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Abstract

Image generation is a task of primary importance in the area of sig-
nal processing. Given a signal representation Φx, the aim is to exploit
its statistical properties by drawing a sample (Φx)′ and then create
an image using an inversion of Φ. Consequently, gaining a deeper in-
sight into the statistical behavior of the embedding is highly attractive.

We begin by getting access to a signal representation which pro-
duces remarkable results in digit classification tasks, called the scat-
tering transform, invented by S. Mallat and his team. During the
development in chapter 2, we will pass by the Fourier transform as
well as wavelets which build the foundation of the scattering trans-
form. The latter is computed by iterating on wavelet convolutions,
followed by non-linear modulus operators and finalized by an aver-
aging. In chapter 3, we will summarize desireable characteristics of
the scattering transform such as contractivity, translation invariance
or stability with respect to the action of diffeomorphisms. Further, the
structural similarities of the scattering transform to deep convolutional
neural networks are discussed. Turning our view towards the statistical
properties of the scattering coefficients in chapter 4, we compare their
distribution to its dependence on the transformed image. We gener-
ate images as realizations of random variables and evaluate numerical
experiments by making use of the Kolmogorov-Smirnov test as well as
a discussion of the empirical moments. Since taming a distribution
by Gaussianization is a common goal in signal processing, we compare
the distribution of scattering representations to the one of a Gaussian
in several environments. Therefore, we allow a whitening of the scat-
tering vector by its covariance as well as a normalization after rotation.

It turns out that each scattering coefficient follows a particular
law, no matter what kind of image is used as input. Further, the
hypothesis, that the distribution is Gaussian, can be rejected since
scattering coefficients show a slightly right-skewed behavior. But still
the law is reasonably close to a normal distribution, by far closer than
the one of a Fourier-modulus or wavelet representation. This allows
to remove the skewness for the majority of scattering coefficients by
rotation.
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1 Image Classification Tasks
A fundamental topic in the area of image processing is the task of classifica-
tion. Consider one-channel images as vectors x ∈ Γ ⊆ RD. Assume a set of
images {x1, ..., xT } and a map f connecting each image with its class index
c ∈ C to be given. The aim is to approximate f for images x which are not
assigned to a class yet, given the set of training data {xi, f(xi)}i≤T . The
case of handwritten digits which should be classified can be considered as an
illustrating example. Usually, Γ is a high-dimensional subset of RD, often
of dimension larger than 106, cf. [39], whereas there is no hope for having
training data in the same order, calling directly the curse of dimensionality.
Hence, classification of images in high dimensional spaces demands a sens-
itive understanding of the signals as well as an appropriate monitoring of
variability in the data. A dimension reduction in suitable directions can fur-
ther help to overcome the curse of dimensionality. This motivates the search
of a variable Φ(x) which is supposed to simplify the classification task. A
naturally arising question is if and how a suitable signal representation Φ(x)
can be found, such that for all images x, x′ ∈ Γ the implication

f(x) 6= f(x′)⇒ Φ(x) 6= Φ(x′)

holds. As a first remark, having a margin condition on Φ of the form

∃ε > 0 ∀x, x′ ∈ Γ s.t. f(x) 6= f(x′) :
∥∥Φ(x)− Φ(x′)

∥∥ ≥ ε
ensures the distinguishability, cf. [39]. Considering images x as discretiza-
tions of functions x(t) for a spatial coordinate t ∈ R2, the problem of finding
a suitable representation Φ(x) extends to the task of finding an operator Φ
acting on x(t) with the aim of gaining valuable information concerning the
classification.

When determining reasonable requirements on the operator Φ, first, in
order to avoid small perturbations on images to create a large discrepancy
in the target representation, the operator should be non-expansive, i.e.∥∥Φx− Φx′

∥∥ ≤ ∥∥x− x′∥∥ .

Further, since translation does usually not affect the class index, the operator
should be translation invariant. Referring to [11, 38], we define translation
invariance as follows: Given an operator Lc such that Lcx(t) = x(t− c) for
c ∈ Rd and x ∈ L2(Rd), then Φx is translation invariant if

ΦLcx = Φx

for all c ∈ Rd and all x ∈ L2(Rd). This becomes more transparent when
taking the example of the position of a digit in an image as illustrated in
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Figure 1: Translation of a handwritten digit ’two’

figure 1 into account, where all images show the exactly same object and
should consequently be assigned to one class.

Additionally, the class index of an image is usually also uneffected by
small deformations as displayed in figure 2. Therefore, the operator is sup-
posed to satisfy a stability criterion with respect to the action of diffeo-
morphisms.

Figure 2: Deformation of a handwritten digit ’two’

We consider diffeomorphisms τ ∈ Diff(Rd). For a function x ∈ L2(Rd),
the operator Lτ acts on x by Lτx(t) = x(t − τ(t)). Further, let ‖τ‖ be a
metric on the space of diffeomorphisms. Referring to [11, 38], stability with
respect to these deformations is given by a Lipschitz continuity condition
with respect to this metric, i.e.

‖Φx− ΦLτx‖ ≤ C ‖x‖ ‖τ‖

for all x ∈ L2(Rd) and all τ ∈ Diff(Rd). When regarding C2-diffeomorphisms
τ , we denote by |τ(t)| the Euclidean norm on Rd and by |∇τ(t)| be the su-
premum norm of the Jacobian ∇τ(t). For the Hessian tensor Hτ(t), the
supremum norm is denoted by |Hτ(t)|. The norm ‖τ‖ to measure the de-
formation over a compact Ω ⊆ Rd is then given by

‖τ‖ = sup
t∈Ω
|τ(t)|+ sup

t∈Ω
|∇τ(t)|+ sup

t∈Ω
|Hτ(t)| .

Given a translation-invariant operator Φ, we define Lipschitz-continuity to
the action of C2-diffeomorphisms as follows: For any compact Ω ⊆ Rd there
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is a constant C such that for any function x ∈ L2(Rd) supported in Ω and
any diffeomorphism τ ∈ C2(Rd) the following holds:

‖Φx− ΦLτx‖ ≤ C ‖x‖
(

sup
t∈Ω
|∇τ(t)|+ sup

t∈Ω
|Hτ(t)|

)
.

As a side remark, due to the translation invariance, the supremum norm of
τ is not occuring in the bound on the right-hand side. Further, also stability
with respect to scaling phenomena and rotation can be taken into account.

All these conditions lead to the consequence that encoding the important
information of images in a representation Φx on the one hand and getting
rid of superfluous variability on the other hand is one of the main difficulties
when tackling the task of image classification. Therefore, in chapter 2, a
suitable representation Φx is developed whose characteristics are regarded
in chapter 3. Statistical properties of this representation are investigated
in chapter 4 to form a basis for a possible application in image generation
environments as in [2].
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2 From Fourier to Scattering
In order to obtain a transform that satisfies the desired characteristics as
translation invariance or stability with respect to deformations, a reason-
able approach can be found in tackling the problem from a frequency point
of view. Therefore, we begin with a short review of the most important
properties of the Fourier transform in this chapter and progress by introdu-
cing wavelets as the corner-stone of the wavelet transform. Further, we use
wavelets as the foundation of the scattering transform at the end.
Let us start by fixing some notation, cf. [19]. We use

∫
for the integral over

a whole domain Ω (in our cases mostly Rd) rather than for the indefinite in-
tegral. For functions x, y ∈ L1(Rd) we denote by x?y(t) =

∫
Rd x(u)y(t−u)du

the convolution of x and y. For complex-valued x, y ∈ L2(Rd), the scalar
product is denoted as < x, y >=

∫
x(t)y(t)dt.

2.1 Frequency Analysis via Fourier Transform

When talking about frequency analysis, a natural approach can be found
in the Fourier transform. Given the canonical scalar product defined by
< s, t > :=

∑d
k=1 sktk =: s · t for vectors s, t ∈ Rd, we know that for all

functions x ∈ L1(Rd) and all ξ ∈ Rd, the map t 7→ x(t)e−i<t,ξ> also is in
L1(Rd). This holds true since |x(t)| = |x(t) exp(−i < t, ξ >)|. Hence the
Fourier transform can be defined as follows.

Definition 1. (Fourier Transform) [19]
Given a function x ∈ L1(Rd) and ξ ∈ Rd, the Fourier transform of x is
given by

x̂(ξ) := 1
(2π)d/2

∫
Rd
x(t)e−i<t,ξ>dt

where x̂ : Rd → C.

Referring to [18, 19, 43, 49], the Fourier transform satisfies a well-known
class of beneficial properties some of which are quickly reviewed in the fol-
lowing useful theorems.

At first, there exists the Riemann-Lebesgue-Lemma for the Fourier trans-
form.

Theorem 2. (Riemann-Lebesgue-Lemma)
Let x ∈ L1(Rd). Then

lim
|ξ|→∞

x̂(ξ) = 0 .

Further, we would like to summarize some useful properties.
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Theorem 3. (Properties of the Fourier Transform)
Let x̂, ŷ describe the Fourier transforms of x, y ∈ L1(Rd). Then the following
statements hold:

• ξ 7→ x̂(ξ) is continuous

• x̂ is uniformly bounded for all ξ in the sense that |x̂(ξ)| ≤ 1
(2π)d/2 ‖x‖1

• x̂ ? y = (2π)d/2x̂ŷ

• the functions x̂y and xŷ are integrable and
∫
Rd x(t)ŷ(t)dt =

∫
Rd x̂(ξ)y(ξ)dξ

• if ∂x
∂tj

exists and is integrable, then ∂̂x
∂tj

(ξ) = iξj x̂(ξ)

As a consequence, the Fourier transform defines a map from L1(Rd) to
C0(Rd), where C0(Rd) denotes the set of continuous functions vanishing at
infinity.

The construction of the extension of the Fourier transform to the space of
square-integrable functions is skipped here in favor of mentioning theorems
for the energy conservation and for the inversion of the Fourier transform.

Theorem 4. (Parseval’s Theorem)
Let x ∈ S(Rd), where S(Rd) denotes the Schwartz space of rapidly decreasing
functions, then ∫

Rd
|x(t)|2 dt =

∫
Rd
|x̂(ξ)|2 dξ .

Theorem 5. (Inversion of the Fourier Transform)
Let x ∈ L1(Rd) such that x̂ ∈ L1(Rd). Then for all t ∈ Rd, x can be
reconstructed from its Fourier transform via

x(t) = 1
(2π)d/2

∫
Rd
x̂(ξ)ei<ξ,t>dξ .

Next, we analyze if the Fourier transform satisfies the desired properties
introduced in section 1. First, consider the translation invariance property.
Therefore, let Lc for c ∈ Rd be the operator that translates a function by c,
i.e.

Lcx(t) = x(t− c)

for x ∈ L2(Rd). When computing the Fourier transform of a function trans-
lated by c, applying a simple change of variables leads to the following
equation, cf. [18, 19, 43]:

L̂cx(ξ) = 1
(2π)d/2

∫
Rd
x(t− c)e−i<t,ξ>dt = 1

(2π)d/2
∫
Rd
x(v)e−i<v+c,ξ>dv =

= e−i<c,ξ>
1

(2π)d/2
∫
Rd
x(v)e−i<v,ξ>dv = e−i<c,ξ>x̂(ξ)
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As a consequence, the Fourier transform as such is not invariant under
translation. Taking the absolut value of the Fourier transform leads to a
representation of the function x which is translation invariant: [1]

∣∣∣L̂cx(ξ)
∣∣∣ =

∣∣∣e−i<c,ξ>x̂(ξ)
∣∣∣ = |x̂(ξ)|

Disadvantageously, the Fourier transform is accompanied by a couple of
drawbacks, which are explained further now.

In the first place, the Fourier transform does not allow any spatial loc-
alization at all as illustrated in the following. To see this, consider the one
dimensional case d = 1 and the corresponding time-frequency domain. Note
that the notion of spatial domain and real space are used equivalently as
well as frequency domain and Fourier space. Define by

D(x) :=
∫
t2 |x(t)|2 dt

the second moment of the function |x(t)|2 around 0 as in [21, 37, 43, 48].
Then we can state the following principle that relates a function with its
Fourier transform.

Theorem 6. (Uncertainty principle) [43]
For an absolutly continuous, complex-valued function x ∈ L2(R) such that
t · x(t) and x′(t) are both in L2(R), the following uniform bound holds:

D(x) ·D(x̂) ≥ 1
16π2 .

Equality can only be achieved in the case of x(t) = C1e
−π t

2
σ2 for some

σ > 0 and C1 =
4√2√
σ
. Then the Fourier transform of x can be computed to

be x̂(ξ) = σC1e
−πσ2ξ2 . [43]

When generalizing to the d-dimensional case, the lower bound is determ-
ined by d2

16π2 and the integrals on the left hand side are taken over Rd.

For any function x we would like to have highly accurate spatial and
frequency information. As a consequence of the uncertainty principle, if
we wanted to reduce the variability in the frequency domain, the accuracy
in the spatial variable becomes worse. In the limit, where we have perfect
localization in frequency, we cannot count on any localization in the spatial
domain anymore. This causes severe problems in classification tasks, since
here we are not only interested in the occuring frequencies, but also their
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position of appearance. Consider the order of digits as an example, where
91 is different to 19.

To tackle another characteristic, the global behavior of the Fourier trans-
form is highly dependent on the behavior of the function in small open sets,
cf. [43]. Changing the function values in a small area might have a heavy
impact on the Fourier representation.

Additionally, the Fourier transform provides instabilities with respect to
deformation in high frequencies. Similar to the translation case, let Lτ be
the operator that deforms a function by a small diffeomorphism τ satisfying
‖∇τ‖∞ = supt∈Rd |∇τ(t)| < 1, i.e.

Lτx(t) = x(t− τ(t)) .

Using this, we want to have a look at the following example in order to
illustrate the instabilities.

Example 7.
Let us consider the one dimensional case and let τ be given by τ(t) = εt,
where 0 < ε � 1. As a consequence, ‖∇τ‖∞ = supt∈R |∇τ(t)| = ε < 1.
Now, again by a change of variables, the Fourier transform of Lτx turns out
to satisfy the following:

L̂τx(ξ) = 1√
2π

∫ ∞
−∞

x(t− τ(t))e−iξtdt = 1√
2π

∫ ∞
−∞

x((1− ε)t)e−iξtdt =

= 1√
2π

∫ ∞
−∞

x(u)e−iξ
u

1−ε
1

1− εdu = 1
1− ε x̂

(
ξ

1− ε

)
For low frequencies, i.e. ξ small, we have that ξ

1−ε ≈ ξ. Hence, the
Fourier transform of the deformed function L̂τx(ξ) is close to the Fourier
transform of the original function x̂(ξ). In contrast, for high frequencies, i.e.
ξ large, ξ

1−ε > ξ. This leads to the observation that L̂τx(ξ) can be far apart
from x̂(ξ).

Summing up, the deformation with a small diffeomorphism can intro-
duce a large deviation in the corresponding Fourier representations. In other
words, the Fourier transform is very unstable in high frequencies. [1]

But equivalently to the localization discussion before, in classification
problems, a small deformation does usually not really affect the class index
of the input. Consider for example handwritten digits. Even when written
by the same person, these digits will never look identical, but rather slightly
modified and deformed. Nonetheless, the same digit still belongs to the
same class and should therefore be assigned to the same class index. A lack
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of control over these deformations might have a heavy impact on the class
index here. Hence, satisfying the desired stability conditions with respect
to these small deformations is mandatory for the representation Φx.

2.2 Short Time Fourier Transform

Naturally, the question arises how the mentioned problems or disadvantages
can be eradicated. Concerning the lack of spatial localization, we will next
give a quick intuition-gaining overview of the so-called Short Time Fourier
Transform (STFT), similar to [17, 21, 29, 37], focusing on its decomposition
of the time-frequency domain in order to control the localizaton lack intro-
duced by the uncertainty principle. Note that we restrict to the case of one
dimension.

The main idea is to establish a window function w of compact support
of length T . Further, the window function should be normalized such that∫
w(u)du = 1. Having a look at a function x ∈ L2(R) through the window

function w allows to compute

x̃(ξ, t0) := 1√
2π

∫ ∞
−∞

w(t− t0)x(t)e−iξtdt .

This is what can be called a Short Time Fourier Transform. The support
of the window function determines the accuracy of the STFT in the spatial
domain, the uncertainty principle specifies the corresponding resolution in
the frequencies.

Now, consider again the translation operator Lc. Then by a short com-
putation, we can compare the STFT of the translated version of a function
to the STFT of the original one.

√
2π
∣∣∣L̃cx(ξ, t0)

∣∣∣ =
∣∣∣∣∫ x(t− c)w(t− t0)e−iξtdt

∣∣∣∣ =

=
∣∣∣∣∫ x(v)w(v − (t0 − c))e−iξ(v+c)dv

∣∣∣∣ =

=
∣∣∣∣e−iξc ∫ x(v)w(v − (t0 − c))e−iξvdv

∣∣∣∣ =
√

2π |x̃(ξ, t0 − c)|

Hence, shifting a function x by some c is equivalent to shifting the
window function w by the same amount. Even further, for c satisfying
|c| � T , this shift does not heavily affect the STFT of the function, i.e.∣∣∣L̃cx(ξ, t0)

∣∣∣ ≈ |x̃(ξ, t0)|, cf. [21].
The discussion on the inversion of the STFT is skipped here and the reader
is referred to [21, 29].

8



time

frequency

time

frequency

Figure 3: Decomposition of the time-frequency domain using the STFT, cf.
[21]

Taking a closer look on the STFT, we can recognize that the STFT
introduces a fixed window size via the window function w. Due to the un-
certainty principle, there is the mentioned lower bound for the corresponding
accuracy in the frequency domain which leads to a grid decomposition of
the time-frequency domain as illustrated in figure 3.

This fixed resolution is responsible for some disadvantages of the STFT.
Transforming a signal that has important frequency details which are too
small or too large with respect to the window size T can lead to severe prob-
lems in detection. As an example, consider a window size that is spatially
highly inaccurate, but therefore gains accuracy in the frequency domain.
Assume further a signal, that has one high peak which is only occuring on
a very small domain. A proper detection of this becomes more and more
difficult, since there is only one STFT coefficient for a spatial domain which
may be much larger than the neighborhood of the peak.

Consequently, using the STFT instead of the Fourier transform allows
better time and spatial localization properties. But nonetheless, due to
the fixed window size, there are problems remaining. Gaining detailed in-
formation on high frequencies while not losing the possiblity to detect low
frequencies properly is still a heavy task for the STFT.

2.3 Wavelets and the Wavelet Transform

In contrast to the STFT where the Fourier transform was modulated to
construct a transform with more powerful properties suiting our task, we
are now trying to replace the sine and cosine waves that are used as basis
functions in the Fourier transform. Instead, we would like to introduce basis
functions that are compactly supported. Further, we still want to keep time
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and frequency localization as a key characteristic of our transform.

During the last decades, wavelets and the wavelet transform arose in the
context of frequency analysis. Before going into detail, we first want to give
some examples and possible approaches for constructing wavelets in order
to gain intuition on their shape and behavior.

As in [8, 30], wavelets can be constructed by solving dilation equations
of the form

h(t) =
N−1∑
k=0

ckh(at− k) ,

which is called a factor-of-2-reduction if a = 2. A solution to the dilation
equation is called a scaling function φ. Shifting and scaling this function
leads to a family of functions φj,k(t) = φ(2jt− k).

Since the dilation equation creates a natural form of dependence among
the different φj,k, we create the so-called mother wavelet ψ as a linear com-
bination of suitable φj,k by

ψ(t) :=
N−1∑
k=0

bkφ(2t− k)

in order to reduce dependencies. We illustrate this with some examples.

Example 8. (Haar wavelets)
Given the dilation equation

h(t) = h(2t) + h(2t− 1)

with the solution
1[0,1)(t) =: φ(t) ,

the Haar wavelet can be constructed by

ψ(t) = φ(2t)− φ(2t− 1) .

The mother wavelet (see figure 4) is consequently determined by the equation
ψ(t) = 1[0,1/2)(t)− 1[1/2,1)(t), cf. [16].

Example 9. (Daubechies wavelets)
Another family of wavelets of considerable practical importance is named
after the Belgian physicist and mathematician Ingrid Daubechies. Given a
dilation equation of the form

h(t) = 1 +
√

3
4 h(2t)+ 3 +

√
3

4 h(2t−1)+ 3−
√

3
4 h(2t−2)+ 1−

√
3

4 h(2t−3) ,
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1

1

Figure 4: Haar wavelet ψ(t)

the mother wavelet is supposed to be constructed in an equivalent way as
the Haar wavelet shown before, cf. [8]. Note that this dilation equation
is not known to have an analytic solution so far. Therefore, wavelets are
computed by approximating this solution, see figure 5.

Figure 5: Scaling function for Daubechies wavelet, cf. [8]

Another possible approach to create wavelets is simply by modifying a
sine wave to compactify its support, e.g. by multiplication with a Gaus-
sian. This leads to the characteristic local structure. Further, wavelets can
be obtained in many other ways, as for example the so-called Mexican hat
wavelet which is simply the normalized and negative second derivative of a
Gaussian, i.e. given by ψ(t) = 2√

3σ2 4√π

(
1−

(
t
2
)2)

e−
t2

2σ2 , illustrated in figure
6.

As discussed in [38], for the ongoing development towards the scattering

11



Figure 6: Gaussian Wavelet on the left and Mexican Hat Wavelet on the
right, cf. [17]

transform, complex wavelets of the form

ψ(t) = eiη·tΘ(t)

are used, where ψ̂(ξ) = Θ̂(ξ−η) and Θ̂ is real-valued in a low-frequency ball
centered at 0. As a consequence, ψ̂ has its center at η, i.e. we allow a shift
in the frequency domain.

For the moment we interrupt the discussion concerning the creation of
wavelets and turn towards the wavelet transform of an input signal x which
leads us one step closer to the scattering transform.

Following the procedure from [12, 38, 53], the wavelet transform is con-
structed in the pursuing way.

The mother wavelet ψ ∈ L1 ∩ L2(Rd) plays the key role in the trans-
form combined with a sequence of scaling values (aj)j∈Z for some a > 1.
In image processing, usually a = 2, so without loss of generality we set
a = 2 to simplify notation. We get a family of wavelets of the form
ψ2j (t) = 2djψ(2jt). Note that the dilation of the mother wavelet is res-
caled such that ‖ψ2j‖2 = ‖ψ‖2, cf. [17, 43].

In the case of dimensions d ≥ 2, in addition to the scaling parameter, also
a rotation parameter r is introduced in order to rotate the dilated wavelet
with elements r of a finite discrete rotation group G ⊂ SO(d) of Rd, cf. [11].
This leads to dilated and rotated wavelets of the form

ψ2jr(t) = 2djψ(2jr−1t) ,

i.e. ψ2jr is the 2j-dilated and r-rotated version of ψ. Further, denote by
λ := 2jr ∈ 2Z×G =: Λ with |λ| = 2j the parameter of dilation and rotation

12



of the wavelet.

This way, we create a family of wavelets {ψλ}λ∈Λ which we can now use
to express our signal x with. Note that ‖ψλ‖1 = ‖ψ‖1, cf. [38]. When
calculating the wavelet transform of a signal x, we compute the convolution
of the signal with translated versions of dilated wavelets, cf. [17, 43].

Using the notation of [38], a so-called Littlewood-Paley wavelet trans-
form is defined as

∀ t ∈ Rd : W [λ]x(t) := x ? ψλ(t) =
∫
x(u)ψλ(t− u)du

for all choices of λ ∈ Λ.
When focusing on frequencies, we can continue in the following way.

First, note that in the Fourier domain by theorem 3 and a simple change of
variables ψ̂λ(ξ) = ψ̂(λ−1ξ) and hence, up to a constant of γ = (2π)d/2,

Ŵ [λ]x(ξ) = γx̂(ξ) · ψ̂λ(ξ) = γx̂(ξ) · ψ̂(λ−1ξ)

which simply combines the frequencies of the wavelet transform as the
product of the frequency of the input and the used wavelet.

Further, following [38], if we only consider wavelets of frequencies 2j >
2−J for J ∈ Z, we can compute a wavelet transform at a scale 2J . Therefore,
denote by ΛJ := {λ = 2jr : r ∈ G, 2j > 2−J} and compute W [λ]x for
λ ∈ ΛJ . Note that the low frequencies are not covered when taking only
wavelets of higher frequencies into account. To fill this gap, we can compute
an averaging with a kernel φ to cover the low frequencies, i.e.

AJx := x ? φ2J

for φ2J (t) = 2−dJφ(2−J t) which averages over a spatial domain proportional
to 2J . This leads to a wavelet transform given by

WJx := {AJx, (W [λ]x)λ∈ΛJ} (1)

with norm ‖WJx‖2 = ‖AJx‖2 +
∑
λ∈ΛJ ‖W [λ]x‖2. Hence the wavelet trans-

form defines a linear operator on L2(Rd), cf. [11]. Note that for J = ∞,
Λ∞ = 2Z ×G = Λ, so we are back in the previous setup such that W∞x =
{W [λ]x}λ∈Λ with norm ‖W∞x‖2 =

∑
λ∈Λ ‖W [λ]x‖2.

If the domain of the input x is scaled and rotated, the wavelet transform
is modified in a corresponding way. Assume 2lg ∈ Λ = 2Z ×G and consider
the scaled and rotated version of x, i.e. 2lg ◦ x(t) = x(2lgt). By the applic-
ation of a simple change of variables in the wavelet transform, we can see
that

W [λ]
(
2lg ◦ x

)
= 2lg ◦W [2−lgλ]x , cf. [38]. (2)

13



At a glance, computing the wavelet transform of a signal x gives a rep-
resentation of wavelet coefficients of the form {W [λ]x}λ∈Λ. Hereby, we filter
the input x by means of the wavelet family {ψλ}λ∈Λ which consists of dilated
and rotated versions of the mother wavelet ψ.

Since our motivation for following up the wavelet transform was to over-
come the problems of the (Short Time) Fourier transform, we now compare
the two in the upcoming paragraphs.

Let us start with the comparison of the decomposition of the time-
frequency domain of STFT and the wavelet transform in the one dimen-
sional case. When having a look at the scaling of wavelets, we can recognize
that in each iteration, wavelets are doubling their height and halven their
width in contrast, cf. [21]. Wavelets therefore have the same number of
oscillations, but are scaled or dilated in the respective length and amplitude
of the oscillation, cf. [5], as illustrated in figure 7.

Figure 7: Envelope of wavelets, cf. [5]

In contrast, when having a look at the windowed sine waves of the STFT,
the number of oscillations is increasing in a fixed support range, see figure
8 for an example with a Gaussian window function.

These observations lead to a different decomposition of the time-frequency
domain for wavelets than for the STFT.

According to [21], the wavelet transform decomposes the time-frequency
domain as shown in figure 9. Due to the scaling of the mother wavelet, the
wavelet transform is very accurate in low frequencies, but has a lack of ac-
curancy in the time or spatial component. This does not really matter since
low frequencies occur over larger regions, so the focus in low frequencies is

14



Figure 8: Envelope of the STFT, cf. [5]

time

frequency

time

frequency

Figure 9: Comparing the decomposition of the time-frequency domain using
the STFT on the left and the wavelet transform on the right

more on the existence than on the spatial localization. In contrast, in the
high frequencies the wavelet transform provides a highly accurate represent-
ation of the signal in the time or spatial domain which allows a more precise
localization of the considered frequency band.

After having talked about wavelets and the wavelet transform, we next
would like to check if the wavelet transform fulfills the desired properties as
defined at the beginning and hence evaluate, if the wavelet transform is a
candidate for the representation in the classification task.

Therefore, consider again the translation operator Lc and the translated
input Lcx. This allows the following computation:

W [λ]Lcx(t) = Lcx ? ψλ(t) =
∫
Lcx(u)ψλ(t− u)du =

∫
x(u− c)ψλ(t− u)du =

=
∫
x(v)ψλ((t− c)− v)dv = x ? ψλ(t− c) = LcW [λ]x(t)

Hence, the wavelet transform is not invariant with respect to our defin-
ition of translation invariance, cf. [38], but instead commutes with transla-
tion. Consequently, when translating the input x, its wavelet representation
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translates as well.

To overcome this, recall that the Lebesgue measure is translation in-
variant, i.e. µ(A) = µ(A + c) for all c ∈ Rd, all Borel sets A ⊆ Rd and
A + c = {a + c : a ∈ A}. We can make use of this observation to cre-
ate a translation invariant operator Φ. Therefore, consider an operator U
on L2(Rd) that commutes with translation. In the event that the integral∫
Ux(t)dt exists, it is translation invariant with respect to translations of

the input function x since∫
U(Lcx)(t)dt =

∫
Lc(Ux)(t)dt =

∫
Ux(t)dt . (3)

Note that the operator U is not necessarily linear here. [38]

Consequently, averaging the wavelet transform creates the desired in-
variance, i.e. ∫

W [λ]x(t)dt =
∫
x ? ψλ(t)dt

is a translation invariant representation of the input x.

Unfortunately, wavelets are accompanied by some severe drawbacks when
trying to average. Since in the literature wavelets are defined in many dif-
ferent ways, we interrupt and focus on this characteristic of wavelets for a
short moment.

Referring to [16, 36, 43], wavelets are usually required to satisfy a so-
called admissibility condition. It was originally introduced by Calderon,
Grossmann and Morlet in [13, 23]. In the one dimensional case, this condi-
tion is given by

Cψ :=
∫ +∞

0

∣∣∣ψ̂(ξ)
∣∣∣2

ξ
dξ < +∞ ,

where in some references the integral is taken over the whole real line with
the denominator containing also a modulus. In any of the two, this charac-
teristic enables the wavelet transform to be invertible and hence allows the
recovery of x(t) from its wavelet represenation.
As a side effect, in order to avoid the intergal in Cψ diverging, the singularity
at 0 needs to be removed. Hence, the Fourier transform in the numerator of
Cψ also needs to vanish. In the case of ψ integrable, the Fourier transform
is continuous which implies that ψ̂(0) = 0, cf. [17, 43]. This then leads to∫

ψ(t)dt =
∫
ψ(t)e−i<t,0>dt = (2π)d/2ψ̂(0) = 0 .
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In [38], instead of an admissibility condition for wavelets, the follow-
ing unitary condition for the wavelet transform is introduced, given by a
condition on the Fourier transform of the mother wavelet.
Lemma 10. (Unitary wavelets)
Let J ∈ Z or J = ∞, WJ as described in equation 1. Then the following
holds: WJ is unitary in the space of real-valued functions in L2(Rd) if and
only if

1
2

∞∑
j=−∞

∑
r∈G

∣∣∣ψ̂(2−jr−1ξ)
∣∣∣2 = 1

and ∣∣∣φ̂(ξ)
∣∣∣2 = 1

2

0∑
j=−∞

∑
r∈G

∣∣∣ψ̂(2−jr−1ξ)
∣∣∣2

for almost every ξ ∈ Rd.
The proof is skipped here and the reader is referred to proposition 2.1. in

[38]. Nonetheless, also this unitary condition leads to the fact that ψ̂(0) = 0
as before implying the same zero-average for wavelets.

Summing up, any wavelet is accompanied by a zero average, which will
play an important role in the ongoings. Additionally, we impose that ψ is
twice differentiable and that its decay and the decay of the first and second
partial derivatives is of order O((1− |t|)−(d+2)).

Now, knowing that wavelets integrate to 0, we can compute the following
by a change of the order of integration and using the fact that the integral
over the whole space is uneffected by translation.

∫
W [λ]x(t) dt =

∫
x ? ψλ(t) dt =

∫ ∫
x(u)ψλ(t− u) du dt =

=
∫ ∫

x(u)ψλ(t− u) dt du =
∫
x(u)

∫
ψλ(t− u) dt du =

=
∫
x(u) · 0 du = 0

Consequently, averaging the wavelet transform of a function leads to a
zero representation. Even further, any linear operator applied toW [λ]x that
is translation invariant is zero, cf. [15, 38]. As a consequence, when trying
to create a translation invariant representation by a simple average of the
wavelet transform or any other linear operator, all information of the input
function x is lost. This problem is tackled in the next section. For further
reading concerning wavelets, see [17, 26, 37, 41].
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2.4 From Wavelets to the Scattering Transform

Since the wavelet transform as such is not really appropriate for the image
classification task due to the discussion of the previous section, we are try-
ing to extend or modify the wavelet transform in a suitable way to gain the
desired stabilites and invariances.

Making use of equation (3) for creating a translation invariant represent-
ation, we would like to modulate the wavelet transform W [λ]x by joining an
operator M [λ] such that U := M [λ]W [λ] satisfies the translation invariant
property from (3). We first argue what kind of characteristics this operator
M [λ] should fulfill.

Initially, in order to avoid small perturbations to create a large discrep-
ancy in the target domain, we would like the operator to be non-expansive.
Further, to satisfy a Lipschitz condition, the operator should also be com-
mutative with respect to the actions of diffeomorphisms. This implies stabil-
ity with respect to small deformations. And finally, the properties discussed
in the introduction should also be fulfilled. The following theorem helps us
to satisfy these requirements.

Theorem 11. [11, 12]
Let M be an operator acting on L2(Rd) satisfying

• non-expansiveness, i.e. ‖Mx−My‖ ≤ ‖x− y‖ and

• commutativity with respect to diffeomorphisms,

then M is a pointwise operator almost everywhere.

Proof. [11, 12]
The proof mainly follows the idea of a monotone class argument. We start
proving the statement for indicator functions 1Ω(t) for a compact Ω ⊆ Rd,
extend this to the case of C∞-functions with compact support Ω and con-
clude by the density of C∞ with compact support in L2(Rd).

So let Ω ⊆ Rd be compact, x ∈ L2(Rd) and τ ∈ Diff(Rd) be a diffeo-
morphism where Lτx = x ◦ τ . Further, by G(x) = {τ ∈ Diff(Rd) : Lτx =
x a.e.} denote the isotropy group of x. Then

τ ∈ G(x)⇒ τ ∈ G(M(x)) , (4)

since ‖Mx− LτMx‖ = ‖Mx−MLτx‖ ≤ ‖x− Lτx‖ = 0 exploiting the
commutativity and the non-expansive property. Hence, any diffeomorphism
which leaves x unchanged also leaves Mx unchanged. Now look at x = c1Ω.
Then G(x) contains all τ such that

τ(Ω) = Ω and τ(Ωc) = Ωc , (5)

18



where Ωc = Rd r Ω is the complement of Ω, since otherwise, τ would affect
values of x. Combining 4 and 5, Mx also needs to be constant on Ω and Ωc

which implies that Mx(t) = 0 for all t ∈ Ωc since Mx is square-integrable.
This leads to

Mx = M(c(1)Ω) = (Mc1Ω)(t0)1Ω

for any t0 ∈ Ω. Consequently, M is pointwise in this case.

So let now x ∈ C∞ be compactly supported in Ω and t0 ∈ Ω. Further
consider (τn)n∈N ⊆ Diff(Rd) such that

lim
n→∞

‖Lτnx− x(t0)1Ω‖ = 0 , (6)

i.e. the diffeomorphisms are constructed by leaving t ∈ Ωc unchanged and
extending a ball Bt0 (2−n) of radius 2−n around t0 to the whole domain Ω,
e.g. by taking straight lines through t0 that are more and more contracted
the closer they approach the boundary δΩ. This way,

τn : Bt0
(
2−n

)
→ {t ∈ Ω : dist(t,Ωc) ≥ 2−n} .

Since x ∈ C∞ and has compact support, it is bounded which allows the
following computation:

‖Lτn(Mx)−M(x(t0))1Ω‖ = ‖M(Lτnx)−M(x(t0))1Ω‖ ≤ ‖Lτnx− x(t0)1Ω‖

Using equation 6, this implies L2-convergence of Lτn(Mx) to M(x(t0))1Ω.
Since M is pointwise on constant functions x(t0)1Ω by the first part of the
proof, and the sequence of diffeomorphism τn expands the neighborhood of
t0 to the whole domain Ω, we obtain that M is pointwise on this class of
functions, too.

Concluding by the density of compactly supported C∞-functions in L2

andM being Lipschitz continuous, we can conclude thatM is pointwise a.e.
for all x ∈ L2.

After having proved that M [λ] needs to be a pointwise operator, follow-
ing [38], we can further require a norm preserving property for the operator
M [λ], i.e.

‖M [λ]x‖2 = ‖x‖2 for all x ∈ L2(Rd) .

This implies that |M [λ]x| = |x| leading to the fact that M [λ] is necessarily
a modulus operator, i.e.

M [λ]x = |x| ,

so consequently all possible phase variation is eliminated by the non-linear
operator.
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Figure 10: Decomposition of the time-frequency domain via wavelets on the
left and averaged on the right

In order to create our desired representation of the input signal x, we now
integrate Ux := M [λ]W [λ]x = |x ? ψλ| to establish translation invariance:∫

Ux(t)dt =
∫
|x ? ψλ(t)| dt ,

where instead of averaging over the whole domain we could also use an
averaging kernel φ here which only involves a certain region.

When thinking back to figure 9, this averaging creates a huge loss of
information in the high frequency region. But when distinguishing different
kinds of signal characters, access to high-frequency information plays a key
role. The wavelet transform provided a representation which was very ac-
curate in the spatial domain for high frequency bands. This accuracy is lost
in exchange for gaining translation invariance. For illustration purposes,
consider the time-frequency domain as in figure 10, where the averaging is
done with an averaging kernel only over an interval of length T instead of
the whole domain.

The question arises how to recover the lost information and accuracy
in the high frequencies. A possible answer can be found by iterating on
computing wavelet coefficients, modulus operation and averaging - which is
then called a scattering transform.
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3 Scattering Transform
Iterating on this wavelet-modulus-averaging procedure, we gain what is
called a scattering transform, invented by S. Mallat and his team. This
representation of an input signal x is supposed to satisfy the characteristics
developed in chapter 1. In the following, we start by its definition, having
a closer look at its deep convolutional network structure, its properties as
translation invariance or stability to small deformations and finish by some
discussion concerning the invertibility of this transform.

As mentioned at the end of the previous section, the lack of spatial
accuracy in the high frequency region of the averaged wavelet-modulus rep-
resentation of the input x can be overcome by iterating on applying the
wavelet-modulus operator U . To clarify notation, denote by U [λ] := |W [λ]|
the wavelet operator followed by a modulus. Now, for any scale λ1 we first
compute |W [λ1]x| = |x ? ψλ1 |. On the one hand, we average to create the
translation invariance, i.e. by calculating the convolution with an averaging
kernel |x ? ψλ1 | ? φ. On the other hand, we want to recover the accuracy
at high frequencies which was lost by the averaging, so we take a second
parameter λ2 and compute the wavelet convolution for all those scales, i.e.

||x ? ψλ1 | ? ψλ2 |

what needs to be averaged to ||x ? ψλ1 | ? ψλ2 | ? φ to gain translation invari-
ance.

Iterating on this procedure for all scales λ1, ..., λm leads to the definition
of the scattering transform. But let us start in a more formal way and con-
tinue step by step, referring to [12, 27, 38, 39].

Definition 12. (Path) [38]
Let λk ∈ 2Z×G for k ∈ N be the scaling and rotation parameter of a wavelet,
where G describes a finite rotation group. Then we define the following:

• An ordered sequence p = (λ1, ..., λm) is a path.

• The empty path is denoted by p = ∅.

⇒ Iterative application of the non-commutative operators U [λk] is called
scattering propagator denoted by U [p] = U [λm]...U [λ2]U [λ1] with U [∅] =
Id.

Note that the operator U [p] is well-defined on L2(Rd). To see this, apply
Young’s Theorem, cf. [10], iteratively on U [λ]x which leads to

‖U [λ]x‖2 ≤ ‖ψλ‖1 ‖x‖2
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for all λ ∈ Λ. Further, to fix some notation, let P∞ be the set of all paths
of finite length. For p = (λ1, ..., λm) ∈ P∞, λ ∈ Λ we denote by p + λ the
path (λ1, ..., λm, λ) ∈ P∞.

Having this scattering propagator U [λ], we can define the scattering
transform.

Definition 13. (Scattering Transform) [11, 12, 38]
Let x ∈ L1(Rd). Then for any p ∈ P∞, the scattering transform of x along
p is defined as

Sx(p) = 1
µp

∫
U [p]x(t)dt ,

where the normalization constant is given by µp =
∫
U [p]δ(t)dt for a Dirac

δ(t).

Note, that for the scattering propagator U [p]x, we get that ‖U [p]x‖1 ≤
‖x‖1 ‖ψ‖

m
1 , since wavelets were designed to satisfy ‖ψ‖1 = ‖ψλ‖1. As a

consequence, the integral in the definition of the scattering transform is
finite. For conditions to have µp 6= 0 and hence to ensure the scattering
transform to be well-defined, we refer to [38].

Due to the varying amount of iterative applications of wavelet convolu-
tions and modulus operators, the scattering transform has a similar shape
as a deep convolutional neural network (DCNN) which is described in the
following.

3.1 Deep Convolutional Network Structure

Let us start with a short explanation of DCNNs, cf. [32, 39]. Given an input
x, a DCNN applies at each step a composition of three layers:

• a filter bank layer

• a non-linearity layer (e.g. sigmoids, rectifiers, modulus,...)

• and a pooling layer (e.g. averaging each point over some neighbor-
hood).

Thinking of the computation of a scattering transform, the filtering is done
via a wavelet convolution and the modulus application afterwards corres-
ponds to the non-linearity layer. Note that the pooling is left out in the
scattering transform.

In classical DCNNs, the output is only influenced by the last layer. Hence
there is a successive application of different linear and non-linear operators
which all progress towards one single output layer. Additionally, the filters
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are learned by backpropagation algorithms using a loss function and a set of
training data on which this function is minimized, cf. [6, 47]. In comparison
to this, the scattering transform averages at every level, hence creates out-
put coefficients at each layer. Further, the filters of the scattering transform
are fixed in advance, since the scattering transform filters the input x with
the help of given wavelets, cf. [1, 32]. To get an intuition for this behavior of
the scattering transform, figure 11 illustrates the interaction of the different
operators.

x

|x ? ψλ1 | ? φ

x ? φ

|x ? ψλ1 |

||x ? ψλ1 | ? ψλ2 |

...

Figure 11: DCNN structure of the scattering transform, cf. [1, 11, 38].
The green squares represent the wavelet convolution modulus coefficients
U [λ1, λ2, ..., λm]x. The blue nodes describe the output of the scattering
transform: the averaged coefficients Sx(λ1, λ2, ..., λm).

As a consequence, in contrast to DCNNs, the scattering transform needs
to know the desired invariances a priori. In our case, we were aiming for a
translation invariant, deformation stable representation of the input x which
led to the given construction of the scattering transform.

3.2 Properties of Scattering Transform

After having briefly looked at the structure of a scattering transform, we will
discuss its properties. Let us start with the modification of the amplitude
of the input function x, i.e. consider µ ∈ R and the scaled input µx. Out of
this, we can state the following lemma.

Lemma 14. (Amplitude preservation) [38]
Let µ ∈ R. Then for any p ∈ P∞ such that p 6= ∅, the scattering transform
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of x along p preserves the amplitude modification, i.e.

S(µx)(p) = |µ|Sx(p) .

Proof. First, we compute that

|µx ? ψλ(t)| =
∣∣∣∣∫ µx(u)ψλ(t− u)du

∣∣∣∣ =
∣∣∣∣µ ∫ x(u)ψλ(t− u)du

∣∣∣∣ =

= |µ|
∣∣∣∣∫ x(u)ψλ(t− u)du

∣∣∣∣ = |µ| |x ? ψλ(t)| .
(7)

Applying this equation iteratively to each wavelet convolution within the
scattering transform and using the linearity of the integral proves the state-
ment.

Hence, modifying the input function in its amplitude is carried through
when applying the scattering operator.

Secondly, we would like to be able to control scaling and rotation of the
input x. Therefore, consider the scaling and rotation parameter 2lg ∈ 2Z×G
and the scaled and rotated version 2lg ◦ x(t) = x(2lgt). From this, we
can state the upcoming lemma, where we use the notation 2lgp for a path
p = (λ1, ..., λm) ∈ P∞ to abbreviate (2lgλ1, ..., 2lgλm) ∈ P∞.

Lemma 15. (Scaling and rotating) [38]
For a path p ∈ P∞ and 2lg ∈ 2Z ×G, we have

S(2lg ◦ x)(p) = 2−dlSx(2−lgp) .

Proof. .
We have seen in equation 2 that wavelets satisfy W [λ]

(
2lg ◦ x

)
= 2lg ◦

W [2−lgλ]x. Applying this to the wavelet-modulus operator U [λ] = |W [λ]|,
we can see that U [λ]

(
2lg ◦ x

)
= 2lg ◦ U [2−lgλ]x. Iterating on this over a

path p ∈ P∞, it follows that

U [p]
(
2lg ◦ x

)
= 2lg ◦ U [2−lgp]x .

We conclude by applying the definition of the scattering transform which is
simply integrating the last equation.

In other words, rotating the input x identically rotates its scattering rep-
resentation whereas scaling the input by a factor of 2l forces a path scaling
by 2−l.

As further aspects, we would like to check the resistance to additive per-
turbations, norm preservation, translation invariance and the stability to
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diffeomorphisms. Before turning to this, we would like to introduce what is
called a windowed scattering transform (WST) in order to widen definition
13. Therefore, we consider an averaging kernel φ as in chapter 2.3. Let φ be
real, symmetric, twice differentiable and invariant with respect to rotations,
i.e. φ(rt) = φ(t) for r ∈ G. Further, we impose that the decay of φ and
its first and second partial derivatives is in O((1 + |t|)−(d+2)). Then we can
define the WST.

Definition 16. (Windowed Scattering Transform) [11, 38]
For J ∈ Z, denote by ΛJ = {λ = 2jr ∈ Λ | 2j > 2−J} and PJ = {p =
(λ1, ..., λm) ∈ P∞ | λk ∈ ΛJ for all k}. Then for x ∈ L1(Rd) the windowed
scattering transform is defined as

SJ [p]x(t) = U [p]x ? φ2J (t) =
∫
U [p]x(u)φ2J (t− u)du

for all p ∈ PJ , where φ2J (t) = 2−dJφ(2−J t) .

The WST now allows local averaging instead of being forced to average
over the whole domain. When talking about the relation between WST and
the scattering transform, following [38], for x ∈ L1(Rd), the WST converges
pointwise to the scattering transform as 2J goes towards infinity. To see
this, take t ∈ Rd and consider

lim
J→∞

2dJSJ [p]x(t) = φ(0)
∫
U [p]x(u)du = φ(0)µpSx(p) ,

where we exploit the continuity of φ at 0.
The WST can also be used to extend the scattering transform to the

space of square-integrable functions L2(Rd). A deeper discussion is skipped
here and the interested reader is referred to [38]. To fix some notation, de-
note by SJ [PJ ]x := {SJ [p]x}p∈PJ and SJ [Ω]x := {SJ [p]x}p∈Ω for a subset of
paths Ω. In the same way, let U [Ω]x := {U [p]x}p∈Ω.

3.2.1 Non-Expansiveness

When trying to avoid small additive perturbations from having a heavy
impact on the scattering representation, a non-expansiveness property for
the WST needs to be introduced. To do so, for a subset of paths Ω, let
‖SJ [Ω]x‖2 :=

∑
p∈Ω ‖SJ [p]x‖2 and ‖U [Ω]x‖2 :=

∑
p∈Ω ‖U [p]x‖2, where ‖.‖

denotes the L2-norm in this context.

Theorem 17. (Non-expansiveness) [11, 38]
Let x, x′ ∈ L2(Rd). Then∥∥SJ [PJ ]x− SJ [PJ ]x′

∥∥ ≤ ∥∥x− x′∥∥ .
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Proof. [38]
Consider the one-step propagator

UJx := {AJx, (U [λ]x)λ∈ΛJ} := {x ? φ2J , (|x ? ψλ|)λ∈ΛJ} .

Since U [λ]U [p] = U [p+ λ] and AJU [p] = SJ [p] we obtain

UJU [p]x = {SJ [p]x, (U [p+ λ]x)λ∈ΛJ} .

As a side remark, note that UJ is non-expansive since WJ is unitary due
to Lemma 10 and so is the modulus operator | . |, i.e. for a, b ∈ C we have
||a| − |b|| ≤ |a− b|. Let now ‖UJx‖2 = ‖AJx‖2 +

∑
λ∈ΛJ ‖U [λ]x‖2. This

allows the following calculation:

∥∥UJx− UJx′∥∥2 =
∥∥AJx−AJx′∥∥2 +

∑
λ∈ΛJ

∥∥U [λ]x− U [λ]x′
∥∥2 =

=
∥∥AJx−AJx′∥∥2 +

∑
λ∈ΛJ

∥∥|W [λ]x| −
∣∣W [λ]x′

∣∣∥∥2 ≤

≤
∥∥AJx−AJx′∥∥2 +

∑
λ∈ΛJ

∥∥W [λ]x−W [λ]x′
∥∥2 =

=
∥∥WJx−WJx

′∥∥2 ≤
∥∥x− x′∥∥2

Further, setting x′ = 0 and performing the same calculation, we can see
that ‖UJx‖2 = ‖x‖2 as WJ is unitary.

Let now ΛmJ := {p ∈ PJ | |p| = m} where Λ0
J = {∅}. Then:

UJU [ΛmJ ]x = {SJ [ΛmJ ]x, U [Λm+1
J ]x} (8)

Using that PJ = ∪m∈NΛmJ , the computation of SJ [PJ ]x is possible via
iteration on UJU [ΛmJ ]x for m ≥ 0. As a side remark, to acknowledge is the
correspondance to the DCNN structure mentioned in the previous chapter.
Using equation 8 and exploiting the non-expansiveness of UJ , we obtain the
following bound:

∥∥U [ΛmJ ]x− U [ΛmJ ]x′
∥∥2 ≥

∥∥UJU [ΛmJ ]x− UJU [ΛmJ ]x′
∥∥2 =

=
∥∥SJ [ΛmJ ]x− SJ [ΛmJ ]x′

∥∥2 +
∥∥∥U [Λm+1

J ]x− U [Λm+1
J ]x′

∥∥∥2 (9)

Combining all this, we can conclude with the help of a telescopic sum:

∥∥SJ [PJ ]x− SJ [PJ ]x′
∥∥2 =

∞∑
m=0

∥∥SJ [ΛmJ ]x− SJ [ΛmJ ]x′
∥∥2 ≤

≤
∞∑
m=0

(∥∥U [ΛmJ ]x− U [ΛmJ ]x′
∥∥2 −

∥∥∥U [Λm+1
J ]x− U [Λm+1

J ]x′
∥∥∥2
)
≤

≤
∥∥∥U [Λ0

J ]x− U [Λ0
J ]x′

∥∥∥2
=
∥∥U [∅]x− U [∅]x′

∥∥2 =
∥∥x− x′∥∥2
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Hence, the scattering representation satisfies a stability condition with
respect to additive noise, cf. [1]. To illustrate this, consider x ∈ L2(Rd) and
a slightly perturbed version x+ h. Then

‖SJ [PJ ]x− SJ [PJ ](x+ h)‖ ≤ ‖x− (x+ h)‖ ≤ ‖h‖ .

As a consequence, the metric introduced by SJ [PJ ] satisfies a Lipschitz con-
tinuity condition with respect to the Euclidean norm of the perturbing noise,
cf. [11].

3.2.2 Norm Preservation

In order to determine the energy which is propagated through the consec-
utive levels of the scattering transform, the next aspect we are focusing on
is a theorem concerning the preservation of the L2(Rd) norm.

To do that, we need a technical feature for the used wavelet. Let η ∈ Rd
and ρ ∈ L2(Rd), where ρ is non-negative such that for the averaging kernel
φ we have |ρ̂(ξ)| ≤

∣∣∣φ̂(2ξ)
∣∣∣ and ρ̂(0) = 1. Further, let

Ψ̂(ξ) := |ρ̂(ξ − η)|2 −
∞∑
k=1

k

(
1−

∣∣∣ρ̂(2−k(ξ − η))
∣∣∣2)

satisfy

α := inf
1≤|ξ|≤2

∞∑
j=−∞

∑
r∈G

Ψ̂(2−jr−1ξ)
∣∣∣ψ̂(2−jr−1ξ)

∣∣∣2 > 0 . (10)

If such an η and ρ exist for a wavelet ψ, then this wavelet is called an admiss-
ible scattering wavelet. Achieving this, we can state the desired theorem.

Theorem 18. (Norm preservation) [11, 38]
Let x ∈ L2(Rd). If the used wavelet ψ is an admissible scattering wavelet and
the corresponding wavelet transform WJ is unitary, i.e. ‖WJx‖2 = ‖x‖2,
then

lim
m→∞

‖U [ΛmJ ]x]‖2 = lim
m→∞

∑
n≥m
‖SJ [ΛnJ ]x‖2 = 0

and further
‖SJ [PJ ]x‖ = ‖x‖ .

Proof. [38]
The proof consists of two parts. First we show equivalence of

(A) limm→∞ ‖U [ΛmJ ]x]‖2 = 0
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(B) limm→∞
∑
n≥m ‖SJ [ΛnJ ]x‖2 = 0

(C) ‖SJ [PJ ]x‖ = ‖x‖ .

The second part consists of the implication that an admissible scattering
wavelet implies (A).

(A) ⇔ (B)
In the proof of theorem 17 we demonstrated that ‖UJx‖2 = ‖x‖2 for all
x ∈ L2(Rd). Further, recall that by definition of UJ we have

UJU [ΛnJ ]x = {SJ [ΛnJ ]x, U [Λn+1
J ]x}

and hence

‖U [ΛnJ ]x‖2 = ‖UJU [ΛnJ ]x‖2 = ‖SJ [ΛnJ ]x‖2 +
∥∥∥U [Λn+1

J ]x
∥∥∥2

. (11)

Equivalently, we get ‖SJ [ΛnJ ]x‖2 = ‖U [ΛnJ ]x‖2 −
∥∥∥U [Λn+1

J ]x
∥∥∥2

which allows
the following when summing over n ≥ m for a fixed m ∈ N exploiting again
the telescopic sum:

∑
n≥m
‖SJ [ΛnJ ]x‖2 =

∑
n≥m

(
‖U [ΛnJ ]x‖2 −

∥∥∥U [Λn+1
J ]x

∥∥∥2
)

= ‖U [ΛmJ ]x‖2

Taking the limit m→∞ on both sides proves the first equivalence.

(A) ⇔ (C)
Using equation 11 and summing over n ≤ m− 1 leads to the following:

m−1∑
n=0
‖SJ [ΛnJ ]x‖2 =

m−1∑
n=0

(
‖U [ΛnJ ]x‖2 −

∥∥∥U [Λn+1
J ]x

∥∥∥2
)

=
∥∥∥U [Λ0

J ]x
∥∥∥2
− ‖U [ΛmJ ]x‖2 =

= ‖x‖2 − ‖U [ΛmJ ]x‖2

Here we made use of the telescopic sum as well as of x = U [∅]x = U [Λ0
J ]x.

As a consequence, we achieve

‖x‖2 =
m−1∑
n=0
‖SJ [ΛnJ ]x‖2 + ‖U [ΛmJ ]x‖2 .

For m→∞ we then get the second equivalence.

The second - rather technical - part of the proof is skipped here, so the
reader is referred to Appendix A of [38].
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Note that as soon as the level index m, i.e. the number of computed
wavelet convolutions, gets large enough, the remaining energy in the last
network layers

∑
n≥m ‖SJ [ΛnJ ]x‖2 converges to 0, cf. [12]. Even further, due

to numerical simulations, the energy ‖U [ΛmJ ]x‖2 shows an exponential decay
for m → ∞ and hence the energy of the scattering transform converges to
the energy of the input x exponentially, cf. [1]. Having this property is man-
datory in numerical applications since the network depth can consequently
be limited to a finite number of levels without running into the loss of too
much information, cf. [12].

3.2.3 Translation Invariance

Initially, one of our main objectives was the creation of a translation invari-
ant representation of the input x. So next, we want to turn our attention
towards this property. To achieve this, we use the following proposition.

Proposition 19. [38]
Let x, x′ ∈ L2(Rd) and J ∈ Z, then∥∥SJ+1[PJ+1]x− SJ+1[PJ+1]x′

∥∥ ≤ ∥∥SJ [PJ ]x− SJ [PJ ]x′
∥∥ .

Note, that as ‖SJ [PJ ]x− SJ [PJ ]x′‖ is non-negative and non-expansive,
it converges as J →∞. Combining this with the non-expansiveness property
shown in theorem 17 leads to a non-expansive metric in the limiting case,
i.e.

lim
J→∞

∥∥SJ [PJ ]x− SJ [PJ ]x′
∥∥ ≤ ∥∥x− x′∥∥

and also
lim
J→∞

‖SJ [PJ ]x‖ = ‖x‖ .

Exploiting these properties also for the limiting case, we can state the
following theorem concerning translation invariance. Therefore, recall the
translation operator Lc for c ∈ Rd which translates a function x by c, i.e.
Lcx(t) = x(t− c).

Theorem 20. [11, 38]
Let x ∈ L2(Rd) and c ∈ Rd. Further, assume the scattering transform to be
computed with admissible scattering wavelets, then

lim
J→∞

‖SJ [PJ ]x− SJ [PJ ]Lcx‖ = 0 .

Proof. (Sketch) [38]
At first, note that the windowed scattering transform commutes with trans-
lations. To see this, let p ∈ P∞ be an arbitrary path. A simple change of
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variables allows the following computation:

SJ [p]Lcx(t) = U [p]Lcx ? φ2J (t) =
∫
U [p]Lcx(u)φ2J (t− u)du =

=
∫
U [p]x(u− c)φ2J (t− u)du =

∫
U [p]x(v)φ2J ((t− c)− v)dv =

= U [p]x ? φ2J (t− c) = SJ [p]x(t− c) = LcSJ [p]x(t)

As a consequence, SJ [PJ ]Lc = LcSJ [PJ ] and since further SJ [PJ ]x = AJU [PJ ]x,
we can find the following bound using that AJ and LcAJ are bounded linear
operators:

‖SJ [PJ ]Lcx− SJ [PJ ]x‖ = ‖LcAJU [PJ ]x−AJU [PJ ]x‖ ≤
≤ ‖LcAJ −AJ‖ ‖U [PJ ]x‖ ,

(12)

where the operator norm is the usual sup-norm for linear operators.

Secondly, we bound the first factor ‖LcAJ −AJ‖. To do this, we use an
application of Schur’s Lemma for an operator Kx(t) =

∫
x(u)k(t, u)du by

following Appendix B of [38], which states:∫
|x(u)k(t, u)| du ≤ C and

∫
|x(u)k(t, u)| dt ≤ C ⇒ ‖K‖ ≤ C

This can be used to show that there exists a C such that

‖LcAJ −AJ‖ ≤ C2−J |c| . (13)

As a third part, we aim to bound the second factor ‖U [PJ ]x‖. To do
this, we use the following statement, proven in Appendix A of [38]. Let

‖x‖2w :=
∑
j≥0

∑
r∈G

j
∥∥∥W [2jr]x

∥∥∥2
<∞

and let the wavelets be admissible scattering wavelets, then
α

2 ‖U [PJ ]x‖2 ≤ max(J + 1, 1) ‖x‖2 + ‖x‖2w ,

where α is defined as in equation 10.

Applying all this to equation 12, leads to the following bound in the case
of ‖x‖2w <∞ :

‖SJ [PJ ]Lcx− SJ [PJ ]x‖2 ≤
(
(J + 1) ‖x‖2 + ‖x‖2w

) C2

α22J−1 |c|
2

Hence, limJ→∞ ‖SJ [PJ ]Lcx− SJ [PJ ]x‖ = 0 .
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To extend this case of functions satisfying ‖x‖2w <∞ to all x ∈ L2(Rd),
we use a density argument and write x as the limit of a sequence of (xn)n∈N
with ‖xn‖2w < ∞ for all n ∈ N. Exploiting the unitary property of Lc and
the non-expansiveness of SJ [PJ ], we can conclude by

‖SJ [PJ ]Lcx− SJ [PJ ]x‖ ≤ ‖SJ [PJ ]Lcxn − SJ [PJ ]xn‖+ 2 ‖x− xn‖ −→ 0

as n→∞ .

As a consequence, when enlarging the window size of the averaging ker-
nel to the limit, the scattering transform provides a translation invariant
representation of the input x.

3.2.4 Lipschitz Continuity with respect to Diffeomorphisms

Now, as we have shown that the windowed scattering transform satisfies a
translation invariant criterion, we would like to give a statement concerning a
Lipschitz condition with respect to the action of diffeomorphisms. Recall the
operator Lτx(t) = x(t− τ(t)) for a diffeomorphism τ with ‖∇τ‖∞ < 1 and
x ∈ L2(Rd). Let ‖∆τ‖∞ := supu,v∈Rd |τ(u)− τ(v)|. Further, ‖U [PJ ]x‖1 =∑
m≥0 ‖U [ΛmJ ]x‖ and PJ,m = {p ∈ PJ | |p| < m} = ∪n<mΛnJ ⊆ PJ . Using

this, we can state the following theorem.

Theorem 21. (Lipschitz condition) [11, 38]
There is a constant C such that for all x ∈ L2(Rd) satisfying ‖U [PJ ]x‖1 <∞
and for all τ ∈ C2(Rd) with ‖∇τ‖∞ ≤

1
2 the following holds:

‖SJ [PJ ]Lτx− SJ [PJ ]x‖ ≤ C ‖U [PJ ]x‖1 κ(τ) (14)

Further, for all m ≥ 0, it holds that

‖SJ [PJ,m]Lτx− SJ [PJ,m]x‖ ≤ Cm ‖x‖κ(τ) (15)

for κ(τ) := 2−J ‖τ‖∞ + ‖∇τ‖∞max
(
log

(
‖∆τ‖∞
‖∇τ‖∞

)
, 1
)

+ ‖Hτ‖∞, where Hτ
denotes the Hessian of τ .

Proof. (Sketch) [38]
At first, consider the commutator [SJ [PJ ], Lτ ] := SJ [PJ ]Lτ − LτSJ [PJ ] and
start with the following bounds:

‖SJ [PJ ]Lτx− SJ [PJ ]x‖ ≤ ‖LτSJ [PJ ]x− SJ [PJ ]x‖+ ‖[SJ [PJ ], Lτ ]x‖ (16)

Now, we bound the first summand in an equivalent way to equation 12
with the use of ‖U [PJ ]x‖ =

(∑
m≥0 ‖U [ΛmJ ]x‖2

)1/2
≤
∑
m≥0 ‖U [ΛmJ ]x‖ =

‖U [PJ ]x‖1. Hence:

‖LτSJ [PJ ]x− SJ [PJ ]x‖ ≤ ‖LτAJ −AJ‖ ‖U [PJ ]x‖ ≤ ‖LτAJ −AJ‖ ‖U [PJ ]x‖1
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Next we want to use a lemma which states for any operator L on L2(Rd)
the following bound:

‖[SJ [PJ ], L]x‖ ≤ ‖U [PJ ]x‖1 ‖[UJ , L]‖

A proof of this can be found in Appendix D of [38]. Combining this with
the fact that UJ = |WJ | and exploiting the non-expansiveness property of
| . |, we get

‖[UJ , Lτ ]‖ ≤ ‖[WJ , Lτ ]‖ .

Plugging all these together leads to the following:

‖SJ [PJ ]Lτx− SJ [PJ ]x‖ ≤ ‖U [PJ ]x‖1 (‖LτAJ −AJ‖+ ‖[WJ , Lτ ]‖) ,

where the term ‖LτAJ −AJ‖ can be bounded by C2−J ‖τ‖∞ using the cor-
responding result of equation 13. A proof can be found in Appendix B of [38].

So the remaining task is to find a suitable bound for the commutator
term ‖[WJ , Lτ ]‖. Therefore we use a lemma proven in Appendix E of [38].

Lemma. There is c > 0 such that for all J ∈ Z and for all τ ∈ C2(Rd)
satisfying ‖∇τ‖∞ ≤

1
2 the following holds:

‖[WJ , Lτ ]‖ ≤ c
(
‖∇τ‖∞max

(
log

(
‖∆τ‖∞
‖∇τ‖∞

)
, 1
)

+ ‖Hτ‖∞

)

Again, combining all these leads to the desired bound 14.

In order to extent this to equation 15, note that equation 14 still holds
when replacing PJ by PJ,m := ∪n<mΛnJ , if we substitute ‖U [PJ ]x‖1 with
‖U [PJ,m]x‖1. Then we can compute

‖U [ΛnJ ]x‖ ≤
∥∥∥U [Λn−1

J ]x
∥∥∥ ≤ ‖x‖ ,

since U [ΛnJ ]x is calculated by applying UJ to U [Λn−1
J ]x and as discussed in

the previous section, UJ is norm-preserving. As a consequence, we obtain:

‖U [PJ,m]x‖1 =
m−1∑
n=0
‖U [ΛnJ ]x‖ ≤ m ‖x‖

This leads to the second bound which concludes the sketch.

Obtaining this theorem, with the help of the following corollary, we can
establish Lipschitz continuity.
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Corollary 22. [11, 38]
Let Ω ⊆ Rd be compact. Then there is C such that for all x ∈ L2(Rd)
with support in Ω satisfying ‖U [PJ ]x‖1 < ∞ and for all τ ∈ C2(Rd) with
‖∇τ‖∞ ≤

1
2 , if 2J ≥ ‖τ‖∞

‖∇τ‖∞
, then

‖SJ [PJ ]Lτx− SJ [PJ ]x‖ ≤ C ‖U [PJ ]x‖1 (‖∇τ‖∞ + ‖Hτ‖∞) .

For the case of numerical applications of the scattering transform where
only a finite number of levelsmmax is calculated, we can use that the Hessian
term can be neglected for regular τ , cf. [12], and bound

‖SJ [PJ ]Lτx− SJ [PJ ]x‖ ≤ Cmmax ‖x‖ ‖∇τ‖∞ ,

which leads to a Lipschitz continuous representation of the input.

3.3 Invertibility and Image Generation

Now, a question that arises naturally relates the scattering operator with its
invertibility characteristics. When trying to invert, we are facing the follow-
ing problem. The scattering transform only outputs the averaged coefficients
and not every wavelet convolution coefficient, see figure 11. When iterating
through the levels, we create an output at every level and in the same mo-
ment calculate the wavelet convolution coefficients of the next level. When
terminating this procedure in applications, we lose the last wavelet convo-
lution coefficients. This implies a loss of information which does not allow
a direct inversion of the scattering transform, but just enables possible ap-
proximations. Further reading on this can be found in [53].

Since the scattering transform has a structure related to a DCNN, we
can try to find an inverting operator similar to convolutional network gen-
erators, which are used to invert DCNNs. For further reading concerning
the inversion of DCNNs, cf. [9, 22, 35].

Therefore, following [2], let Φ be a fixed operator and assume a set of
training data {xi}i≤T of size T to be given. The goal is to find an operator
which best approximates the inversion of the embedding {Φ(xi)}i≤T on this
data set. To do so, let G be the set of convolutional network generators. We
aim to find an inversion operator G ∈ G that minimizes a L1-loss function
on the training data, i.e.

Ĝ := argminG∈G
1
T

T∑
i=1
‖xi −G(Φ(xi))‖1 . (17)

The inversion operator is consequently created to ensure Ĝ(Φ(xi)) ≈ xi for
all i ≤ T . An essential feature of this lies in the distribution of the out-
put coefficients of the DCNNs. There is a lot of research done on this, e.g.
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[3, 4] for further reading, but still, a lot of questions are not well understood.

Let us now turn towards the scattering transform to which we try to
adapt the DCNN inversion task. In order to create flexibility concerning
the statistical properties of the scattering transform we allow a whitening
of scattering coefficients by a normalization. Following the notation from
the preceding procedure, let Φ = AΦ̄ be this normalization of the windowed
scattering transform Φ̄ = SJ [PJ ]. The created embedding is now supposed
to be inverted by an operator G, see figure 12.

x
A SJ [PJ ] // Φx

x′ (Φx)′Goo

Figure 12: Inverting the scattering operator SJ [PJ ]

In order to create the foundation of a suitable approach for determining
a valuable inverting operator, we want to gain access to the distribution and
the statistical properties of scattering coefficients which the discussion in
the upcoming chapter focuses on.

Note that a possible approach to create an approximate inversion oper-
ator can be found in [1] or [53].

Further, we can embed this into the context of image generation where
we want to exploit the statistical structure of the representation Φx in order
to create images. Therefore, assume we possess detailed information con-
cerning the distribution of coefficients in the scattering vector. Knowing the
statistical details of representations for a class of images in the scattering
domain, we can easily create a sample having the same statistical proper-
ties. Applying an inversion operator to this sample, e.g. as determined by
equation 17, will create an image out of a sample in the scattering domain.
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4 Discussion on Statistics of the Scattering Trans-
form

In order to obtain a deeper insight into the characteristics of scattering coef-
ficients, we evaluate their distribution in several environments. The overall
setup is as follows: We start by creating images as realizations of random
variables, then we compute the scattering transform for these inputs. Hold-
ing the scattering representation of the input images, statistical tests are
used for comparisons. The attached code to run the experiments with is
implemented in Matlab. In the process, we compare the scattering coeffi-
cients for different classes of input realizations such as Bernoulli and (jointly)
Gaussian random variables or realizations of the Ising model. We begin by
testing a universality property in order to establish a canonical model for
scattering coefficients. Further, since there are several reasons to aim for a
Gaussian distribution of scattering coefficients, we evaluate simulations test-
ing the Gaussianization properties of the scattering transform. Therefore,
we allow a whitening of scattering coefficients. During this procedure, we
compare the results to the Fourier-modulus and wavelet transform, which
were both introduced during the derivation of the scattering operator in
chapter 2.

4.1 Methods for Numerical Experiments

In the following, we start working through the used methods for the gen-
eration of test images as well as the implemented version of the scattering
transform, followed by a quick review of suitable statistical methodology
and tests.

4.1.1 Image Generation

The position of a pixel in the image is determined by its spatial coordinates
t. We concentrate on black-and-white-images x(t) for t = (t1, t2), where
only one channel is needed in order to determine the pixel’s color. As a side
remark, note that colored red-green-blue images can be treated in a similar
way by introducing a channel variable v for v ∈ {1, 2, 3} so that an image
can be denoted by x(t, v).

In the first case, we create images with pixels being realizations of a
Bernoulli distribution. Hence, we simply toss a coin independently for each
t which determines the color as 0 or 1, i.e.

x(t) ∼ Bern
(1

2

)
for all t .
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We focus on images of size N ×N for N = 64 and 1 ≤ t1, t2 ≤ N . Examples
are illustrated in figure 13.

Figure 13: Images as realizations of an i.i.d. Bernoulli distribution

The same procedure is run for independent and identically distributed
(i.i.d.) standard Gaussian random variables, where the color is now in R
instead of {0, 1}. Hence,

x(t) ∼ N (0, 1) for all t = (t1, t2)

and again 1 ≤ t1, t2 ≤ N . Examples of the resulting images are presen-
ted in figure 14. Note that although printed in colors, we still work with
one-channel images, where yellow colors indicate highly positive while blue
colors state highly negative values. In what follows, when talking about
a Gaussian distribution without further parameters, we always mean the
standard normal distribution.

Figure 14: Images as realizations of an i.i.d. Gaussian distribution

Turning towards more dependencies among the pixels, we next imple-
ment images with a jointly Gaussian distribution. For two points t = (t1, t2)
and u = (u1, u2) with 1 ≤ t1, t2, u1, u2 ≤ N we consider their periodic
Euclidean distance in an image

dist(t, u) =
(
min{|t1 − u1| , N − |t1 − u1|}2 + min{|t2 − u2| , N − |t2 − u2|}2

)1/2
.
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This allows to define a covariance matrix Σ ∈ RN2×N2 for all points in the
image. The covariance between two points is set to be

Σt,u := (1 + dist(t, u))−α

for α = 1/2 in our case. We then sample an image x due to a jointly
Gaussian distribution with mean 0 and covariance matrix Σ, i.e.

x ∼ N (0,Σ) .

This leads to realizations as shown in figure 15, where again yellow colors
indicate highly positive and blue highly negative values.

Figure 15: Images as realizations of a jointly Gaussian distribution

As a final example, we consider the Ising model, cf. [20, 34, 44], which
plays a very important role in statistical mechanics. In dimensions d ≥
2, the Ising model becomes a very useful model showing phase transition
phenomena. Since we would like to use the Ising model to create images, we
limit our view to the two dimensional case. Therefore, we start with a two
dimensional squared lattice Π ⊆ Z2. For each lattice point t = (t1, t2), we
assign a variable x(t) ∈ {±1} characterizing the spin at its position. This
leads to a spin configuration x = (x(t))t∈Π. Now, we want to represent the
interaction of two adjacent points. As a side remark, note that we could
extend this setup by representing the underlying structure of points by a
graph. For any two points t, t′ ∈ Π, we denote their interaction by It,t′ . If
t, t′ are not nearest neighbors, It,t′ = 0. When considering all interactions
being equal, then for nearest neighbors It,t′ = I > 0. Further, we allow an
external magnetic field, denoted by h, which can be neglected for h = 0.
Combining all this allows to define the Hamiltonian of a state as

H(x) = −1
2
∑
t,t′

It,t′x(t)x(t′)− h
∑
t

x(t) ,

where the factor 1/2 on the first sum is used to rescale the double counting
of neighboring points. Given a temperature T and its inverse temperature

37



β = T−1 ≥ 0, we can define the probability for each possible configuration
as

Pβ(x) = 1
Z

exp(−βH(x))

for Z being the normalization constant.

In order to create realizations of the Ising model, there exist multiple
algorithms with different advantages and drawbacks: Starting with a Met-
ropolis algorithm approach dating back to the 1950s, cf. [7, 40], followed by
the Swendsen-Wang algorithm, cf. [51, 54] or when turning towards prob-
abilistic running time a coupling-from-the-past algorithm, cf. [45, 46]. In
the following applications, we make use of a Matlab implementation of
the Swendsen-Wang algorithm1. Concerning the choice of the temperatur
for the Ising model, note that for very low temperatures, the configurations
are mainly dominated by spins in one direction. This would create images
that constist of large areas of the same color. On the other hand, for high
temperatures, neighboring spins become more and more independent which
leads to images similar to the ones we created by the Bernoulli distribution.
As a consequence, we focus on temperatures near the critical temperature
of the Ising model generating images showing phase transition phenomena
as displayed in figure 16.

Figure 16: Images as realizations of the Ising model at critical temperature

We consider images of size N ×N for N = 64, where the value of each
pixel x(t1, t2) ∈ {±1} for coordinates 1 ≤ t1, t2 ≤ N .

4.1.2 Implementation of the Scattering Transform

In order to compute the scattering transform for the images, we use the
Matlab library ScatNet 0.2 2. The wavelet convolutions are computed by
the use of scaled and rotated versions of a two dimensional Morlet wavelet,

1https://github.com/jzavatoneveth/sw-ising - opened: 29th Mai 2019
2https://www.di.ens.fr/data/software/ - opened: 15th January 2019
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scaled up to J = 4 and orientated in |G| = 8 different directions, see figure
17.

Figure 17: Two dimensional Morlet wavelets ψλ to compute the scattering
transform. Displayed are all eight rotations for one choice of scale j. Again,
yellow indicates positive, dark blue negatives values.

The averaging φ is done over the whole domain and the scattering trans-
form is computed up to M = 2 levels of wavelet transformations. Hence,
including the first averaging of the input, the resulting transform consists
of three levels of output coefficients. Note that referring to [12], at least
99% of the energy of the input is captured within the first two layers of
convolutions. For the first level, there is only one output coefficient, in level
two there are 32 and the third level consists of 384 coefficients. In total,
the computed scattering representation in the simulations consists of 417
coefficients.

4.1.3 Statistical Methodology and Tests

In order to evaluate patterns in the distribution of coefficients, we make
use of the Kolmogorov-Smirnov test (KS-test), cf. [25, 33, 55], being con-
structed to test the null hypothesis of two distribution functions being equal
against the alternative hypothesis of not being equal. We quickly review
the structure of the KS-test starting with testing a set of data against a
theoretical distribution. Given a set of realizations {x1, ..., xn} for a random
variable X, we consider its distribution function to be FX and its empirical
distribution function to be FX,n. The distribution function of the theoretical
distribution is denoted by F . This allows to define the null hypothesis as

H0 : FX(t) = F (t) for all t,
which is tested against the alternative hypothesis

H1 : FX(t) 6= F (t) for at least one t.
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The KS-test statistic is given by

D = sup
t
{|FX,n(t)− F (t)|}

and we reject the null hypothesis in the case that D is larger than a critical
value cα depending on the significance level α which is set a priori and well
approximated by

√
−0.5 ln(α/2)

n .

When comparing two sets of realizations {x1, ..., xn} and {y1, ..., ym}
for random variables X and Y , we can replace the theoretical distribution
function F in the above setting by the (empirical) distribution function of
the second random variable Y . This leads to a null hypothesis

H0 : FX(t) = FY (t) for all t,

which is tested against the alternative hypothesis

H1 : FX(t) 6= FY (t) for at least one t.

The test statistic is adjusted to be

D = sup
t
{|FX,n(t)− FY,m(t)|} .

Again, we reject H0 if the value of D extends some critial value cα, which
can now be approximated by cα = Kα

√
n+m
nm for some constant Kα depend-

ing on the significance level α, e.g. K0.05 ≈ 1.36.

Since we are not only interested if the null hypothesis is accepted or
rejected, but would further like to measure the strength of the outcome,
we shortly have a look at the p-value. Loosely speaking, the p-value is the
probability to see the given data (and more extreme data) under the null
hypothesis. Small p-values lead to the conclusion of rejecting the null hypo-
thesis whereas high p-values (i.e. closer to 1) indicate an acceptance of the
null hypothesis. Note that we usually reject the null hypothesis, if the given
p-value is less than the significance level α of the test. For further reading
concerning p-values, we refer to [25, 50].

In our application, we run the Kolmogorov-Smirnov test at a significance
level of α = 0.05. In the version of comparing data to a theoretical distribu-
tion, unless stated otherwise, we test against a standard normal distribution.

Concerning empirical moments of data, to fix some notation, let Z =
{z1, ..., zT } be a set of data. The empirical mean of this data set is then
given by

µZ = 1
T

T∑
i=1

zi
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and the empirical variance can be defined to be

σZ = 1
T − 1

T∑
i=1

(zi − µZ)2 .

Further, to allow the comparison of the skewness, i.e. the third order mo-
ment of a random variable normalized by its mean and variance, we consider
the empirical third order moment of the form

skewZ =
1
T

∑T
i=1(zi − µZ)3
√
σZ

3 =
1
T

∑T
i=1(zi − µZ)3(

1
T−1

∑T
i=1(zi − µZ)2

)3/2 .

Using this value, we can measure a possible asymmetric behavior of the data.
Note that for a Gaussian distribution, the skewness is zero. Additionally,
when considering fourth order moments of random variables normalized by
mean and variance, we can define the empirical kurtosis as

kurtZ =
1
T

∑T
i=1(zi − µZ)4(

1
T

∑T
i=1(zi − µZ)2

)2 .

This measures how likely a distribution produces outliers or how heavy a
distribution is dominated by its tails. A standard normal distribution has
a kurtosis of three. The excess kurtosis is defined to be the kurtosis minus
three in order to have a zero value for a standard Gaussian.

4.2 The Canonical Model

Aiming for a universality property for the scattering coefficients, we start
by comparing the distribution of coefficients for different kinds of input. To
fix some notation, for a set of images Y := {y1, ..., yT }, each yi being a
realization of Y , we denote by

SJ [p]Y := {SJ [p]y1, ..., SJ [p]yT }

the scattering transform along path p for all images in Y.

As mentioned in the chapter before, we compare the scattering repres-
entations of images X := {x1, ..., xT } created as realizations from X for
Bernoulli random variables, jointly Gaussian random variables and realiza-
tions of the Ising model to samples R := {r1, ..., rT } from R created by i.i.d.
Gaussian random variables. To do so, we generate T = 5000 images, except
for the Ising model where T = 2000. Afterwards we compute the scattering
transform for each realization which leads to a sample of size T for every
scattering coefficient. In order to make the distributions comparable, we
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are normalizing each value in the set of coefficients SJ [p]Y by the empirical
mean µSJ [p]Y and empirical variance σSJ [p]Y for Y = X ,R, i.e.

(σSJ [p]Y)−1/2
(
SJ [p]y − µSJ [p]Y

)
leading to a normalized representation of SJ [p]Y.

Exploiting this, we can now compare the distribution of the two normal-
ized scattering representations for random inputs X and R by the use of the
KS-test3. The results are shown in table 1. The first column denotes the
method to create images for the test set X as described in chapter 4.1.1.
We compare this images to our canonical form of images R created as real-
izations of R sampled from i.i.d. Gaussian random variables. In both cases,
we apply the scattering transform to each of the images and normalize the
coefficients by its empirical mean and variance. The number of rejected null
hypotheses (the two distributions are equal) are displayed in the following
three columns sorted by levels (recall that level one consists of one coeffi-
cient, level two of 32 and level three of 384). The last column gives the total
percentage of null hypotheses which are rejected.

Family X Family R Level 1 Level 2 Level 3 Total
IID Gaussian IID Gaussian 0 0 0 0.0%
Bernoulli IID Gaussian 0 0 0 0.0%
Jointly Gaussian IID Gaussian 0 0 0 0.0%
Ising Model T > Tc IID Gaussian 0 0 1 0.2 %
Ising Model T = Tc IID Gaussian 0 3 1 1.0 %
Ising Model T < Tc IID Gaussian 0 1 0 0.2 %

Table 1: Comparing single scattering coefficients for different families of
inputs. We display the rejected null hypotheses per level and a total per-
centage.

As a consequence of this KS-test results, a first idea of suggesting that
the scattering coefficients always follow a particular law, modulated by mean
and variance depending on the input’s properties, does not seem far-fetched.
Nonetheless, a deeper discussion is required due to a possibly high type
II error, i.e. failing to reject the null hypothesis although it is incorrect.
Instead of normalizing each entry of the scattering vector itself, another
natural approach is to normalize the whole vector SJ [PJ ]x by its covariance
matrix Σ, i.e. computing

Σ−1/2(SJ [PJ ]x− µ) .
3Matlab code to reproduce all experiments can be found attached
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Doing so leads to equivalent results concerning the number of rejected null
hypotheses of the KS-test as the ones in table 1.

To examine the proposed universality behavior, in figures 19 and 20
we illustrate examples of quantile-quantile plots for some coefficients. For
purposes of comparison, we start by plotting quantiles of i.i.d. Gaussian in-
put against the quantiles of different i.i.d. Gaussian realizations in figure 18.

Figure 18: Quantile-quantile plots. Left: Plot the quantiles of a level two
coefficient for two sets of i.i.d. Gaussian input against each other. Right:
same for a level three coefficient.

Afterwards, in figure 19 we compare the normalized scattering coeffi-
cients for jointly Gaussian input images to the ones created by an i.i.d.
Gaussian distribution. On the left, we plot the quantiles of a level two coef-
ficient against each other. On the right, we do the same for a level three
coefficient. The qq-plots show a straight line, indicating that the data sets
follow the same distribution.

In the case of the Ising model input in figure 20, we plot the quantiles of
two third level coefficients against the quantiles for an i.i.d. Gaussian input
class. The outcome is the same as before: the qq-plots indicate straight
lines proposing an identical distribution of coefficients. The same behavior
is obtained for all other tested inputs as well as all other coefficients. Further
plots can be found attached.

When having a closer look at empirical cumulative distribution functions
(ECDF) of scattering coefficients, in nearly all cases of comparisons, i.e. for
any coefficient as well as any input, we obtain congruent ECDFs underlining
the hypothesis of an identical law for scattering coefficients again. This be-
havior can be used as a possible explanation of the results of the KS-tests,
since thereby, we used the maximal distance between the two ECDFs as
test statistic. Having nearly congruent ECDFs and hence very small dis-
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Figure 19: Quantile-quantile plots. Left: Plot the quantiles of a level two
coefficient for a jointly Gaussian input against the quantiles of the same
coefficient from an i.i.d. Gaussian input. Right: same for a level three
coefficient.

Figure 20: Quantile-quantile plots. Plot the quantiles of two level three coef-
ficient for an Ising model input against the quantiles of the same coefficient
from an i.i.d. Gaussian input.

tances between them does not allow a rejection of the null hypothesis in
the KS-test. For illustration of examples, see figure 21, where we plot the
empirical cumulative distribution function of a third level coefficient for the
Ising model input class together with the ECDF of the same coefficient for
i.i.d. Gaussian images.

During our development of the scattering transform in chapter 2, we
encountered the Fourier-modulus transformation of functions as well as the
wavelet transform as possible candidates for suitable representations of im-
ages. We want to compare the recently described behavior of the scattering
transform to the Fourier-modulus and the wavelet transform.
To do so, as before, we take different families of input images, i.e. Bernoulli,
jointly Gaussian and Ising model realizations. We compute the Fourier-
modulus and wavelet transform, normalize by empirical mean and variance
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Figure 21: Plot the empirical distribution functions of a level two coefficient
for an Ising model input and the ECDF of the same coefficient from an i.i.d.
Gaussian input.

and compare the behavior to the one of i.i.d. Gaussian input images being
transformed in the same way. Note that the wavelet transform is computed
with Morlet wavelets. KS-tests are again evaluted as before, the results are
shown in table 2.

Family X Family R Fourier-Modulus Wavelet
Bernoulli IID Gaussian 22.0 % 11.4 %
Jointly Gaussian IID Gaussian 30.1 % 10.1 %
Ising Model T = Tc IID Gaussian 54.4 % 98.5 %

Table 2: Comparing the Fourier-modulus and wavelet transform of different
families of inputs to the transformation of an i.i.d. Gaussian class. We
display the percentage of coefficients for which the null hypothesis can be
rejected.

When trying to adapt the approach for the scattering transform to
Fourier-modulus or wavelet transform, we can see while focusing on the
Ising model that more than 50% in the one and 98% of coefficients in the
other case do allow a rejection of the null hypothesis of following the same
distribution at a significance level of α = 0.05. Even in the case of independ-
ent Bernoulli images, we can reject the null hypothesis in every fifth or tenth
trial. Comparing the results of table 2 to the ones of the scattering trans-
form in table 1 clearly indicates that the universality property suggested for
the scattering transform cannot be adapted to the cases of Fourier-modulus
or wavelet transform.
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Figure 22: Histogram with relative frequencies of p-values for KS-test of
Fourier-modulus for jointly Gaussian images.

Illustrating this, we can have a look at the p-values of the KS-test in the
case of jointly Gaussian input images being transformed with the Fourier-
modulus operation. Figure 22 shows the tendency of the p-values towards
zero which also indicates a contradiction of the data with the null hypothesis.

Compared to Fourier-modulus and wavelet transform, the scattering vec-
tor shows a much more identically distributed behavior, inspiring the idea of
exploiting this universality property for the scattering transform. It could be
used to define a canonical model for the distribution of scattering coefficients
SJ [p]x. Starting with an i.i.d. Gaussian random image r, we compute the
scattering transform Φ̄r := SJ [PJ ]r. Further, we normalize each coefficient
SJ [p]r to get a whitened representation Φr. Running the same procedure
for another input image x, we obtain two representations Φr and Φx which
follow the same distribution. We can illustrate the canonical model as in
figure 23, where the normalization of the scattering vector Φ̄x is meant com-
ponentwise.

x
SJ [PJ ] // Φ̄x

σ−1/2(Id−µ) // Φx
o

r
SJ [PJ ] // Φ̄r

σ−1/2(Id−µ) // Φr
Figure 23: The canonical model
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4.3 Gaussianization with Scattering Coefficients

Since many methods in image processing share as a common goal to Gaus-
sianize the output values in order to tame their distributions, cf. [14, 31],
we want to extend our simulations to test a possible Gaussian behavior of
scattering coefficients. As in chapter 3.3, we allow a whitening A of the
coefficients which leads to an approach as illustrated in figure 26. In the up-
coming subsections, we are testing different transformations A and compare
their results.

4.3.1 Whitening each Coefficient

Starting with the same setup as for the canonical model, we are compar-
ing normalized scattering coefficients for different classes of images X =
{x1, .., xT } to a standard normal distribution using the Kolmogorov-Smirnov
test. To do so, we whiten each coefficient by its empirical mean and vari-
ance. Sample sizes are again T = 5000, except for the Ising model, where
T = 2000. The results are displayed in table 3 following a similar logic as
table 1. The given values indicate the number of rejected null hypothesis of
the KS-test.

Family X Level 1 Level 2 Level 3 Total
IID Gaussian 0 12 289 72.2 %
Bernoulli 0 12 285 71.2 %
Jointly Gaussian 0 12 291 72.7 %
Ising Model T > Tc 0 6 194 48.0 %
Ising Model T = Tc 1 3 192 47.0 %
Ising Model T < Tc 0 5 180 44.4 %

Table 3: Comparing single scattering coefficients for different families of
inputs to a Gaussian distribution after whitening. We display rejected null
hypotheses.

As a result, the null hypothesis that the law of scattering coefficients fol-
lows a normal distribution can be rejected in at least 40% of all investigated
cases, for some image classes even more than 70%. Note that the differ-
ent sample sizes can cause the discrepancy in the percentages between the
Ising model tests and the other inputs due to the occurance of the sample
size in the critical values of the test statistic. Since there remain several
coefficients, for which the null hypothesis is not rejected, we can hope for
a behavior of coefficients, which is not highly different to the attitude of a
Gaussian. Whitening the scattering vector SJ [PJ ]x by its covariance matrix
instead of normalizing each single coefficient SJ [p]x by its empirical mean
and variance shows similar effects as the results in table 3. In order to get

47



a better intuition, we start having a look at empirical distribution functions
of scattering coefficients and qq-plots against a normal distribution as illus-
trated in figure 24. Note that using different image classes as input as well
as choosing other coefficients does not really affect the plots.

Figure 24: Left: Plot the quantiles of a level two coefficient for Ising model
images against the quantiles of a standard normal distribution. Right:
ECDF of a level two scattering coefficient using Ising model inputs in blue.
The theoretical CDF of a standard Gaussian distribution is plotted in red.

Figure 24 indicates a right-skewed behavior of scattering coefficients
when normalizing each coefficient by its empirical mean and variance. This
seems reasonable while having a look on the definition of the scattering trans-
form. Recall, that the scattering transform of x along a path p = (λ1, ..., λm)
was defined to be

|||x ? ψλ1 | ? ψλ2 | ... ? ψλm | ? φ .

In every iteration, the modulus operator pushes all values onto the positive
real line which introduces a lower bound on the domain of scattering coeffi-
cients causing a right-skewed distribution.

In order to measure the skewed behavior of the scattering transform,
we turn our view towards its empirical skewness. Therefore, we compute
the empirical third order moment of each scattering coefficient for different
classes of input. In table 4, we show the minimal and maximal value for
skewness as well as the median, i.e. the threshold which separates the lower
half of the skewness values from the upper one.

Evaluating the empirical skewness of the scattering data, we obtain that
at least 50% of coefficients show a positive skewed behavior of at least 0.22
up to 0.66 for the Ising case. For the other classes of input images we even
obtain half of the skewness values in the interval [0.30, 0.62]. This noticeable
deviation from a standard normal distribution can be used to underline and
explain the rejection of the Gaussian hypothesis in the KS-tests. In order
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Family X Min. skew Max. skew Median
IID Gaussian 0.01 0.62 0.32
Bernoulli -0.05 0.59 0.32
Jointly Gaussian -0.02 0.53 0.30
Ising Model T = Tc -0.04 0.66 0.22

Table 4: Empirical skewness of scattering coefficients for different classes of
inputs. Shown are the minimal and maximal value for skewness among the
417 computed values as well as the median.

to visualize this, we plot the histrogram of a third level coefficient for the
Ising model input class in figure 25 as an example.

Figure 25: Histogram of the distribution of a third level scattering coeffi-
cient, computed for inputs of the Ising model at critical temperature. The
red line shows the bell curve of a standard normal distribution.

As before, we further want to compare these results to the behavior
of the Fourier-modulus and the wavelet transform and examine a possible
Gaussian behavior in these representations. Therefore, we take input images
from our classes of i.i.d. Gaussian, Bernoulli, jointly Gaussian or the Ising
model, compute the transformation, normalize the coefficients by mean and
variance and perform a KS-test for each coefficient comparing the data set
to a standard normal distribution. The computation is done in an equi-
valent way as described in chapter 4.2. The results are illustrated in table
5. We can base ourselves on a percentage of at least 94.9% for null hypo-
theses being rejected in case of the Ising model, which indicates a highly
non-Gaussian behavior of the corresponding coefficients.

Comparing this to the results for scattering coefficients, the latter seem
to be closer to a Gaussian distribution than Fourier-modulus or wavelet coef-
ficients. Nonetheless, scattering coefficients still show a slightly right-skewed
behavior in their distributions after normalization with empirical mean and
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Family X Fourier-Modulus Wavelet
IID Gaussian 92.3 % 38.0 %
Bernoulli 95.0 % 12.1 %
Jointly Gaussian 90.5 % 8.1 %
Ising Model T = Tc 94.9 % 99.9 %

Table 5: Comparing the Fourier-modulus and wavelet transform of different
families of inputs to a Gaussian distribution after whitening. We display
the percentage of rejected null hypotheses.

variance which leads to a rejection of the Gaussian hypothesis for at least
two out of five scattering coefficients in the KS-test. Following a rule of
thumb for skewness, only values larger than 0.5 indicate moderately skewed
data, what suggests that the skewness may be removed for the majority of
coefficients.

4.3.2 Rotation and Dimension Reduction

Since the distribution of scattering coefficients seems to be reasonably close
to a Gaussian, we would like to test a principal component analysis (PCA)
approach for the normalization. PCA was originally introduced by Pearson
in [42] and has become a widely spread tool in statistics and data processing,
cf. [24, 28, 56]. To get an idea of this, consider a set of data in some high
dimensional space. Intuitively, the aim is to fit a lower dimensional ellipsoid,
let us say of dimension d, to the data. Hence, when dealing with data
generated from a Gaussian distribution, this fit will work perfectly, whereas
there might occur some problems in the cases of data following distributions
far away from a Gaussian.

We inspire ourselves by the whitening approach from [2] which mainly
mimics the PCA concept. Therefore, as in the previous setup, we consider
a set {x1, ..., xT } of T = 5000 (T = 2000 in case of the Ising model) images
created as explained in chapter 4.1.1. We compute the scattering trans-
form for each image, leading to a set of T scattering vectors {Φ̄xi}i≤T :=
{SJ [PJ ]xi}i≤T . To perform the desired normalization, let µ be the empirical
mean and Σ be the empirical covariance matrix for the scattering coefficients.
In order to reduce the variability among the coefficients, instead of only nor-
malizing with the covariance matrix, as described, we also want to project
the scattering representation into a lower dimensional space of dimension d.
Therefore, we compute the eigendecomposition of the covariance matrix

Σ = WDW t ,

where D is a diagonal matrix consisting of eigenvalues of Σ and W contains
the corresponding eigenvectors, the superscript t denotes the transposed of
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the given matrix. To find a suitable subspace for the projection, we consider
the d largest eigenvalues and the subspace spanned by their corresponding
eigenvectors. In PCA approaches, these are the so-called principal com-
ponents. Denote by Wd the truncated version of the matrix W to these d
eigenvectors and by

Projd = WdW
t
d

the orthogonal projection onto the introduced subspace.
As a side remark, when choosing a value for d, we have a trade-off between
the reduction of variability at the expense of reducing the distance of two
points in the scattering domain. The latter can cause problems when trying
to distinguish two different images and hence create trouble in classification
tasks. In order to control this compromise, a bi-Lipschitz condition as in [2]
of the form that there exists an α > 0 satisfying

1
α
‖xi − xj‖ ≤

∥∥∥ProjdΦ̄xi − ProjdΦ̄xj
∥∥∥ ≤ ‖xi − xj‖

for all i, j ≤ T should be imposed.
Now, instead of normalizing by Σ−1/2, we only rotate the scattering rep-

resentations once and divide by the square root of the eigenvalues. There-
fore, introduce the matrix

C
−1/2
d := D

−1/2
d W t

d ,

where D−1/2
d is the inversed square root of D projected to the space spanned

by the d eigenvectors corresponding to the d largest eigenvalues of Σ. Hence,
when multiplying by W t

d we perform a change of basis which is not reversed
later. Afterwards, we normalize the variance of the data in each direction
of the new basis vectors. As a side remark, note that the data remains in
the lower dimensional space with new basis vectors due to omitting the final
multiplication with Wd. Concluding, normalizing the scattering vectors is
done by a subtraction of the mean and whitening by Cd, i.e.

C
−1/2
d (Φ̄x− µ) .

This leads to a representation as illustrated in figure 26 which we would like
to compare to a Gaussian distribution.

x
SJ [PJ ] // Φ̄x

C−
1
2 (Id−µ) // Φx ?∼ N (0,1)

Figure 26: Normalized and truncated scattering coefficients

Therefore, we evaluate KS-tests in the similar setup as before by com-
puting images as realizations of random variables, calculating the scattering
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representation of those and finally normalize by mean and truncated cov-
ariance matrix projecting into the lower dimensional space with new basis
vectors. For our simulations, we choose d = 100 in one case and d be-
ing equal to the dimension of the scattering domain in the other case (i.e.
d = 417). In table 6 we show rejected null hypotheses of the KS-test,
comparing the distribution of the normalized and truncated scattering coef-
ficients to a standard normal distribution.

Family X Truncated to d = 100 Without truncation
IID Gaussian 0.0 % 0.0 %
Bernoulli 0.0 % 0.0 %
Jointly Gaussian 0.0 % 0.0 %
Ising Model T = Tc 2.0 % 0.5 %

Table 6: Comparing dimensional truncated scattering coefficients for dif-
ferent families of inputs to a Gaussian distribution after whitening by the
truncated covariance matrix C−1/2

d . We display the percentage of coefficients
for which the null hypothesis can be rejected.

For the case of truncating to d = 100, we obtain a number of at most
2.0% of cases where we can reject the null hypothesis that coefficients fol-
low a standard Gaussian distribution. When comparing these results to the
ones we generated before by a normalization of each coefficient itself or with
the covariance matrix, we recognize a massive change in the number of non-
rejected null hypotheses going now up to a hundred percent. Consequently,
in contrast to the results of the preceding experiments, the hypothesis that
the coefficients do follow a Gaussian distribution cannot be rejected in this
new environment anymore. As possible explanations, we take either the re-
duction of dimension or the rotation during the process of normalization into
account. When further considering the percentages for the case of d = 417,
i.e. the case where we did not truncate at all, thus just normalized the
data after a change of basis, we receive similar results as for d = 100. Con-
sequently, it seems that the rotation is responsible for the different behavior
concerning the rejection of the Gaussian hypothesis and, highly remarkable,
it appears to be no difference whatever the dimension of the truncated space
is chosen to be.

To gain a deeper insight, we focus on the case of the Ising model at
critical temperature for the truncated scattering vector to d = 100 dimen-
sions. The majority, i.e. all except the last entries in the scattering vector,
shows marginals very similar to Gaussians, typified in the first two columns
of figure 27. The distribution of the last coefficients slowly moves more and
more away from a Gaussian, plotted in figure 27 in columns three and four.
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At first, some slight right-skewness appears similar to the cases when nor-
malizing each coefficient by its variance. Finally, the last coefficient shows
a heavy-tailed behavior.

Figure 27: qq-plots and histograms for scattering coefficients of the 100-
dimensional truncated scattering vector computed for inputs of the Ising
model at critical temperature compared to a standard normal distribution.
From left to right we plot the 29th, 91st, 99th and 100th coefficient, qq-plot
against a standard Gaussian on top and its histogram below.

Note that due to the rotation, the entries in the scattering vector do
no longer correspond to one fixed sequence of wavelet convolutions, modu-
lus and averaging, but instead are linear combinations of these values. Still,
since we normalized, all rotated coefficients do have zero mean and unit vari-
ance. When having a look at the qq-plots and histograms for d = 417, the
same behavior occurs. All coefficients except a few seem to follow a Gaus-
sian distribution whereas those show an equivalent behavior as the ones in
the 100-dimensional case.

In order to compare this method of whitening to the intuitive normal-
ization with the covariance matrix or the variance for each coefficient, we
evaluate the empirical third order moments in the same way as before (com-
pare to table 4) to get a measure for the skewness. In table 7, we plot the
minimal and maximal skewness, as well as the 0.05 and 0.95-quantiles.

Hence, by the truncation and rotation of scattering vectors, we obtain
marginal distributions a lot less skewed than before. In all cases of input
images, the distribution of at least 90% of coefficients shows a skewness
in the interval [−0.1, 0.1] which can be read as approximately symmetric.
Only for the Ising model at critical temperature, we obtain coefficients still
taking skewness values of up to 0.63 indicating moderate skewness in their
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Family X Min. skew Max. skew 0.05-quant. 0.95-quant.
IID Gaussian -0.17 0.10 -0.07 0.05
Bernoulli -0.17 0.11 -0.07 0.06
Jointly Gauss. -0.09 0.18 -0.07 0.08
Ising Model -0.25 0.63 -0.10 0.10

Table 7: Empirical skewness of truncated scattering coefficients for different
classes of inputs. Shown are the minimal and maximal value for skewness
among the 100 computed values as well as the 0.05 and 0.95-quantiles.

distribution. This coincides with the third column of figure 27 displaying
a right-skewed coefficient of the scattering representation. When further
evaluating fourth order moment to get access to the kurtosis of the distribu-
tions, we obtain results displayed in table 8. Note that we show the excess
kurtosis, i.e. the kurtosis minus three in order to set the kurtosis for the
standard normal distribution to zero. Again, for different classes of input we
display the minimal and maximal values among the 100 kurtosis numbers
for truncated scattering coefficients as well as the 0.05 and 0.95-quantiles.

Family X Min. kurt Max. kurt 0.05-quant. 0.95-quant.
IID Gaussian -0.16 0.23 -0.12 0.13
Bernoulli -0.24 0.19 -0.10 0.13
Jointly Gauss. -0.14 0.31 -0.09 0.20
Ising Model -0.83 0.41 -0.13 0.36

Table 8: Empirical excess kurtosis of truncated scattering coefficients for dif-
ferent classes of inputs. Shown are the minimal and maximal value for kur-
tosis among the 100 computed values as well as the 0.05 and 0.95-quantiles.

In the case of i.i.d. Gaussian, Bernoulli and jointly Gaussian input im-
ages, the range of the kurtosis is reasonably close to zero, indicating a very
Gaussian-like behavior. For the Ising model at critical temperature, the
majority of values, i.e. 90%, is also within a distance of at most 0.36 to
zero. But there are a few outliers exhibiting a medium kurtosis. This cor-
responds to the intuition of the illustrations in figure 27, where the last
coefficient shows a heavy-tailed behavior leading to an excess kurtosis dif-
ferent from zero. We obtain equivalent results in the case of 417 dimensions.

In summary, following a PCA approach by normalizing with a truncated
covariance matrix which also rotates the scattering coefficients suggests a
much more Gaussian behavior for the majority of coefficients. This Gaussi-
anization for the major part of coefficients seems to be at the expense of a
few remaining ones, showing a distribution still different from a Gaussian.
Having a Gaussian distribution of coefficients would propose a very desirable
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statistical behavior of the transformed scattering vectors.
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5 Distribution of Scattering Coefficients in Com-
parison to Fourier-Modulus and Wavelet Trans-
form

Finally, we would like to draw a conclusion from the numerical results of
the performed experiments. Starting with an input image x and an image
created as a sample from i.i.d. standard Gaussian random variables r, we
can compute the scattering transform for both, denoted by Φ̄x and Φ̄r. Af-
terwards, when performing a whitening by mean and variance for each single
coefficient or normalizing the whole scattering vector by its covariance mat-
rix, we obtain the same distributional behavior no matter which class of
input image we use. This universality property may allow the introduction
of a canonical model for the distribution of scattering coefficients. In the case
of refining the normalization by a PCA approach, as described in chapter
4.3.2, we can further not reject the Gaussian hypothesis anymore. This leads
to the assumption that the distribution of scattering coefficients is already
close to a Gaussian distribution even if we could reject this in the case of
whitening by variance or covariance and mean based on the results of the
KS-tests. Nonetheless, a suitable rotation of the scattering representation
Gaussianizes the majority of coefficients at the expense of a few coefficients
whose distribution cannot be Gaussianized or is even further apart from a
Gaussian than before. A different approach to get rid of the right-skewed
behavior of scattering coefficients could consist of applying a transforma-
tion from the ladder of powers introduced in [52]. Matching results for this
type of transformations to the PCA-inspired rotating modification could be
a point of interest in future work.
Comparing the scattering representation to the cases of the Fourier-modulus
or wavelet transform, we could not recognize a similar behavior for those two
transformations: neither while aiming for a canonical model, nor comparing
to a Gaussian distribution. In both cases, any of the equivalence hypotheses
could be rejected at a significance level of α = 0.05 for the majority of coef-
ficients. For illustration purposes of this synthesis, see figure 28, where we
denote by A the chosen whitening, either by mean and variance, covariance
or truncated covariance matrix. The transforms Ψx and Ψr represent the
Fourier-modulus or wavelet transform.

ΨxHH
(N (0,1)�) �

��

xoo SJ [PJ ] // Φ̄x A // ΦxVV
∼ (∼N (0,1))
		

Ψr roo SJ [PJ ] // Φ̄r A // Φr

Figure 28: Comparing distributions of Fourier-modulus, wavelet and scat-
tering transform
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Concerning the used methods, in the cases where the null hypothesis
of coefficients sharing a common (Gaussian) law could not be rejected, the
issue emerges if the Kolmogorov-Smirnov test is the best possible way to
compare the behavior in distributions.

When going back to the inversion task mentioned in chapter 3.3 and
the corresponding image generation as displayed in figure 12, a naturally
arising question is, how the different approaches of whitening would perform
in this environment. Evaluating this could be a first step towards further
indication on distributional characteristics of the scattering transform. Even
further, inspired by the image generation with the scattering transform from
Gaussian white noise in [2], we could possibly extend this by the canonical
model proposed in chapter 4.2 and compare their behaviors. This could lead
to an extended inverison model as illustrated in figure 29.

x
SJ [PJ ] // Φ̄x A // ΦxTT

∼

��

x′ (Φ̄x)′oo

r // Φ̄r // Φr

A−1
jj

Figure 29: The extended inversion model

In conclusion, further research on this from the numerical point of view
and more important from the analytical one is required to get a complete
understanding of the underlying behavior of scattering coefficients.
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