legacy X11 with custom widget library, modern QT backend (cross-plat-
form support).

� GNU Guile as extension language. C++ export basic manipulation routines and few
internal datatypes.

Some of the (current) developers

TeXmacs' content model 16/38

All TEXMACS documents or document fragments can be thought of as trees.

For instance, the tree

with

mode math concat

x +y + frac

1 2

+ sqrt

y + z

typically represents the formula

x +y +
1
2
+ y +z
p

External representations 17/38

Serialization of TeXmacs documents without loss of informations

• TEXMACS format

<with|mode|math|x+y+<frac|1|2>+<sqrt|y+z>>

• XML format

<frac><tm-arg>1</tm-arg><tm-arg>2</tm-arg></frac>+<sqrt>y+z</
sqrt>

• SCHEME format

(with "mode" "math" (concat "x+y+" (frac "1" "2") "+" (sqrt "y+z")))

Typesetting 18/38

Typesetting process converts TeXmacs trees into boxes:

tree tree boxes
evaluation typesetting

The typesetting primitives are designed to be very fast and they are built-in into the editor:

e.g. typesetting primitives for horizontal concatenations (concat), page breaks (page-break), math-
ematical fractions (frac), hyperlinks (hlink), and so on.

The rendering of many of the primitives may be customized through the built-in environment
variables.

e.g. the environment variable color specifies the current color of objects, par-lest the current lest
margin of paragraphs, etc.

The stylesheet language allows the user to write new primitives (macros) on top of the built-
in primitives.

Contains primitives for defining macros, conditional statements, computations, delayed execution,
etc. and a special extern tag to inject SCHEME expressions in order to write macros.

Macros 19/38

Evaluation of TeXmacs trees proceeds by reduction of the primitives, essentialy by evaluation
of macro applications.

hassignjhellojhmacrojnamejHello name, how are you today?ii

Macros have editable input fields. Examples here below (activate the macros):

hassignjhellojhmacrojnamejHello name, how are you today?ii

hhellojdsdjskjdsi

hassignjseqjhmacrojvalj(val1,…,valn)ii

hseqj f i= hseqjgi

GUILE as extension language 20/38

TeXmacs is extendable and customizable in various ways:

� GUILE embedded as extension and scripting language

� A plugin system allows asyncronous communication with external programs

� Mechanism to dynamically load external code (via C interface)

GUILE is easy to embed and provides a reasonably fast implementation of SCHEME.

Why SCHEME?

1. Allows to mix programs and data in a common framework.

2. Allows to customize the language itself, by adding new programming constructs.

3. Allows to write programs on a very abstract level.

Menus 21/38

(menu-bind file-menu
("New" (new-buffer))
("Load" (choose-file load-buffer "Load file" ""))
("Save" (save-buffer))
...)

can be easily extended from user code:

(menu-bind insert-menu
(former)
���
(-> "Opening"

("Dear Sir" (insert "Dear Sir,"))
("Dear Madam" (insert "Dear Madam,")))

(-> "Closing"
("Yours sincerely" (insert "Yours sincerely,"))
("Greetings" (insert "Greetings,"))))

Some more GUI 22/38

Keybindings

(kbd-map
("D e f ." (make 'definition))
("L e m ." (make 'lemma))
("P r o p ." (make 'proposition))
("T h ." (make 'theorem)))

The file my-init-buffer.scm is executed every time a buffer is loaded, it allows some specific
customizations. For example:

(if (not (buffer-has-name? (current-buffer)))
(begin

(init-style "article")
(buffer-pretend-saved (current-buffer))))

(if (not (buffer-has-name? (current-buffer)))
(make-session "maxima" (url->string (current-buffer))))

Scheme invocation 23/38

SCHEME commands can be invoked interactively (like in EMACS) using the ⌘⌃X shortcut.

A SCHEME session is started using the Insert→Session→Scheme menu item:

scheme] (define (square x) (* x x))

scheme] (square 1111111)

scheme] (kbd-map ("h i ." (insert "Hi there!")))

scheme] ;; try typing ``hi.''

SCHEME commands can be invoked from the command line:

texmacs text.tm -x "(print)" -q

Or scheme statement executed from inside TeXmacs macros:

hexternj(lambda (x) `(concat "Hallo " ,x))jPieti

Scheme invocation 23/38

SCHEME commands can be invoked interactively (like in EMACS) using the ⌘⌃X shortcut.

A SCHEME session is started using the Insert→Session→Scheme menu item:

scheme] (define (square x) (* x x))

scheme] (square 1111111)

scheme] (kbd-map ("h i ." (insert "Hi there!")))

scheme] ;; try typing ``hi.''

SCHEME commands can be invoked from the command line:

texmacs text.tm -x "(print)" -q

Or scheme statement executed from inside TeXmacs macros:

hexternj(lambda (x) `(concat "Hallo " ,x))jPieti

Scheme invocation 23/38

SCHEME commands can be invoked interactively (like in EMACS) using the ⌘⌃X shortcut.

A SCHEME session is started using the Insert→Session→Scheme menu item:

scheme] (define (square x) (* x x))

scheme] (square 1111111)

scheme] (kbd-map ("h i ." (insert "Hi there!")))

scheme] ;; try typing ``hi.''

SCHEME commands can be invoked from the command line:

texmacs text.tm -x "(print)" -q

Or scheme statement executed from inside TeXmacs macros:

hexternj(lambda (x) `(concat "Hallo " ,x))jPieti

Scheme invocation 23/38

SCHEME commands can be invoked interactively (like in EMACS) using the ⌘⌃X shortcut.

A SCHEME session is started using the Insert→Session→Scheme menu item:

scheme] (define (square x) (* x x))

scheme] (square 1111111)

scheme] (kbd-map ("h i ." (insert "Hi there!")))

scheme] ;; try typing ``hi.''

SCHEME commands can be invoked from the command line:

texmacs text.tm -x "(print)" -q

Or scheme statement executed from inside TeXmacs macros:

hexternj(lambda (x) `(concat "Hallo " ,x))jPieti

Scheme invocation 23/38

SCHEME commands can be invoked interactively (like in EMACS) using the ⌘⌃X shortcut.

A SCHEME session is started using the Insert→Session→Scheme menu item:

scheme] (define (square x) (* x x))

scheme] (square 1111111)

scheme] (kbd-map ("h i ." (insert "Hi there!")))

scheme] ;; try typing ``hi.''

SCHEME commands can be invoked from the command line:

texmacs text.tm -x "(print)" -q

Or scheme statement executed from inside TeXmacs macros:

hexternj(lambda (x) `(concat "Hallo " ,x))jPieti

The tm-define macro 24/38

Contextual overloading

Function definition can depend on several run-time conditions (e.g. editor mode). This allows
to develop modular user interfaces.

(tm-define (hello) (insert "Hello"))
(tm-define (hello) (:require (in-math?)) (insert-go-to "hello()" '(6)))

(tm-define (hello)
(if (in-math?) (insert-go-to "hello()" '(6)) (former)))

(tm-define (my-replace what by)
default-implementation)

(tm-define (my-replace what by)
(:require (== what by))
(noop))

Meta informations 25/38

(tm-define (square x)
(:synopsis "Compute the square of @x")
(:argument x "A number")
(:returns "The square of @x")
(* x x))

Used via e.g. (help square). Allows for interactive input of parameters: typing ⌘⌃⇧X fol-
lowed by square and ↩ and you will be prompted for “A number” on the footer (or in a dialog).
Tab-completion.

(tm-property (choose-file fun text type)
(:interactive #t))

to indicate interactive commands in menu items like:

("Load" (choose-file load-buffer "Load file" ""))

More meta 26/38

Check-marks for menu items:

(tm-define (toggle-session-math-input)
(:check-mark "v" session-math-input?)
(session-use-math-input (not (session-math-input?))))

(tm-define mouse-unfold
(:secure #t)
(with-action t

(tree-go-to t :start)
(fold)))

∘ This is a fold/unfold environment

More meta 26/38

Check-marks for menu items:

(tm-define (toggle-session-math-input)
(:check-mark "v" session-math-input?)
(session-use-math-input (not (session-math-input?))))

(tm-define mouse-unfold
(:secure #t)
(with-action t

(tree-go-to t :start)
(fold)))

• This is a fold/unfold environment

It allows to toggle the display of its content by switching the tag from fold to unfold and
back.

SCHEME representation TeXmacs content 27/38

• Passive trees (stree)

a2

b + c

is typically represented by

(frac (concat "a" (rsup "2")) "b+c")

convenient to manipulate content directly using standard SCHEME routines on lists.

• Active trees (tree). TEXMACS internal C++ type tree which is exported to SCHEME via the
glue. Keeps track of the position of the tree inside the global document tree and can be
used to programmatically modify documents.

• Hybrid representation (content). an expression of the type content is either a string,
a tree or a list whose first element is a symbol and whose remaining elements are other
expressions of type content.

scheme] (tree-set! t '(document "First line." "Second line."))

scheme] (tree-set t 1 "New second line.")

scheme] (tree-set t 0 `(strong ,(tree-ref t 0)))

A full example 28/38

(tm-define (swap-numerator-denominator t)
(:require (tree-is? t 'frac))
(with p (tree-cursor-path t)

(tree-set! t `(frac ,(tree-ref t 1) ,(tree-ref t 0)))
(tree-go-to t (cons (- 1 (car p)) (cdr p)))
(tree-focus t)))

To be called as (swap-numerator-denominator (focus-tree)), or just add it as a struc-
tured variant to frac

(tm-define (variant-circulate t forward?)
(:require (tree-is? t 'frac))
(swap-numerator-denominator t))

Regular expressions 29/38

TEXMACS implements the routines match? and select for matching regular expressions and
selecting subexpressions along a “path”. For instance: in the current buffer search all expres-
sions of the form

a
1+ b

p
where a and b are general expressions:

Scheme] (select (buffer-tree) '(:* (:match (frac :%1 (concat "1+" (sqrt :%1))))))

More scheme 30/38

User preferences

(define-preferences
("Gnu's hair color" "brown" notify-gnu-hair-change)
("Snail's cruising speed" "1mm/sec" notify-Achilles))

New data formats and converters

(define-format blablah
(:name "Blablah")
(:suffix "bla"))

(converter blablah-file latex-file
(:require (url-exists-in-path? "bla2tex"))
(:shell "bla2tex" from ">" to))

When a format can be converted from or into TEXMACS, then it will automatically appear into
the File→Export and File→Import menus. Similarly, when a format can be converted to POST-
SCRIPT, then it also becomes a valid format for images. TEXMACS also attempts to combine
explicitly declared converters into new ones.

Dialogues & Widgets 31/38

Dialogues

Scheme] (user-ask "First number:"
(lambda (a)

(user-ask "Second number:"
(lambda (b)

(set-message (number->string (* (string->number a)
(string->number b)))

"product")))))

Widgets

Scheme] (tm-widget (example3)
(hlist

(bold (text "Hello"))
>>>
(inert (explicit-buttons ("world" (display "!\n"))))))

Scheme] (top-window example3 "Some text")

Scheme]

tree-view 32/38

Scheme] (define t
(stree->tree
'(root

(library "Library" "$TEXMACS_PIXMAP_PATH/tm_german.xpm" 01
(collection "Cool stuff" 001)
(collection "Things to read" 002)
(collection "Current work" 003

(collection "Forever current" 004)
(collection "Read me" 005))))))

Scheme] (define dd
(stree->tree
'(list (library DisplayRole DecorationRole UserRole:1)

(collection DisplayRole UserRole:1))))

Scheme] (define (action clicked cmd-role . user-roles)
(display* "clicked= " clicked ", cmd-role= " cmd-role

", user-roles= " user-roles "\n")))

Scheme] (tm-widget (widget-library)
(resize ("150px" "400px" "9000px") ("300px" "600px" "9000px")

(vertical
(bold (text "Testing tree-view"))
===
(tree-view action t dd))))

Scheme] (top-window widget-library "Tree View")

Scheme]

Forms 33/38

Scheme] (tm-widget (form3 cmd)
(resize "500px" "500px"

(padded
(form "Test"

(aligned
(item (text "Input:")

(form-input "fieldname1" "string" '("one") "1w"))
(item === ===)
(item (text "Enum:")

(form-enum "fieldname2" '("one" "two" "three") "two" "2w"))
(item === ===)
(item (text "Choice:")

(form-choice "fieldname3" '("one" "two" "three") "one"))
(item === ===)
(item (text "Choices:")

(form-choices "fieldname4"
'("one" "two" "three")
'("one" "two"))))

(bottom-buttons
("Cancel" (cmd "cancel")) >>
("Ok"

(display* (form-fields) " -> " (form-values) "\n")
(cmd "ok")))))))

Scheme] (dialogue-window form3 (lambda (x) (display* x "\n")) "Test of form3")

Scheme]

Bibliography styles 34/38

New styles can be defined via SCHEME modules like example.scm defined as follows:

(texmacs-module (bibtex example)
(:use (bibtex bib-utils)))

(bib-define-style "example" "plain")

(tm-define (bib-format-date e)
(:mode bib-example?)
(bib-format-field e "year"))

This example style behaves in a similar way as the plain style, except that all dates are for-
matted according to our custom routine. Styles are stored in $TEXMACS_PATH/progs/bibtex
and referred to as e.g. tm-example (for when used in a TEXMACS document.

Graphics 35/38

Graphics objects are also part of the TeXmacs format and can be manipulated programmati-
cally from Scheme.

Actually, part of the graphics editor is written in Scheme.

Scheme] (stree->tree
'(with gr-geometry (tuple "geometry" "200px" "100px" "center")

color "blue"
(graphics (text-at "TeXmacs" (point "-2.5" "-1"))

(point 0 -1)
(line (point 0 0) (point 0 1)

(point 1 1) (point 1 0) (point 0 0)))))

Scheme]

Graphics 35/38

Graphics objects are also part of the TeXmacs format and can be manipulated programmati-
cally from Scheme.

Actually, part of the graphics editor is written in Scheme.

Scheme] (stree->tree
'(with gr-geometry (tuple "geometry" "200px" "100px" "center")

color "blue"
(graphics (text-at "TeXmacs" (point "-2.5" "-1"))

(point 0 -1)
(line (point 0 0) (point 0 1)

(point 1 1) (point 1 0) (point 0 0)))))

TeXmacs

Scheme]

The future of TeXmacs 36/38

Many improvements ahead

� Version 2.1 to be released soon

� Update the backend to QT 5 (currently QT 4.8) [almost there]

� Adapt the scheme code to run on GUILE 3. (currently GUILE 1.8) [WIP]

� New website, documentations, videos [WIP]

� JUPYTER plugins (protocol to interface to many computational kernels, e.g. PYTHON, JULIA,
R, HASKELL, GUILE, . . .)

� Improvements to the styling of presentations and posters [WIP]

� More documentation, more tutorial, grow community [Stackexchange proposal]

� Collaboration tools

� Bibliography management with ZOTERO

Hacking TeXmacs 37/38

Many opportunities for contributions for all tastes

� From the outside

x Write and review documentations, tutorials, videos, improve community, advertise

x Develop plugins to your preferred system or to add your preferred feature, e.g.: literate programming tools
with beautyful output

x Write new document styles, templates, presentation styles, poster styles

x Font tuning

� Hack the C++ code

x Understand the code and write developer documentation

x Improve the QT backend, fix bugs, add features, improve stability, better image handling and PDF export of
TeXmacs features

x Write new backends (COCOA), port to tablets or to the browser

� Hack SCHEME

x Help porting to GUILE 3, improve speed

x fix bugs, review code, add new cool features

Happy TeXmacsing!

made with GNU TeXmacs

