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1 Preliminaries on SSPDEs

Chapter 1 - Preliminaries on SSPDEs

We want to study the dynamic Φ4
3 model, i.e. the equation given by

∂tϕ = ∆ϕ− ϕ3 − rϕ+ Ξ (1.1)

where x ∈ T3 is the torus, t ∈ [0, τ ], τ > 0 almost surely and Ξ is space-time white noise. This
equation belongs to a class of nonlinear stochastic PDEs of the form

∂tu = ∆u+ V (u) + Ξ.

Since Ξ is a distribution, the equation is not well-defined as nonlinear functions of distributions
are ill-defined objects. If one is interested in properties of these equations like scaling properties
or stationary states, one uses regularized versions of these equations where the noise is replaced
by a mollified version. The question we will adress is well-posedness of the equation without
the regularization, i.e. we will study the limiting problem of the regularized versions. Since
the solutions are expected to have weak regularity, setting up a solution theory is a difficult
task and will rely on perturbative analysis. It will turn out that random fields occuring in
this analysis will diverge. These kinds of divergencies are similar to problems in quantum field
theory and we will use rigorous methods known from the theory of renormalization to deal with
these divergencies. The restriction to three space dimensions comes from the assumption of
sub-criticality which will be discussed below and, in physical language, should be thought of
as super-renormalizability. The renormalization appears in the equation as an additive linear
term with coefficient "r = +∞".
In recent years, there have appeared several methods to deal with the renormalization problem.
Most notably Hairer’s theory of regularity structures and Gubinelli’s, Imkeller’s and Perkowski’s
theory of paracontrolled distributions. We will study the equation using the method of renor-
malization group introduced by Antti Kupiainen. For more details on the history of solutions,
see below.

1.1 Space-time white noise

We start by defining the space-time white noise for any dimension d > 0 Ξ which is the
indeterministic part of the equation. Formally, Ξ is a Gaussian random field on R× Td, i.e. Ξ

is a Gaussian random variable on R× Td with covariance

E[Ξ(t, x)Ξ(t′, x′)] = δ(t′ − t)δ(x′ − x).

This holds true only formally, there is no coordinate process. Instead Ξ is a random distribution,
i.e. a random element of S ′(R× Td) which is a centered Gaussian with covariance

E[Ξ(η1)Ξ(η2)] =

ˆ
R×Td

η1(t, x)η2(t, x) dtdx.
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1 Preliminaries on SSPDEs

We will need the scaling behaviour of space-time white noise to understand the scaling behaviour
of the equation. Define for τ, λ > 0 the scaling operator sτ,λ by

sτ,λη(t, x) = τλdη(τt, λx).

If η is defined on the torus, then sτ,λη(t, x) is defined on the rescaled torus λ−1Td. We want to
give sense to the rescaled space-time white noise, i.e. a random distribution Ξτ,λ such that

(Ξτ,λ, η) = (Ξ, sτ,λη)

where η ∈ S ′(R×λ−1Td), i.e. Ξτ,λ is a random distribution on R×λ−1Td. If Ξ were a function,
we could just apply the adjoint and get Ξτ,λ(t, x) = Ξ(τ−1t, λ−1x). Of course, Ξτ,λ is again a
centered Gaussian with variance given by

E[(Ξτ,λ, η)2] = E[(Ξ, sτ,λη)2]

= τ2λ2d

ˆ
R×Td

η(τt, λx)2 dtdx

= τλd
ˆ
R×λ−1Td

η(t, x)2 dtdx.

We conclude that if Ξλ is space-time white noise on R× λT, then Ξτ,λ
d
= τ−1/2λ−d/2Ξλ.

We want to determine the regularity of space-time white noise. One fruitful choice is to measure
space-time white noise in (parabolically scaled) Besov spaces Bα∞,∞. Although later we will
use negative index Sobolev spaces, to get a regularity theory for the linear equation, we will
introduce the Besov spaces, see e.g. ??.
We will use the notation ‖(t, x)− (t′, x′)‖s = |t− t′|

1
2 +

∑d
i=1 |xi − x′i|, the parabolic distance.

(1.1) Definition
For r ∈ N denote by Br the set of smooth η : Rd+1 → R supported on the unit ball w.r.t. ‖.‖s
and ‖η‖Cr ≤ 1 where

‖η‖Cr = sup
α:|α|≤r

‖Dαη‖∞.

Suppose α < 0, define the space Cαs to be the set of all distributions u ∈ S ′(Rd+1) such that for
any compact set K ⊂ Rd+1 it holds

‖u‖Cαs (K) = sup
(t,x)∈K

sup
η∈Br
λ∈(0,1]

∣∣∣∣∣u(Sλ(t,x)η)

λα

∣∣∣∣∣ <∞
where we denote Sλ(t,x)η(t′, x′) = λ−d−2η(λ−2(t′ − t), λ−1(x′ − x)) and r = d−αe. �

One can also define these spaces for α > 0 and for α ∈ (0, 1) they will agree with classical
Hölder spaces. Since we are only going to need the spaces for α < 0, we omit the discussion
here.
The regularity of Ξ in terms of the Cαs -spaces follows from a Kolmogorov type theorem. Its
proof is basically the same as the one for the classical Kolmogorov theorem.
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1 Preliminaries on SSPDEs

(1.2) Theorem
Assume we have a random distribution ξ on Rd+1, that is a stochastic process indexed on
S(Rd+1) (ξ(·)) that is linear as a map S(Rd+1) to the space of random variables.
Fix α < 0 and p ≥ 1. Assume there is a constant C such that for any (t, x) ∈ Rd+1 and for
all η ∈ S(Rd+1) that are supported in the unit ball of Rd+1 (in parabolic scaling) and satisfy
‖η‖∞ ≤ 1, one has

E[
∣∣∣ξ(Sλ(t,x)η)

∣∣∣p] ≤ Cλαp for any λ ∈ (0, 1],

then there exists a random distribution ξ̃ such that for all η ∈ S(Rd+1) it is ξ(η) = ξ̃(η) a.s.
Furthermore, for any α′ < α− d+2

p and any compact subset K ⊂ Rd+1, it holds

E[‖ξ̃‖pCαs (K)] <∞. �

We can compute that for the space-time white noise Ξ, it is

E
[
Ξ(Sλ(t,x)η)2

]
. λ−d−2.

In particular, Ξ ∈ Cαs for any α < −d
2 − 1.

1.2 Scaling behaviour and subcriticality

We want to study the scaling behaviour of the equation (1.1). Before we do this, we first
identify the scaling behaviour of the linearized equation

∂tϕ = ∆ϕ+ Ξ.

Define for λ > 0 and scaling exponents α, β, γ > 0

ϕ̂(t, x) = λαϕ(λβt, λγx).

Then ϕ̂ is a function on R× λ−βT. Furthermore, define

Ξ̂ = λβ/2λdγ/2Ξλβ ,λγ .

We have already seen that Ξ̂ = Ξλγ where the latter is space-time white noise on R × λγT.
Inserting the scaling in the equation, it follows

∂tϕ̂ = λβ−2γ∆ϕ̂+ λα+β/2−dγ/2Ξ̂.

Therefore, set

γ = 1, β = 2, α =
d

2
− 1

and we see that ϕ̂ d
= ϕλ where ϕλ is the solution to the equation on the rescaled torus, thus

the equation is scale invariant.
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1 Preliminaries on SSPDEs

Applying the scaling ϕ̂(t, x) = λd/2−1ϕ(λ2t, λx) to (1.1) without the renormalization, we
obtain

∂tϕ̂(t, x) = ∆ϕ̂− λ4−dϕ̂(t, x) + Ξ̂.

In the limit λ → 0, the prefactor in front of the nonlinear term vanishes only if the spatial
dimension is strictly less than 4. This is called the subcritical regime. It means that the small-
scale terms are described by the linearized problem and there, the nonlinearity is not very
present.

1.3 Why renormalization?

We will study the equation in d = 3, i.e. we are in the subcritical regime. In d = 3, by Schauder
theory ϕ will only be a distribution. Since nonlinear functions of distributions are in general
not defined, we need to make sense of our concept of solution. The usual way to interpret
nonlinear problems with irregular objects is to regularize the equation and study convergence
properties of the solutions of the regularized equations. The problem that arises is that either
these solutions fail to converge at all or converge to an uninteresting limit. It was shown that
if we choose a smooth bump ρ on R× Rd and set

ρδ(t, x) = δ−2−dρ(δ−2t, δ−1x)

and regularize by mollification Ξδ = Ξ ∗ ρδ, then the family of unique solutions ϕδ to

∂tϕδ = ∆ϕδ − ϕ3
δ + Ξδ

in d = 2 converges to the trivial limit. To obtain a non-trivial limit, we thus introduce renor-
malisation constants cδ (that will also depend on the dimension) and solve

∂tϕδ = ∆ϕδ − ϕ3
δ − cδϕδ + Ξδ.

The family of constants cδ will diverge as δ → 0. We then study the limit of the renormalized
solutions ϕδ as δ → 0 and we will show that with the correct choice of renormalization constants,
these actually converge to a non-trivial limit. It may be remarked that the concept of solution
is dependent on the choice of regularization and on the choice of the renormalization constants.
This phenomenon already appears in space dimension d = 0, i.e. if we consider SDEs. It is a
well-known fact that an explicit Euler scheme converges to solution in the Itô sense whereas
mollification of the noise converges to a solution in the sense of Stratonovich.

1.4 Renormalization and physicality of solutions

The question arising from our new concept of solution is, how the renormalized solutions agree
with the physical phenomenon described by the equation. One might think that by renormal-
izing the equations, the renormalized solutions lack to represent the physical phenomena they
represent. In fact, it is exactly the other way round and there is strong evidence that for Φ4

d,
d ≤ 3, the renormalized solutions are the physical solutions.

7



1 Preliminaries on SSPDEs

It is shown in ?? that for d = 2, that Φ4
2 is the scaling limit of a discrete Ising-Kac model

evolving according to Glauber dynamics. It turns out that the renormalisation constant has
a natural interpretation as shift of the critical temperature. It also turns out that the scaling
factors necessary to realize Φ4

d can only be obtained in dimension d ≤ 3 which is in agreement
with the subcriticality condition.

1.5 Linear theory and Schauder estimates

We will review the linear theory and determine the regularity of solutions to the linear equation.
Consider the linear stochastic heat equation

∂tu = ∆u+ Ξ

u(0, ·) = u0

on R+ × Td. By Duhamel’s principle, the solution is formally given by

u(t, x) = et∆u0 +

ˆ t

0
e(t−s)∆Ξ(s, x) ds.

Here
et∆f(x) =

ˆ
Td
H(t, x− y)f(y) dy

is the heat operator where the kernel H is given by

H(t, x) =
∑
i∈Zd

1

(4πt)−
d
2

exp

(
−|x+ i|2

4t

)
.

We have the following Schauder estimate

(1.3) Theorem (Schauder estimate)
Assume f ∈ Cαs ((0, T )× Td). Define

u(t, x) =

ˆ t

0
e(t−s)∆f(s, x) ds,

intepreted in distributional sense. Then, if α /∈ Z, it holds

‖u‖Cα+2
s ((0,T )×Td) . ‖f‖Cαs ((0,T )×Td). �

Especially, for u the solution of the linear equation, it holds that u ∈ Cαs ((0, T ) × Td) for any
α < −d

2 + 1 since Ξ ∈ Cαs ((0, T ) × Td) for any α < −d
2 − 1. For d = 1, this shows that the

solution will be a continuous function, for d ≥ 2, the solution is only a distribution. Thus
equation (1.1) is ill-defined since nonlinear functions of distributions are ill-defined objects and
a solution theory relies on regularization and the study of the corresponding limiting problem.
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1 Preliminaries on SSPDEs

1.6 History of solutions to the problem

Solutions to the Φ4
3 model were already constructed before by Hairer who used his technique of

regularity structures which is a way of perturbative renormalization. Another way of providing
solutions was introduced by Gubinelli, Imkeller and Perkowski. They developed the theory of
paracontrolled distributions and used it to construct local-in-time solutions.
We shall be interested in the third approach: Kupiainen developed an approach to the

problem using the Wilsonian renormalization group analysis. Kupiainen constructs a solution
to Φ4

3 by regularizing the heat kernel via cutting-off the singularity at t = 0:

(Gεf)(t) =

ˆ t

0
(1− χ((t− s)/ε2)e(t−s)∆f(s) ds.

The sequence of regularized solutions (ϕε) to

ϕε = Gε(−ϕ3
ε − rεϕε + Ξ)

can then be studied by means of renormalization group analysis. That is, starting from scale
λN for some λ < 1, one studies the flow of the effective potential.
Here we will use the same techniques, but we will use a different regularization. We will

mollify the noise and leave the heat kernel unchanged. Choose a smooth bump ρ on R × Rd

whose space-time integral is one and define

ρε = δ−5ρ(ε−2t, ε−1x).

Introducing parabolic scaling for the mollifier will come in handy later. Then we define the
regularized noise by

Ξε = ρε ∗ Ξ.

Here ∗ means convolution in space and time. It may be remarked that this is the same setup
as studied by Hairer in ??. Since Ξε is smooth, we have no trouble in proving (local) existence
and uniqueness of solutions of the regularized equations

∂tϕε = ∆ϕε − ϕ3
ε − rεϕε + Ξε.

We now want to prove the following main theorem

(1.4) Theorem
For every ε > 0 there exists rε such that for almost all ω there exists t(Ξ(ω)) > 0 such that (1.1)

has a unique smooth solution ϕε on t ∈ [0, t(Ξ(ω))], x ∈ T3 and there exists ϕ ∈ D′([0, t(Ξ)]×T3)

such that ϕε → ϕ in distributions. Furthermore, the limit is independent of the chosen mollifier
ρ. �
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2 The setup of the RG method

Chapter 2 - The setup of the RG method

Recall that we were studying the equation

∂tϕ = ∆ϕ− ϕ3 − rϕ+ Ξ. (2.1)

Let χ ≥ 0 be a smooth bump so that

χ(t) = 1 for t ∈ [0, 1] and χ(t) = 0 for t ∈ [2,∞).

We define

(Gf)(t) =

ˆ t

0
e(t−s)∆f(s) ds.

We define the regularization of the heat kernel with parameter ε > 0 by

(Gεf)(t) =

ˆ t

0

(
1− χ

(
t− s
ε2

))
e(t−s)∆f(s) ds.

Note that we cut away the singularity of the heat kernel, i.e. we consider only t− s ≥ ε2.

Remark
Since

(
1− χ

(
t−s
ε2

))
e(t−s)∆ is in S(R× R3), GεΞ is a.s. smooth. �

Using Duhamel’s principle together with the regularization of the heat kernel, we introduce the
regularization scheme for solutions of (2.1) with initial data ϕ(0) = 0:

ϕε = Gε(−ϕ3
ε − rεϕ+ Ξ) (2.2)

where rε will be chosen later ensuring that (2.2) has a unique solution ϕε which converges as
ε→ 0 to a non-trivial limit.

(2.1) Theorem
For every ε > 0 there exists rε such that for almost all ω there exists t(Ξ(ω)) > 0 such that (2.2)

has a unique smooth solution ϕε on t ∈ [0, t(Ξ(ω))], x ∈ T3 and there exists ϕ ∈ D′([0, t(Ξ)]×T3)

such that ϕε → ϕ in distributions. Furthermore, the limit is independent of the chosen cut-off
χ. �

Remark
It is well-known, see ??, that the correct choice of the renormalization constant for this problem
is given by

rε =
m1

ε
+m2 log(ε) +m3

where m1 and m3 depend explicitly on the choice of the cut-off χ and m2 is universal. �
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2 The setup of the RG method

2.1 Effective equation

So consider the regularized problem

ϕε = Gε(−ϕ3
ε − rεϕε + Ξ) = Gε(Vε(ϕε) + Ξ) (2.3)

for ϕ(t, x) given on (t, x) ∈ [0, τ ]× T3 and where at scale ε the nonlinearity is given by

Vε(ϕ)(t, x) = −ϕ3(t, x)− rεϕ(t, x)

for rε to be determined later. We want to study the limit of ϕε as ε → 0. Renormalization
group techniques study a problem at multiple scales at the same time and pursue the question
how a theory at scale ε, say, is influenced by the same theory at scale ε′ for ε′ > ε. This kind
of description turns out to be fruitful in identifying the behaviour of the objects involved and
mirrors the scale dependence of mathematical and physical objects.
We first describe how to obtain the solution at level ε in terms of the scales at ε′ > ε. We
decompose

Gε = Gε′ + Γε,ε′

where for µ < η

Γµ,ηf(t) =

ˆ t

0

(
χ

(
t− s
η2

)
− χ

(
t− s
µ2

))
e(t−s)∆f(s) ds.

This term involves all time-scales t − s between µ2 and η2. So we split the scales t − s ≥ ε2

into the time scales between ε2 and ε′2 and those greater than ε′2. We decompose ϕε now into
ϕ′ε which belongs to the latter part and Z(ϕ′) that solves a small scale equation

ϕε = ϕ′ε + Z(ϕ′)

where Z(ϕ′ε) solves the fixed point equation

Z(ϕ′ε) = Γε,ε′(Vε(ϕ
′
ε + Z(ϕ′ε)) + Ξ). (2.4)

Then equation (2.3) will hold provided ϕ′ε satisfies

ϕ′ε = Gε′(Vε(ϕε) + Ξ) = Gε′(V
′
ε (ϕ′ε) + Ξ) (2.5)

where the new effective potential V ′ is defined as

V ′ε (ϕ′ε) = Vε(φ
′
ε + Z(φ′ε)).

Together with (2.4), we see that V ′ε solves the fixed point problem

V ′ε (·) = Vε(·+ Γε,ε′(V
′
ε (·) + Ξ)).

Since (2.5) is of the same form as (2.3) with the new effective potential V ′ε , we can iterate this
procedure and obtain a flow where ε′ increases to τ1/2 and τ is the time of existence for the

11



2 The setup of the RG method

original equation.
We set this flow up step-by-step. We fix a number

λ < 1

that we will choose later and start with

ε = λN .

We will denote V (N) = VλN , i.e.

V
(N)
N (ϕ) = −ϕ3 − rλNϕ.

Then, upon iteration, for n < N we derive the effective potentials on scale λn−1 from scale λn

as solution to the fixed point problem

V
(N)
n−1(·) = V (N)

n (·+ Γλn,λn−1(V
(N)
n−1(·) + Ξ)).

Set ϕN = ϕλN the solution of

ϕN = GλN (V
(N)
N (ϕN ) + Ξ).

The solution to this equation can be iteratively constructed by

F
(N)
N (ϕ) = ϕ,

F
(N)
n−1(·) = F (N)

n (·+ Γλn,λn−1(V
(N)
n−1(·) + Ξ)).

Then
ϕN = F (N)

n (ϕn)

where φn solves
ϕn = Gλn(V (N)

n (ϕn) + Ξ).

What happens here is that we decompose the solution at level λN into a sum of solutions of
small scale equations that involve scales between λm and λm−1 for n < m ≤ N and the solution
to an equation that involves all scales larger than λn.
Our aim will be to study the limits Vn = lim

N→∞
V

(N)
n and Fn = lim

N→∞
F

(N)
n .

2.2 Rescaling the flow

For µ > 0 define the parabolic scaling operator

sµf(t, x) = µ
1
2 f(µ2t, µx).

12



2 The setup of the RG method

(2.2) Lemma
We have the following identities:

sµ ◦G ◦ s−1
µ = µ2G, sµ ◦Gε ◦ s−1

µ = µ2G ε
µ
,

sµ ◦ Γε,ε′ ◦ s−1
µ = µ2Γ ε

µ
, ε
′
µ

, sµΞ
d
= µ−2Ξ(µ).

where by Ξ(µ) we denote space-time white noise on the R× µ−1T3. �

Now we define the dimensionless variables. We rescale to Tn = λ−nT3. Define

v(N)
n = λ2nsλn ◦ V (N)

n ◦ s−1
λn , (2.6)

f (N)
n = sλn ◦ F (N)

n ◦ s−1
λn . (2.7)

We furthermore define
φn = sλnϕn

where we drop the superscript whenever the scaling is clear from the context. We remark that
if ϕn is understood to involve the spatial scales from [λn, 1], then φn = sλnϕn lives on the
spatial scales [1, λ−n].
Setting s = sλ and using s ◦ sλn = sλn−1 ◦ s = sλn , we compute

v
(N)
n−1(φ) = λ−2s−1v(N)

n

(
s(φ+ Γλ,1(v

(N)
n−1(φ) + ξn−1)

)
(2.8)

and

f
(N)
n−1(φ) = s−1f (N)

n (s(φ+ Γλ,1(v
(N)
n−1(φ) + ξn−1))). (2.9)

The analysis following in section 4 will be concerned with solving (2.10). We define the solution
map v(N)

n 7→ v
(N)
n−1 to be

v
(N)
n−1 = Rnv(N)

n ,

called the RG map. We then iterate this and look for limits as N →∞.
We will show that v(N)

n and then also f (N)
n converge in a suitable space as N → ∞. Then

reconstructing the solution ϕε for ε = λN via the flow of effective potential and the bookkeeping
operator f , will show convergence of ϕε to a non-trivial limit.
The three equation of importance here, are

v
(N)
n−1(φ) = λ−2s−1v(N)

n

(
s(φ+ Γλ,1(v

(N)
n−1(φ) + ξn−1)

)
, (2.10)

f
(N)
n−1(φ) = s−1f (N)

n (s(φ+ Γλ,1(v
(N)
n−1(φ) + ξn−1))), (2.11)

φn = G1(v(N)
n + ξn)). (2.12)

They involve the operators G1 and Γλ,1 which are given by Schwartz-kernel so that they are
infinitely smoothing and have fast decay in space-time. In particular, if we consider ζ = Γλ,1ξn.
Since this object involves only time scales between 1 and λ2, whenever |t− s| > 2λ−2, it holds

E[ζ(t, x)ζ(s, y)] = 0

13



2 The setup of the RG method

since the supports of the cut-offs are mutually disjoint. Also the covariance inherits the Gaussian
decay in space from the integral kernel. These properties will help us to prove the stochastic
bounds so that the analysis of the fixed point problem turns out to be relatively simple.

Remark
Due to the scaling, we role that f (N)

n plays, is to decompose the solution into terms that involve
scales in between λ2 and 1, i.e. we have O(1)-contributions to the solution. Still, rescaling turns
out to be only an analytic trick here. Later, we only need to deal only with the operators G1

and Γλ,1 so that proving bounds is less messy and the proof of the fixed point is simpler. We
could do the analysis without the scaling, adapting all the norms and bounds.
This differs from the use of renormalization group as, for example, in ?? where the rescaling
into blocks of similar size is necessary to set up a flow whose fixed point behaviour we study.�

2.3 Synopsis

14



3 Perturbative study and noise estimates

Chapter 3 - Perturbative study and noise estimates

We now study the fixed point problem

v
(N)
n−1(φ) = λ−2s−1v(N)

n

(
s(φ+ Γλ,1(v

(N)
n−1(φ) + ξn−1)

)
where

ξn = λ2nsλnΞ

perturbatively up to second order. We do this in order to identify the "relevant" terms, i.e.
those terms that will explode as N →∞ and thus we need to take care of by the renormalization
constant.

3.1 First order perturbation

We define the linear flow map Ln = DRn(0) given by

(Lnv)(φ) = λ−2s−1v(s(φ+ Γλ,1ξn−1)).

It holds
v

(N)
n−1(φ) = (Rnv(N)

n ))(φ) = (Lnv(N)
n )(φ+ Γλ,1v

(N)
n−1(φ)).

We decompose
v(N)
n = u(N)

n + w(N)
n

where u(N)
n is the linear part, i.e. the flow along Ln:

un−1 = Lnun.

For general initial data uN , the flow can be easily evaluated

un(φ) = (Ln+1 . . .LNuN )(φ) = λ−2(N−n)sn−NuN (sN−n(φ+ η(N)
n )).

Here we define the stochastic field η(N)
n to be

η(N)
n = Γ1,λN−nξn =: Γ(N)

n ξn.

Γ
(N)
n is given by

(Γ(N)
n f)(t, x) =

ˆ
Γ(N)
n (t, s, x, y)f(s, y) ds dy

where the integral kernel

Γ(N)
n (t, s, x, y) = χN−n(t− s)Hn(t− s, x− y)

is described in terms of the cut-off

χN−n(s) = χ(s)− χ
( s

λ2(N−n)

)
which is a smooth indicator on [λ2(N−n), 2] and Hn = et∆(x, y) is the heat kernel. Remark that
the integrand in Γ

(N)
n is thus supported in λ2(N−n) ≤ t− s ≤ 2.

15



3 Perturbative study and noise estimates

Remark
The initial data we want to use for the flow is given by uN (φ) = −λNφ3 − λ2Nm1φ. For this
kind of initial data, the linearized flow is very simple. If uN = φk, we get

un = λ(N−n)(k−5)/2(φ+ η(N)
n )k. (3.1)

Indeed, it can be easily computed that

LNφk = λ−2s−1(s(φ+ Γλ,1ξN−1))k

= λ(k−5)/2(φ+ Γλ,1ξN−1)k

= λ(k−5)/2(φ+ Γ
(N)
N−1ξN−1)k

= λ(k−5)/2(φ+ η
(N)
N−1)k

and using (2.2) together with η(N)
n = Γ1,λ(N−n)ξn

Ln(φ+ η(N)
n )k = λ−2s−1(s(φ+ Γλ,1ξn−1) + η(N)

n )k

= λ−2s−1(s(φ+ Γλ,1ξn−1 + Γλ(N−(n−1)),λξn−1))k

= λ(k−5)/2(φ+ η
(N)
n−1)k.

Now as N −n→∞, since λ < 1 terms are relevant for k < 5, marginal for k = 5 and irrelevant
for k > 5. �

The source of the first renormalization constant comes from the divergence of the covariance
of η(N)

n as N − n→∞. Since

E
[
η(N)
n (t′, x′)η(N)

n (t, x)
]

=

ˆ t

0
Hn(t′ − t+ 2s, x′ − x)χN−n(t′ − t+ s)χN−n(s) ds

=: CN−n(t′, t, x′, x)

the diagonal behaves

E
[
η(N)
n (t, x)2

]
=

ˆ t

0
Hn(2s, 0)χN−n(s)2 ds

which diverges at N − n→∞.
In order to show that the limit is independent of the chosen cut-off χ with bounded C1-norm,

we need to analyse the dependence of the cut-off. I.e. given two cut-offs χ and χ′ with bounded
C1-norm. We define a kernel

Γ
′(N)
n (t, s, x, y) = χ′N−n(t− s)Hn(t− s, x− y)

where we denote by
χ′N−n(s) = χ(s)− χ′(λ−2(N−n)s).

16



3 Perturbative study and noise estimates

We will vary χ′ in order to study the cut-off dependence and also to study the N -dependence
of the scheme, since the choice of χ′(s) = χ(λ−2s) gives Γ

(N)′
n = Γ

(N+1)
n .

We will now study the divergent behaviour of

E
[
η(N)
n (t, x)2

]
=

ˆ t

0
Hn(2s, 0)χN−n(s)2 ds

and its dependence on the cut-off.

(3.1) Lemma
Set

ρ =

ˆ ∞
0

(8πs)−
3
2 (1− χ(s)2) ds.

It holds
E
[
η(N)
n (t, x)2

]
= λ−(N−n)ρ+ δ(N)

n (t)

where it holds
|δ(N)
n (t)| ≤ C(1 + t−

1
2 ).

If we vary the cut-off, it is

|δ(N)
n (t)− δ(N)′

n (t)| ≤ C
(
t−

1
2 1[0,2λ2(N−n)] + e−cλ

−2N
)
‖χ− χ′‖∞. �

Proof
Denote by

H(t, x) = et∆(0, x) = (4πs)−
3
2 e−

|x|2
4t

the heat kernel on R3, then the heat kernel Hn on Tn is given by

Hn(t, x) =
∑
i∈Z3

H(t, x+ λ−ni).

Thus, we may write

E
[
η(N)
n (t, x)2

]
=

ˆ t

0
Hn(2s, 0)χN−n(s)2 ds

=

ˆ t

0

∑
i∈Z3

H(2s, λ−ni)
(
χ(s)− χ

( s

λ2(N−n)

))2
ds

=

ˆ t

0

∑
i∈Z3

H(2s, λ−ni)

(
χ(s)2 − χ

( s

λ2(N−n)

)2
)

ds

where we used that since χ(s) = 1 for s ∈ [0, 1] and χ
(

s
λ2(N−n)

)
is supported on s ∈

[0, 2λ2(N−n)] ⊂ [0, 1], we get(
χ(s)− χ

( s

λ2(N−n)

))2
= χ(s)2 − χ

( s

λ2(N−n)

)2
.

17



3 Perturbative study and noise estimates

Separating the i = 0 term from the sum, we write

E
[
η(N)
n (t, x)2

]
=

ˆ t

0
H(2s, 0)

(
χ(s)2 − χ

( s

λ2(N−n)

)2
)

ds+ α(t)

=

ˆ t

0
(8πs)−

3
2

(
χ(s)2 − χ

( s

λ2(N−n)

)2
)

ds+ α(t)

with

|α(t)| =

∣∣∣∣∣∣
∑
i 6=0

ˆ t

0
H(2s, λ−ni)

(
χ(s)2 − χ

( s

λ2(N−n)

)2
)

ds

∣∣∣∣∣∣
≤
∑
i 6=0

ˆ 2

0
(8πs)−

3
2 e
−|i|2

4sλ2n ds

≤ Ce−cλ−2n
.

Let χ′ be another cut-off and let

α′(t) =
∑
i 6=0

ˆ t

0
H(2s, λ−ni)

(
χ(s)2 − χ′

( s

λ2(N−n)

)2
)

ds.

Then, it holds

|α(t)− α′(t)| =

∣∣∣∣∣∣
∑
i 6=0

ˆ t

0
H(2s, λ−ni)

(
χ′
( s

λ2(N−n)

)2
− χ′

( s

λ2(N−n)

)2
)∣∣∣∣∣∣

≤ C
ˆ t

0
s−

3
2

∣∣∣∣χ′ ( s

λ2(N−n)

)2
− χ′

( s

λ2(N−n)

)2
∣∣∣∣ e−λ−2n

4s ds

≤ Ce−cλ−2N ‖χ− χ′‖∞.

If we denote

β(t, ε) =

ˆ t

0
(8πs)−

3
2

(
χ(s)2 − χ

( s
ε2

)2
)

ds,

β′(t, ε) =

ˆ t

0
(8πs)−

3
2

(
χ(s)2 − χ′

( s
ε2

)2
)

ds

so that β(t, ε) is the i = 0 term for ε = λ(N−n). We compute by the change of variables s to
ε2s

β′(∞, ε) =

ˆ ∞
0

(8πs)−
3
2

(
χ(s)2 − χ′

( s
ε2

)2
)

ds

=

ˆ ∞
0

(8πε2s)−
3
2
(
χ(ε2s)2 − χ′(s)2

)
ε2 ds

= ε−1

ˆ ∞
0

(8πs)−
3
2
(
χ(ε2s)2 − χ′(s)2

)
ds

= ε−1

ˆ ∞
0

(8πs)−
3
2
(
1− χ′(s)2

)
ds− ε−1

ˆ ∞
0

(8πs)−
3
2
(
1− χ(ε2s)2

)
ds

= ε−1ρ′ − ρ.
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3 Perturbative study and noise estimates

Thus (using χ′ = χ) we may write

E
[
η(N)
n (t, x)2

]
= λ−(N−n)ρ+ δ(N)

n (t)

and using λ−(N−n)ρ = β(∞, λ(N−n)) + ρ

δ(N)
n (t) = β(t, λ(N−n))− λ−(N−n)ρ+ α(t)

= α(t)− γ(t, λ(N−n))− ρ.

Here we denote by

γ(t, ε) = β(∞, ε)− β(t, ε)

=

ˆ ∞
t

(8πs)−
3
2

(
χ(s)2χ

( s
ε2

)2
)

ds

≤ Ct−
1
2 .

Thus
|δ(N)
n (t)| ≤ ρ+ Ce−cλ

−2n
+ Ct−

1
2 ≤ C(1 + t−

1
2 ).

The last part of the lemma follows from∣∣γ(t, ε)− γ′(t, ε)
∣∣ ≤ ˆ ∞

t
(8πs)−

3
2

∣∣∣∣χ( sε2

)2
− χ′

( s
ε2

)2
∣∣∣∣ ds

≤ Ct−
1
2 ‖χ− χ′‖∞1[0,ε](t). �

We fix the first renormalization constant to be

m1 = −3ρ

taking care of the divergences up to first order. Then we run the linearized flow with initial
data given by

u
(N)
N = −λNφ3 − λNm1φ = −λNφ3 + 3λ2NρNφ

where we set
ρk = λ−kρ.

Using (3.1), we can compute the flow explicitly and get

u(N)
n = −λn

(
(φ+ η(N)

n )3 − 3ρN−n(φ+ η(N)
n

)
.

Indeed,

Ln+1 . . .LN (−λNφ3) = λ(N−n)(3−5)/2(−λN )(φ+ η(N)
n )3

= −λn(φ+ η(N)
n )3,

Ln+1 . . .LN (−λNφ3) = 3λ−2(N−n)λ2NρN (φ+ η(N)
n )

= 3λ2nρN (φ+ η(N)
n )

= λn3λ(n−N)ρ(φ+ η(N)
n )

= λn3ρN−n(φ+ η(N)
n ).
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3 Perturbative study and noise estimates

3.2 Second-order perturbation

Define
Gn(v, v̄)(φ) = (Lnv)(φ+ Γλ,1v̄(φ))− (Lnv)(φ)

so that (2.10) becomes
v

(N)
n−1 = Lnv(N)

n + Gn(v(N)
n , v

(N)
n−1).

Recall that we decomposed v(N)
n = u

(N)
n + w

(N)
n where u(N)

n−1 = Lnu(N)
n and

w
(N)
n−1 = Lnw(N)

n + Gn(u(N)
n + w(N)

n , u
(N)
n−1 + w

(N)
n−1).

The initial condition for w is given by

wN (φ) = −λ2N (m2 log λN +m3)φ.

Since
Gn(u(N)

n , u
(N)
n−1)(φ) = u

(N)
n−1(φ+ Γλ,1u

(N)
n−1(φ))− u(N)

n−1(φ)

by Taylor expansion, it is

Gn(u(N)
n , u

(N)
n−1)(φ) = Du

(N)
n−1(φ)Γλ,1u

(N)
n−1(φ) +O(λn)

where it is
Du

(N)
n−1 = −3λn−1

(
(φ+ η

(N)
n−1)2 − ρN−(n−1)

)
.

For a fixed w(N)
n , w(N)

n−1 then satisfies

w
(N)
n−1 = Lnw(N)

n−1 +Du
(N)
n−1Γλ,1u

(N)
n−1 + Fn(w

(N)
n−1)

where
Fn(w

(N)
n−1) = Gn(u(N)

n + w(N)
n , u

(N)
n−1 + w

(N)
n−1)−Du(N)

n−1Γλ,1u
(N)
n−1.

It will turn out in section 4 that Fn will contract in a suitable norm, i.e. it is irrelevant under
the RG. We can solve for w(N)

n−1 up to second order, i.e. solving

U
(N)
n−1 = LnU (N)

n +Du
(N)
n−1Γλ,1u

(N)
n−1

so that we have the decomposition

w(N)
n = U (N)

n + ν(N)
n

and ν(N)
n−1 satisfies

ν
(N)
n−1 = Lnν(N)

n + Fn(U
(N)
n−1 + ν

(N)
n−1)

with initial conditions

U
(N)
N = −λ2N (m2 log λN +m3)φ, ν

(N)
N = 0
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3 Perturbative study and noise estimates

where m2 and m3 are determined in the next subsection. We can compute U (N)
n explicitly. It

holds
U (N)
n = DunΓλN−n,1un − λ2n(m2 log λN +m3)(φ+ η(N)

n ).

Indeed, starting from the initial condition, we easily see that

U
(N)
N−1 = LnU (N)

N +Du
(N)
N−1Γλ,1u

(N)
N−1

= −λ2N−2(m2 log λN +m3)(φ+ η
(N)
N−1) +Du

(N)
N−1Γλ,1u

(N)
N−1.

Furthermore,

Ln(Du(N)
n ΓλN−n,1u

(N)
n )(φ)

=λ−2s−1
[
Du(N)

n (s(φ+ Γλ,1ξn−1))Γλ(N−n),1u
(N)
n (s(φ+ Γλ,1ξn−1))

]
=λ−2s−1Du(N)

n (s(φ+ Γλ,1ξn−1))s−1ΓλN−n,1ss
−1u(N)

n (s(φ+ Γλ,1ξn−1))

=LnDu(N)
n (φ)ΓλN−n+1,λλ

−2s−1u(N)
n (s(φ+ Γλ,1ξn−1))

=D(Lnu(N)
n )(φ)ΓλN−n+1,λLnu(N)

n (φ)

=Du
(N)
n−1(φ)ΓλN−n+1,λu

(N)
n−1(φ)

which gives

Ln(Du(N)
n ΓλN−n,1u

(N)
n ) +Du

(N)
n−1Γλ,1un−1 = Du

(N)
n−1ΓλN−(n−1),1u

(N)
n−1

and

Ln(λ2n(m2 log λN +m3)(φ+ η(N)
n )) = λ2n−2(m2 log λN +m3)(φ+ η

(N)
n−1))

3.3 Noise estimates and function spaces

We are going to need estimates of the noise in order to show contractivity. The following terms
including the noise appear in the fixed point equation

ν
(N)
n−1 = Lnν(N)

n + Fn(U
(N)
n−1 + ν

(N)
n−1)

Ln is dependent of Γλ,1ξn−1. Also un and Un involve the noise. To see what terms are relevant
or irrelevant under the RG map, let’s develop Un up to second order

U (N)
n (φ) = U (N)

n (0) +DU (N)
n (0)φ+R(N)

n (φ).

We compute explicitly by using that

U (N)
n (φ)(t, x) = 3λ2n((φ(t, x) + η(N)

n (t, x))2 − ρN−n)

ˆ
Γ(N)
n (t, s, x, y)

·
(

(φ(s, y) + η(N)
n (s, y))3 − 3ρN−n(φ(s, y) + η(N)

n (s, y))
)

ds dy

− λ2n(m2 log λN +m3)(φ(t, x) + ηn(N)(t, x))
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3 Perturbative study and noise estimates

and where we may exchange derivative and integral since Γ
(N)
n is infinitely smoothing

U (N)
n (0)

=Dun(0)Γ1,λ(N−n)un(0)− λ2n(m2 log λN +m3)η(N)
n

= − 3λ2n(η(N)2

n − ρN−n)Γ1,λ(N−n)(η
(N)3

n − 3ρN−nη
(N)
n )− λ2n(m2 log λN +m3)η(N)

n

= λ2nωn,

(DU (N)
n (0)φ)(t, x)

=
∂

∂ε

∣∣∣∣
ε=0

Un(0 + εφ)(t, x)

= 6λ2nη(N)
n (t, x)φ(t, x)

ˆ
Γ(N)
n (t, s, x, y)

(
η(N)
n (s, y)3 − 3ρN−nη

(N)
n (s, y)

)
ds dy

3λ2n(η(N)
n (t, x)2 − ρN−n)

ˆ
Γ(N)
n (t, s, x, y)

(
3η(N)
n (s, y)2φ(s, y)− 3ρN−nφ(s, y)

)
ds dy

− λ2n(m2 log λN +m3)φ(t, x)

= λ2nz(N)
n (t, x)φ(t, x) + λ2n

ˆ
zn(t, x, s, y)φ(s, y) ds dy

where we denote

z(N)
n (t, x) = 6η(N)

n (t, x)

ˆ
Γ(N)
n (t, s, x, y)

(
η(N)
n (s, y)3 − 3ρN−nη

(N)
n (s, y)

)
ds dy,

z(N)
n (t, s, x, y) = 9(η(N)

n (t, x)2 − ρN−n)Γ(N)
n (t, s, x, y)

(
η(N)
n (s, y)2 − ρN−n

)
− (m2 log λN +m3)δ(t− s)δ(x− y).

Remark
It turns out that the covariance of the field 9(η

(N)
n (t, x)2−ρN−n)Γ

(N)
n (t, s, x, y)

(
η

(N)
n (s, y)2 − ρN−n

)
diverges as N − n→∞. That is the reason for the second renormalization constant. �

In the analysis, we need to know the size of the following random fields

η(N)
n , (η(N)

n )2 − ρN−n, (η(N)
n )3 − 3ρN−nη

(N)
n , ω(N)

n , z(N)
n and z(N)

n .

We also need to constrain Γλ,1ξn. Since in the limit N →∞, these fields become distributions,
we need to measure them in an appropriate negative index Sobolev type norm. This will also
take care of the lack of regularity of the field zn. Define the operator K1 on L2(R) by

K1 = (−∂2
t + 1)−1

which has the integral kernel

K1(t, s) =
1

2
e−|t−s|

and define K2 on L2(Tn) via
K2 = (−∆ + 1)−2
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3 Perturbative study and noise estimates

which has a continuous kernel satisfying K2(x, y) = K2(x− y) with

K2(x) ≤ Ce−|x|.

Now we are able to define the function space Vn as the completion of C∞0 (R+ × Tn) w.r.t. the
norm

‖v‖Vn = sup
i∈Z×(Z3∩Tn)

‖Kv‖L2(ci)

where K := K1K2 and ci is the unit cube centered in i ∈ Z× (Z3 ∩ Tn). For the kernel z, we
defiine the corresponding norm via

‖z‖Vn = sup
i∈Z×(Z3∩Tn)

∑
j∈Z×(Z3∩Tn)

‖(K ⊗K)z‖L2(ci×cj).

We can now define the admissible set of noise. Therefore we choose a smooth bump h ∈ C∞(R)

such that
h(t) = 1 for t ≤ −λ2, h(t) = 0 for t ≥ −1

2
λ2

and we set
hk(t) = h(t− λ−2k).

Thus hk cuts off times larger than λ−2k − 1
2λ

2.

(3.2) Definition
Let γ > 0 (to be fixed later) and define for m ∈ N a measurable set Am ⊂ Ω via: ω ∈ Am if
the following conditions hold:

(1) For any

ζ(N)
n ∈ {η(N)

n , (η(N)
n )2 − ρN−n, (η(N)

n )3 − 3ρN−nη
(N)
n , ω(N)

n , z(N)
n , z(N)

n }

and for all m ≤ n ≤ N it holds

‖hn−mζ(N)
n ‖Vn ≤ λ−γn.

(2) For any two cut-offs χ, χ′ with bounded C1-norm and for any fields

ζ(N)
n ∈ {η(N)

n , (η(N)
n )2 − ρN−n, (η(N)

n )3 − 3ρN−nη
(N)
n , ω(N)

n , z(N)
n , z(N)

n },

ζ ′(N)
n ∈ {η′(N)

n , (η′(N)
n )2 − ρ′N−n, (η′(N)

n )3 − 3ρ′N−nη
′(N)
n , ω′(N)

n , z′(N)
n , z′(N)

n }

and for all m ≤ n ≤ N it holds

‖hn−m(ζ ′(N)
n − ζ(N)

n ‖Vn ≤ λγ(N−n)λ−γn.

(3) For all n > m it holds
‖sΓλ,1ξn−1‖Φn ≤ λ−γn. �
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3 Perturbative study and noise estimates

Here we denote by Φn the space of functions φ : [1, λ−2(n−m)] × Tn → C which are C2 in t
and C4 in x and satisfy

∂itφ(1, x) = 0 for 0 ≤ i ≤ 2 and x ∈ Tn.

We denote its norm, the sup-norm, by

‖φ‖Φn =
∑

i≤2,|α|≤4

‖∂it∂αxφ‖∞.

We will set up the fixed point equations in spaces of functions on Φn.

(3.3) Proposition
There exist renormalization constants m2 and m3 such that for some γ > 0 almost surely there
is some m <∞ such that Am holds, i.e.

P

( ∞⋃
m=1

Am

)
= 1.

�

The purpose of this thesis was to understand the analysis of the method studied. That is
the reason we omit the proof of the proposition here and refer to ??.

3.4 Synopsis
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4 The analysis of the fixed point equation

Chapter 4 - The analysis of the fixed point equation

4.1 Spaces and analytic functions on Banach spaces

We now turn to the analysis of the problem. As a convention, we will be indifferent to the
numerical change of constants, i.e. our constants denoted by C(·) may change from line to line.
We denote the parameter dependence in the argument of the constant.
The main part of the section will be concerned with solving the fixed point problem. Once, we
establish existence of the flow of effective potential, it will be comparatively simple to deduce
the main theorem by looking at the flow of bookkeeping functions f (N)

n .

v
(N)
n−1(φ) = λ−2s−1v(N)

n

(
s(φ+ Γλ,1(v

(N)
n−1(φ) + ξn−1)

)
(4.1)

= (L(N)
n )(φ+ Γλ,1v

(N)
n−1). (4.2)

In the perturbative analysis, we wrote

v
(N)
n−1 = Lnv(N)

n + Gn(v(N)
n , v

(N)
n−1)

and
v(N)
n = u(N)

n + w(N)
n

where

u(N)
n (φ) = −λn

(
(φ+ η(N)

n )3 − 3ρN−n(φ+ η(N)
n )

)
,

w
(N)
n−1 = Lnw(N)

n + Gn(u(N)
n + w(N)

n , u
(N)
n−1, w

(N)
n−1).

In second order perturbation theory, it is

w
(N)
n−1 = Lnw(N)

n +Du
(N)
n−1Γλ,1u

(N)
n−1 + Fn(w

(N)
n−1)

and we furthermore decomposed
w(N)
n = U (N)

n + ν(N)
n

where

U (N)
n = Du(N)

n Γ(N)
n u(N)

n − λ2n
(
m2 log λN +m3

)
(φ+ η(N)

n ),

ν
(N)
n−1 = Lnν(N)

n + Fn(U
(N)
n−1 + ν

(N)
n−1).

Here we start from the initial condition ν(N)
N = 0. We want to solve the fixed point equation

for ν(N)
n . Let in the following ω ∈ Am. We drop the ω-dependence of all equations.

(4.1) Definition (Spaces)
We define the following function spaces.
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4 The analysis of the fixed point equation

1) Let K1 = (−∂2
t + 1)−1 on L2(R), K2 = (−∆ + 1)−2 on L2(Tn), K := K1K2. We define Vn

as the completion of C∞0 (R+ × Tn) w.r.t. the norm

‖v‖Vn = sup
i∈Z×(Z3∩Tn)

‖Kv‖L2(ci)

where ci is the unit cube centered in i ∈ Z× (Z3 ∩ Tn).

2) Denote by Φn the space of functions φ : [1, λ−2(n−m)] × Tn → C which are C2 in t and C4

in x and satisfy
∂itφ(1, x) = 0 for 0 ≤ i ≤ 2 and x ∈ Tn.

We denote its norm, the sup-norm, by

‖φ‖Φn =
∑

i≤2,|α|≤4

‖∂it∂αxφ‖∞.

3) Let Bn ⊂ Φn the open ball centered in the origin with radius rn = λ−2γn and denote

Wn(Bn) = {f : Bn → Vn analytic functions}

and denote by ‖ · ‖Bn the sup-norm. �

Remark
There is some arbitrariness in the choice of the spaces. We need to choose Vn such that the
space-time white noise and the random fields live and converge in Vn. Essentially, −2 time
derivatives and −4 space derivatives is just one choice that works and where we have good
decay of the kernels. Since we are considering polynomials in φ ∈ Φn with coefficients in
random fields that live and converge in Vn, if we raise the exponents in K1 and K2, we have
to control more derivatives of φ, so we need more derivatives in the definition of Φn which
complicates the proofs. �

We will summarize some basic properties of analytic functions on Banach spaces that will
be important in the construction of fixed points later. We refer to ?? for more facts and the
proofs.
In the following, let E1, . . . , Em, E, F Banach spaces. Let L(E1, . . . , Em;F ) the space of all
continuous multilinear maps E1 × . . .× Em → F and Lm(E;F ) = L(E, . . . , E;F ). Denote by
Lms (E;F ) the subset of all symmetric maps, i.e. A(φ1, . . . , φm) = A(φσ(1), . . . , φσ(m)) for all
permutations σ ∈ Sm. For A ∈ Lms (E;F ) denote Aψm = A(ψ, . . . , ψ).
A power series from E to F about ξ ∈ E is given by

∞∑
m=0

Am(φ− ξ)m

where Am ∈ Lms (E;F ) and L0
s(E;F ) = F . A finite power series (i.e. Am = 0 for m ≥ m0)

is called a polynomial. This notion of power series shares a lot of the properties with usual
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4 The analysis of the fixed point equation

power series on finite-dimensional vector spaces. E.g. power series are smooth on their radius
of convergence and we have the identity theorem, i.e. if two power series about ξ converge to
the same function on an open subset, their coefficients are identical.
Let U ⊂ E open and f : U → F . We say f is analytic in ξ ∈ U if there is a power series about
ξ

∞∑
m=0

Am(φ− ξ)m

which converges uniformly in a ball Br(ξ) ⊂ U to f . By the identity theorem, the power series
is unique. Also f is smooth in Br(ξ) whenever it is analytic in ξ and since Dmf(ξ) = m!Am,
we can write

f(φ) =

∞∑
m=0

Am(φ− ξ)m =
∞∑
m=0

1

m!
Dmf(ξ)(φ− ξ)m on Br(ξ).

We call f analytic in U when it is analytic in every ξ ∈ U . As usual, analytic functions form a
sheaf and composition of analytic functions are analytic whenever they are well-defined.
We have Cauchy estimates for analytic functions. Let E,F complex Banach spaces and f : U →
F analytic. (Our spaces are usually real Banach spaces but the results are transferable using
the complexification.) Denote by Tf,n,ξ(x)

Tf,n,ξ(x) =
∑
m≤n

1

m!
Dmf(ξ)(x− ξ)m.

We have the usual Cauchy formulas, especially given x ∈ U and assume that x ∈ Br(ξ) ⊂ U ,
then it holds

‖f(x)− Tf,m,ξ(x)‖F ≤
‖x− ξ‖m+1

E

rm(r − ‖x− ξ‖E)
sup{‖f(t)‖F : ‖t− ξ‖E = r}. (4.3)

4.2 Analysis of the flow

We start by proving the following lemma.

(4.2) Lemma
We have the following properties.

1) The operators sΓλ,1 : Vn−1 → Φn and hn−1−mΓλ,1 : Vn−1 → Vn−1 are bounded operators
with operator norms bounded by C(λ). Moreover

sΓλ,1hn−1−mv = sΓλ,1v for any v ∈ Vn−1

as elements of Φn.

2) G1 is a bounded operator Vn → Φn and

G1(hn−1−m(λ2·)v) = G1v

as elements of Φn.
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4 The analysis of the fixed point equation

3) s : Φn−1 → Φn and s−1 : Vn → Vn−1 are bounded operators and

‖s‖Φn−1→Φn ≤ λ
1
2 , ‖s−1‖Vn→Vn−1 ≤ Cλ−

1
2 .

4) Let φ ∈ C2,4(R× Tn) and v ∈ Vn, then φv ∈ Vn and

‖φv‖Vn ≤ C‖φ‖C2,4‖v‖Vn . �

We will take advantage of 1), 3) and 4) in the proof of existence of the effective potentials.
We won’t need 2) before the proof of the main theorem.

Proof
For 1), let v ∈ C∞0 (R+ × Tn−1). Then

sΓλ,1v(t, x) = λ
1
2

ˆ λ2t

0

(
χ(λ2t− s)− χ

(
λ2t− s
λ2

))
e(λ2t−s)∆v(s, λx) ds

=

ˆ ∞
0

k(λ2t− s)e(λ2t−s)∆v(s, λx) ds

where k(τ) = λ
1
2 (χ(τ)− χ(τ/λ2). Since k(τ) vanishes for τ ≤ λ2, we may extend the integral

in s. Thus sΓv ∈ C∞([1,∞),Tn). To prove that sΓ: Vn → Φn is bounded and well-defined, we
need uniform bounds for the L∞-norms of the derivatives ∂it∂αx (sΓλ,1v). The condition

∂it(sΓv)(1, x) = 0, for 0 ≤ i ≤ 2 and x ∈ Tn

follows from the fact that k(τ) vanishes for τ ≤ λ2 and thus sΓλ,1v(t, x) = 0 for t < 1. To
prove boundedness for the derivatives, we use integration by parts: write

v = (−∂2
t + 1)(−∆ + 1)2Kv = (−∂2

t + 1)(−∆ + 1)2w

for w = Kv. By integrating by parts, it is

sΓλ,1v(t, x) =

ˆ
R
k(λ2t− s)e(λ2t−s)∆(−∆ + 1)2(−∂2

s + 1)w(s, λx) ds

=

ˆ
R
k(λ2t− s)(−∆ + 1)2e(λ2t−s)∆(−∂2

s + 1)w(s, λx) ds

=

ˆ
R

[
(−∂2

s + 1)k(λ2t− s)(−∆ + 1)2e(λ2t−s)∆
]
w(s, λx) ds

and we get that for 0 ≤ i ≤ 2, 0 ≤ |α| ≤ 4, it is

∂it∂
α
x sΓλ,1v(t, x) =

ˆ
R

[
(−∂2

s + 1)∂itk(λ2t− s)(−∆ + 1)2∂αx e
(λ2t−s)∆

]
w(s, λx) ds.

Define the kernel

Oa,α(t, s, x, y) = ∂at

(
k(λ2t− s)∂αx e(λ2t−s)∆

)
(x− y).
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4 The analysis of the fixed point equation

Then Oa,α is smooth, exponentially decreasing in |x− y| and supported on λ2t− s ∈ [λ2, 2] for
all a ∈ N and multi-indices α. It will suffice to bound Oaα1ciw(t, x) for all |α| ≤ 8, a ≤ 4 and
i ∈ Z× (Z3 ∩ Tn). Hence, for fixed (t, x) ∈ R+ × Tn, it is

|(Oa,α1ciw)(t, x)| =
∣∣∣∣ˆ Oa,α(t, s, x, y)1ciw(s, y) dsdy

∣∣∣∣
≤

(ˆ
[λ2,2]×ci

Oa,α(t, s, x, y) dsdy

)
‖w‖L2(ci)

≤ C(λ)e−cd(i,(t,x))‖w‖L2(ci)

where we used that k(λ2t − s) is bounded by C(λ) in C4,8 and the exponential decay. This
proves that

‖∂it∂αx sΓλ,1v‖∞ ≤ sup
i

∑
a,α

‖Oa,α1ciw‖∞ ≤ C(λ) sup
i
‖w‖L2(ci) = C(λ)‖v‖Vn−1 .

Since all derivatives are bounded, it holds

‖sΓλ,1v‖Φn ≤ C(λ)‖v‖Vn−1 .

Since C∞0 (R+×Tn−1) is dense in Vn−1 by definition, sΓλ,1 extends to a bounded linear operator
Vn−1 → Φn.
The same argument applies to

G1v(t, x) =

ˆ t

0
(1− χ (t− s)) e(t−s)∆v(s, x) ds =

ˆ t

0
k(t− s)e(t−s)∆v(s, x) ds.

Here k is supported on t − s ∈ [1,∞). By the same argument as above, since we cut off the
singularity of the heat kernel, we get that G1 is a bounded operator Vn → Φn.
For the boundedness of hn−1−mΓλ,1 as an operator Vn → Vn, we apply a similar argument:
with k(t− s) = χ(t− s)−χ

(
t−s
λ2

)
which is supported on [λ2, 2], we get by integration by parts

as above for v ∈ Vn−1 and w = Kv

Γλ,1v(t, x) =

ˆ t

0
k(t− s)e(t−s)∆v(s, x) ds

=

ˆ t

0

[
(−∂2 + 1)k(t− s)(−∆ + 1)2e(t−s)∆

]
w(s, x) ds

=

ˆ t

0

ˆ
(−∂2 + 1)k(t− s)(−∆ + 1)2e(t−s)∆(x− y)w(s, y) dy ds.
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4 The analysis of the fixed point equation

Thus for i ∈ Z× (Z ∩ Tn−1)

‖Khn−1−mΓλ,1v‖2L2(ci)
≤
ˆ
ci

∣∣∣∣ˆ K1(t− t′)K2(x− x′)hn−1−m(t′)Γλ,1v(t′, x′) dt′ dx′
∣∣∣∣2 dx dt

≤ C
ˆ
ci

dx dt

ˆ
dt′ dx′

ˆ
ds dy

∣∣∣hn−1−m(t′)e−|t−t
′|e−|x−x

′|

(−∂2 + 1)k(t− s)(−∆ + 1)2e(t−s)∆(x− y)w(s, y)
∣∣∣2

≤ C(λ)‖w‖2L2(ci)

where we get the last inequality from the exponential bounds above and the cut-off hn−1−m.
This shows that hn−1−mΓλ,1 is a bounded operator Vn−1 → Vn−1. Left to prove for 1) and 2)
are the equalities

sΓλ,1hn−1−mv = sΓλ,1v for any v ∈ Vn−1 ∀v ∈ Vn−1

and
G1(hn−1−m(λ2·)v) = G1v ∀v ∈ Vn

as elements of Φn, meaning for t ∈ [1, λ−2(n−m)].
For 3) recall that

sφ(t, x) = λ
1
2φ(λ2t, λx)

for (t, x) ∈ [λ−2, λ−2(n−1−m)]. Since λ < 1, the factors λj we pick up differentiating, can be
thrown away in the bound so that ‖sφ‖Φn ≤ λ

1
2 ‖φ‖Φn−1 .

For the bound of s−1 : Vn → Vn−1 we have to work a little bit. Let v ∈ C∞0 (R+ × Tn) and
w = Kv again. It is

Ks−1v = Ks−1(−∂t + 1)(−∆ + 1)2w = K1(−λ4∂2
t + 1)K2(−λ2∆ + 1)2s−1w.

We easily compute

K1(−λ4∂2
t + 1) = λ4 + (1− λ4)K1,

K2(−λ2∆ + 1)2 = λ4 + 2λ2(1− λ2)(−∆ + 1)−1 + (1− λ2)2K2.

Hence it suffices to show that the operators K1, K2, (−∆ + 1)−1 and λ
1
2 s−1 are uniformly

bounded (in λ) in the norm supi ‖ · ‖L2(ci). We argue as above using the exponential decay
estimates for the kernels K1, K2 given above and the estimate

(−∆ + 1)−1(x, y) ≤ Ce−c|x−y||x− y|−1.

We bound on λ
1
2 s−1 can be shown like this. Let ci a cube centered in i ∈ Z× (Z∩Tn) and let

cj1 , . . . , cjk the collection of cubes centered in jl ∈ Z× (Z∩Tn−1) such that ci/λ ⊂
⋃
cjl where

ci/λ = {(t/λ2, x/λ) : (t, x) ∈ ci}. Remark the number of cubes needed is uniformly bounded.
Then, we can bound

‖λ
1
2 s−1w‖2L2(ci)

= λ5

ˆ
ci/λ
|w|2 ≤ λ5

∑
k

‖w‖2L2(cjk ) ≤ C.
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4 The analysis of the fixed point equation

For 4), let φ ∈ C2,4(R× Tn) and v ∈ C∞0 (R+ × Tn). Let as above w = Kv so that

φv = φ(−δ2
t + 1)(−∆ + 1)2w.

Writing K(φv) = φKv − [φ,K]v (here φ is seen as a multiplication operator) and using that
the commutator [φ,K] is given by

[φ,K](−δ2
t + 1)(−∆ + 1)2w = −

∑
a

Oa(φaw)

for Oa ∈ {∂nt K1, ∂
α
xK2} for n ≤ 1 and |α| ≤ 3 and for a = (m,β) φa = c(m,β)∂

m
t ∂

β
xφ for m ≤ 2,

|β| ≤ 4. We get to this form by looking at commutation results like

φ∂2
t f = ∂2

t (φf)− 2∂t(∂tφf) + ∂2
t φf

and similar commutation resuls for −∆. Thus we end up with

K(φv) = φw +
∑
a

Oa(φaw).

Provided all Oa are uniformly bounded operators, we may bound

‖K(φv)‖L2(ci) ≤ ‖φw‖L2(ci) +
∑
a

‖Oa(φaw)‖L2(ci)

≤ C‖φ‖C2,4 max
a

sup
i

∑
j

‖Oa‖L2(cj)→L2(ci)‖v‖Vn .

The operators K1 and ∂tK1 have exponentially decaying kernels. The operators ∂αxK2 are
bounded operators in L2, thus they are uniformly bounded as operators L2(ci)→ L2(cj). Their
kernels ∂αxK2(x − y) are smooth outside the diagonal x − y = 0 and exponentially decaying.
This shows as before

‖Oa‖L2(ci)→L2(cj) ≤ Ce
−c|i−j|

which satisfies
max
a

sup
i

∑
j

‖Oa‖L2(cj)→L2(ci) ≤ C

so that we conclude ‖K(φv)‖L2(ci) ≤ C‖φ‖C2,4‖v‖Vn . By density, the multiplication operator
φ : Vn → Vn is bounded by C‖φ‖C2,4 where C does not depend on φ. �

The linear part of the fixed point equation obeys the following bounds.

(4.3) Proposition
Given λ < 1 and γ > 0, there exists n(γ, λ) ∈ N such that for any n ≥ n(γ, λ) Ln : Wn(Bn)→
Wn−1(λ−

1
2Bn−1) is a well-defined bounded operator with norm

‖Ln‖Wn(Bn)→Wn−1(λ−
1
2Bn−1)

≤ Cλ−
5
2 . �
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4 The analysis of the fixed point equation

Proof
Let v ∈ Wn(Bn) and φ ∈ λ−

1
2Bn−1. Recall that

(Lnv)(φ) = λ−2s−1v(s(φ+ Γλ,1ξn−1)).

Clearly (Lnv) is analytic wherever it is defined as composition of analytic functions. We need
to show that s(φ + Γλ,1ξn−1) ∈ Bn. Recall that for ω ∈ Am we imposed the condition (3) in
Definition (3.2)

‖sΓλ,1ξn−1‖Φn ≤ λ−γn.

Combining this with Lemma (4.2), it holds s(φ+ Γλ,1ξn−1) ∈ Φn with

‖s(φ+Γλ,1ξn−1)‖Φn ≤ ‖s‖Φn−1→Φn‖φ‖Φn−1+‖sΓλ,1ξn−1‖Φn ≤ λ
1
2λ−

1
2λ−2γ(n−1)+λ−γn ≤ λ−2γn

for all n ≥ n(γ, λ) where n(γ, λ) is large enough. Thus s(φ + Γλ,1ξn−1) ∈ Bn and v(s(φ +

Γλ,1ξn−1)) is analytic in φ ∈ λ−
1
2Bn−1, so that Ln indeed maps Wn(Bn) → Wn−1(λ−

1
2Bn−1).

Using that
(Lnv)(φ) = λ−2s−1v(s(φ+ Γλ,1ξn−1))

together with Lemma (4.2), it is

‖Lnv‖
λ−

1
2Bn−1

≤ λ−2Cλ−
1
2 ‖v‖Bn . �

(4.4) Corollary
For n ≥ m and N ≥ n, it holds

‖hn−mu(N)
n ‖RBn ≤ CR3λ(1−6γ)n,∥∥∥hn−m (U (N)

n (0) +DU (N)
n (0)φ

)∥∥∥
RBn
≤ CRλ(2−3γ)n

for all R ≥ 1. �

Proof
Applying that for N ≥ n ≥ m

‖hn−mζ(N)
n ‖Vn ≤ λ−γn

for any of the random fields and

‖hn−mu(N)
n (φ)‖Vn ≤ C‖hn−m‖C2,4‖u(N)

n (φ)‖Vn .

Recall that u(N)
n (φ) = −λn

(
(φ+ η

(N)
n )3 − 3ρN−n(φ+ η

(N)
n

)
. Let φ ∈ Bn, then

‖u(N)
n (Rφ)‖Vn = λn

∥∥∥((Rφ+ η(N)
n )3 − 3ρN−n(Rφ+ η(N)

n

)∥∥∥
Vn

≤ R3λn
(
‖φ3‖Vn + ‖p(φ)‖Vn

)
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4 The analysis of the fixed point equation

where p(φ) is a quadratic polynomial in φ with coefficients given by η
(N)
n , η(N)2

n , η(N)
n . We

see that ‖φ3‖Vn ≤ λ−6γ while ‖p(φ)‖Vn ≤ Cλ−5γ . This proves the first claim since hn−m is
uniformly bounded in C2,4.
For the second inequality, recall that

U (N)
n (0) +DU ((N)

n (0)φ = −3λ2n(η(N)2

n − ρN−n)Γ1,λ(N−n)(η
(N)3

n − 3ρN−nη
(N)
n )

− λ2n(m2 log λN +m3)η(N)
n + λ2nzn(t, x)φ(t, x)

+ λ2n

ˆ
zn(t, s, x, y)φ(s, y) ds dy

The linear dependence on φ and that ‖zn(t, x)φ(t, x)‖Vn ≤ λ−3γ which is the worst bound,
concludes the proof of the second inequality. �

We will solve a time-localized version of (4.1) first. Therefore define

ṽ(N)
n = hn−mv

(N)
n .

Using that by Lemma (4.2) it holds sΓλ,1hn−1−mv
(N)
n−1 = sΓλ,1v

(N)
n−1, applying hn−1−m to (4.1),

we see that ṽ(N)
n−1 solves

ṽ
(N)
n−1(φ) = hn−1−m(Lnv(N)

n )(φ+ Γλ,1v
(N)
n−1(φ))

= hn−1−m(Lnv(N)
n )(φ+ Γλ,1ṽ

(N)
n−1(φ))

= hn−1−m(Lnṽ(N)
n )(φ+ Γλ,1ṽ

(N)
n−1(φ))

where the last step follows from the identity

hn−m−1(λ2t) = hn−m−1(λ2t)hn−m(t).

This equality can easily be seen by comparing the supports: hn−1−m(λ2·) is supported on
[0, λ−2(n−m) − 1

2 ] and hn−m = 1 on [0, λ−2(n−m) − λ2]. We choose λ small enough so that the
identity holds true.
Applying the perturbative analysis again to the localized problem, the fixed point problem for
ν̃

(N)
n = hn−mν

(N)
n is

ν̃
(N)
n−1 = hn−1−m

(
Lnν̃(N)

n + F̃n
(
Ũ

(N)
n−1 + ν̃

(N)
n−1

))
, ν̃

(N)
N = 0. (4.4)

Here it is
F̃n(w) = Gn(ũ(N)

n + w̃(N)
n , ũ

(N)
n−1 + w)−Dũ(N)

n−1Γλ,1ũ
(N)
n−1.

We now solve (4.4). This is the core of the method. We will see that the existence follows by
application of Banach fixed point theorem. The required estimates come from Cauchy estimates
on certain analytic functions.
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4 The analysis of the fixed point equation

(4.5) Proposition
There exist λ0 > 0, γ0 > 0 so that for every λ < λ0, γ < γ0 and m > m(γ, λ), if ω ∈ Am, then
for all N ≥ n− 1 ≥ m the fixed point problem (4.4) has a unique solution ν̃(N)

n−1 ∈ Wn(Bn−1).
Furthermore, we have the bound

‖ν̃(N)
n ‖Bn ≤ λ(3− 1

4)n (4.5)

and ν̃(N)
n converge as N →∞ in Wn(Bn) to a limit ν̃n ∈ Wn(Bn). The limit ν̃n is independent

of the choice of the cut-off χ. �

Proof
We divide the proof in two main steps that will itself be split into multiple parts. First we are
solving the fixed point problems inductively and derive the bound (4.5). In the second step we
show convergence of the solutions.
Step 1: The fixed point problem.
The strategy of the proof is to apply Banach fixed point theorem to (4.4). We will solve it in
the subset analytic functions ν : B′ → Vn where B′ = λ−

1
2Bn−1 such that

‖ν‖B′ ≤ λ(3− 1
4)(n−1).

We need to use the larger ball for bounding Ũ (N)
n since we will need some space to apply a

Cauchy estimate. Define the map

ν 7→ hn−1−m

(
Lnν̃(N)

n + F̃n
(
Ũ

(N)
n−1 + ν

))
.

We solve the fixed point problem with initial condition ν̃(N)
N = 0 which satisfies (4.5). So, by

induction, assume that (4.5) holds, we then show existence of ν̃(N)
n−1 in the appropriate space.

Step 1.1: We start by proving bounds on Ln and Fn.
By Proposition (4.3), we have

‖Lnν̃(N)
n ‖B′ ≤ ‖Ln‖Wn(Bn)→Wn−1(B′)‖ν̃(N)

n ‖Bn ≤ Cλ−
5
2λ(3− 1

4)n = Cλ
1
4λ(3− 1

4)(n−1).

In order to estimate F̃n, we first estimate Gn. Recall that

Gn(v, v̄) = (Lnv)(φ+ Γλ,1v̄)− (Lnv).

So define for v ∈ Wn(Bn), v̄ ∈ Wn−1(B′)

f(v, v̄)(φ) = λ−
5
2 s−1v(s(φ+ Γλ,1ξn−1 + Γλ,1v̄(φ))).

Since by Lemma (4.2) sΓλ,1 : Vn−1 → Φn is a bounded operator and using that since ω ∈ Am,
n > m, ‖sΓλ,1ξn−1‖Φn ≤ λ−γn, we find the bound

‖s(φ+ Γλ,1ξn−1 + Γλ,1v̄(φ))‖Φn ≤ λ−2γ(n−1) + λ−γn + C(λ)‖v̄‖B′ .
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4 The analysis of the fixed point equation

Thus there is a constant c(λ) > 0 such that for ‖v̄‖B′ ≤ c(λ)λ−2γn, f(v, v̄) ∈ Wn−1(B′). We
will write

F̃n(w) = gn + Gn(w̃(N)
n , ũ

(N)
n−1 + w) + hn(w)

where we recall that w̃(N)
n was defined via

ṽ(N)
n = ũ(N)

n + w̃(N)
n

and where

gn = Gn(ũ(N)
n , ũ

(N)
n−1)−Dũ(N)

n−1Γλ,1u
(N)
n−1,

hn(w) = Gn(ũ(N)
n , ũ

(N)
n−1 + w)− Gn(ũ(N)

n , ũ
(N)
n−1).

We first esimate gn and hn(w): we can write

gn = f(1)− f(0)− f ′(0)

where f(z) = f(ũ
(N)
n , zũ

(N)
n−1). f is analytic whenever ‖zũ(N)

n−1‖B′ ≤ c(λ)λ−2γn, i.e.

|z| < c(λ)λ−2γn‖ũ(N)
n−1‖

−1
B′ .

Applying the Cauchy inequality (4.3) to f , we estimate

‖gn‖B′ ≤ C(λ)
(
λ−2γn‖ũ(N)

n−1‖
−1
B′

)−2
‖f‖B′

≤ C(λ)λ4γn‖ũ(N)
n−1‖

2
B′‖ũ(N)

n ‖Bn
≤ C(λ)λ4γnλ(1−6γ)nλ2(1−6γ)(n−1)

≤ C(λ)λ(3−14γ)n

where in the second step we used Lemma (4.2) and in the last steps we used Corollary (4.4).
We also write

hn(w) = f̃(1)− f̃(0)

with f̃(z) = f(ũ
(N)
n , ũ

(N)
n−1 + zw) which is analytic provided

|z| < c(λ)λ−2γn‖w‖−1
B′ .

Applying the Cauchy estimate (4.3), we may estimate

‖hn(w)‖B′ ≤ C(λ)
(
λ−2γn‖w‖−1

B′
)−1 ‖f̃‖B′

≤ C(λ)λ2γn‖w‖B′‖ũ(N)
n ‖Bn

using Lemma (4.2) again. Defining

j(z) = (Lnw̃(N)
n )(φ+ zΓλ,1(ũ

(N)
n−1 + w))
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4 The analysis of the fixed point equation

it holds
Gn(w̃(N)

n , ũ
(N)
n−1) + w) = j(1)− j(0)

so that by the same Cauchy inequality together with Proposition (4.3), we find

‖Gn(w̃(N)
n , ũ

(N)
n−1 + w)‖B′ ≤ C(λ)‖w̃(N)

n ‖Bn
(
‖ũ(N)

n−1‖B′ + ‖w‖B′
)
.

Step 1.2: Bounds on w̃(N)
n . Recall that

w̃(N)
n = Ũ (N)

n + ν̃(N)
n

where Ũ (N)
n is iteratively defined via

Ũ
(N)
n−1 = LnŨ (N)

n +Dũ
(N)
n−1Γλ,1ũ

(N)
n−1 = LnŨ (N)

n + Ū
(N)
n−1

and we can write
Ū

(N)
n−1 = Dũ

(N)
n−1Γλ,1ũ

(N)
n−1 = f ′(0).

By the Cauchy estimate (4.3), we get

‖Ū (N)
n−1‖B′ ≤ C(λ)

(
λ−2γn‖ũ(N)

n−1‖
−1
B′

)−1
‖f‖B′

≤ C(λ)λ2γn‖ũ(N)
n−1‖B′‖ũ

(N)
n ‖Bn

≤ C(λ)λ2(1−6γ)nλ2γn

Recall that in Section 3 we expanded Ũ (N)
n up to second order and got

Ũ (N)
n (φ) = Ũ (N)

n (0) +DŨ (N)
n (0)φ+ R̃(N)

n (φ)

where
R̃

(N)
n−1(φ) = (LnR̃(N)

n )(φ)− (LnR̃(N)
n )(0)−D

(
LnR̃(N)

n

)
(0)φ+ R̄

(N)
n−1(φ)

and
R̄

(N)
n−1(φ) = Ū

(N)
n−1(φ)− Ū (N)

n−1(0)−DŪ (N)
n−1(0)φ.

Thus, it is
‖R̄(N)

n−1‖B′ ≤ C(λ)λ(2−10γ)n.

Now we are able to estimate R̃(N)
n−1. Assume by induction that

‖R̃(N)
n ‖Bn ≤ λ(2−11γ)n,

then we can estimate

‖R̃(N)
n−1‖Bn−1 ≤ ‖(LnR̃(N)

n )(φ)− (LnR̃(N)
n )(0)−D

(
LnR̃(N)

n

)
(0)φ‖Bn−1 + ‖R̄(N)

n−1‖B′ .
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We need to estimate the first term. Again, by analyticity, we use the Cauchy estimate. Here,
we must allow for some more room, that is why we go over from Bn−1 to B′ = λ−

1
2Bn−1:

‖(LnR̃(N)
n )(φ)− (LnR̃(N)

n )(0)−D
(
LnR̃(N)

n

)
(0)φ‖Bn−1 ≤ Cλ‖LnR̃(N)

n ‖B′

≤ Cλ−
3
2 ‖R̃(N)

n ‖Bn

where we also used Proposition (4.3). So, we find that

‖R̃(N)
n−1‖Bn−1 ≤ Cλ−

3
2 ‖R̃(N)

n ‖Bn+C(λ)λ(2−10γ)n ≤ Cλ(2−11γ)n− 3
2 +C(λ)λ(2−10γ)n ≤ λ(2−11γ)(n−1)

provided that γ is small enough and n ≥ n(λ). By linearity of U (N)
N , it is R(N)

N = 0 and thus
by induction, we have

‖R̃(N)
n ‖Bn ≤ λ(2−11γ)n for all N ≥ n ≥ n(λ).

We can now use this to derive a bound for Ũ (N)
n . Recall that we start from the initial condition

U
(N)
N (φ) = −λ2N (m2 log λN +m3)φ.

We estimate using the decomposition

‖Ũ (N)
n (φ)‖Bn ≤ ‖hn−m(U (N)

n (0) +DU (N)
n (0)φ)‖Bn + ‖R̃(N)

n (φ)‖Bn
≤ Cλ(2−3γ)n + λ(2−11γ)n

≤ 2λ(2−11γ)n.

This bound obviously also holds for the initial condition.

Step 1.3: Application of Banach fixed point theorem.
We use Step 1.2 to conclude that whenever |ν‖B′ ≤ λ(3− 1

4)(n−1), then also

‖hn−1−m

(
Lnν̃(N)

n + F̃n
(
Ũ

(N)
n−1 + ν

))
‖B′ ≤ λ(3− 1

4)(n−1).

Combining the bounds ??, we find that

‖F̃n(Ũ
(N)
n−1 + ν)‖Bn−1 ≤ λ(3− 1

4)n + λ
1
2
n
(
‖ν‖Bn−1 + ‖ν̃(N)

n ‖Bn
)

+ ‖ν‖Bn−1‖ν̃(N)
n ‖Bn .

Thus, we get

‖hn−1−m

(
Lnν̃(N)

n + F̃n
(
Ũ

(N)
n−1 + ν

))
‖B′

≤C‖hn−1−m‖C2,4

(
‖Lnν̃(N)

n ‖B′ + ‖F̃n
(
Ũ

(N)
n−1 + ν

)
‖B′
)

≤C
(
Cλ

1
4λ(3− 1

4)(n−1) + λ(3− 1
4)n + λ

1
2
n
(
‖ν‖Bn−1 + ‖ν̃(N)

n ‖Bn
)

+ ‖ν‖Bn−1‖ν̃(N)
n ‖Bn

)
≤C

(
Cλ

1
4 + λ(3− 1

4) + 2λ
1
2
n + λ(3− 1

4)n
)
λ(3− 1

4)(n−1)

≤λ(3− 1
4)(n−1)
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4 The analysis of the fixed point equation

whenever λ is small enough. We use that ‖hn−1−m‖C2,4 is uniformly bounded by ‖h‖C2,4 and
we can clearly choose λ so small, that C

(
Cλ

1
4 + λ(3− 1

4) + 2λ
1
2
n + λ(3− 1

4)n
)
≤ 1 for every n.

The map is also contractive whenever n > n(λ).

Step 2: The convergence as N →∞.
We need to show that ν̃(N)

n converges as N →∞ and the limit ν̃n is independent of the cut-off
χ. Recall that we can do so simultaneously by varying the lower cut-off χ′. Recall that for the
choice χ′(s) = χ(λ2s), it is Γ

′(N)
n = Γ

(N+1)
n so that this choice studies the behaviour as N →∞.

Step 2.1: Convergence of ũ(N)
n and of Ũ (N)

n − R̃(N)
n .

Using that since ω ∈ Am it holds

‖hn−m(ζ ′(N)
n − ζ(N)

n ‖Vn ≤ λγ(N−n)λ−γn,

we get by the same proof as of the Corollary (4.4) that

‖ũ(N)
n − ũ′(N)

n ‖Bn ≤ Cλγ(N−n)λ(1−6γ)n,

‖(Ũ (N)
n − R̃(N)

n )− (Ũ
′(N)
n − R̃′(N)

n )‖Bn ≤ Cλγ(N−n)λ(2−3γ)n

since both are polynomials with coefficients in the random fields ξ(N)
n . We immediately conclude

convergence of u(N)
n since the right-hand side is summable.

Step 2.2: We need similar summable bounds on R(N)
n = R̃

(N)
n − R̃

′(N)
n and for ν̃(N)

n − ν̃
′(N)
n .

Recall that Ũ (N)
n = Ln+1Ũ

(N)
n+1 + Ū

(N)
n and we can wrote Ū (N)

n = Dũ
(N)
n Γλ,1ũ

(N)
n = f ′(0) with

f(z) = f(ũ
(N)
n+1, zũ

(N)
n ). Let g(z) = f(ũ

′(N)
n+1 , zũ

′(N)
n ), then again by applying a Cauchy inequality

as before

‖Ū (N)
n − Ū ′(N)

n ‖B′ = ‖f ′(0)− g′(0)‖B′

≤ C(λ)λ2γn
(
‖ũ(N)

n ‖Bn + ‖ũ′(N)
n ‖Bn

)
‖f − g‖B′

≤ C(λ)λ2γnλ(1−6γ)n‖ũ(N)
n+1 − ũ

′(N)
n+1‖Bn+1

≤ C(λ)λγ(N−n)λ(1−6γ)nλ(1−4γ)n

≤ C(λ)λγ(N−n)λ(2−10γ)n.

The same induction we used already to bound R̃(N)
n here gives

‖R(N)
n−1‖Bn−1 ≤ Cλ−

3
2 ‖R(N)

n ‖Bn + C(λ)λγ(N−n)λ(2−10γ)n

and thus
‖R(N)

n ‖Bn ≤ C(λ)λγ(N−n)λ(2−10γ)n

for every N ≥ n ≥ n(λ). Combining this with

‖Ũ (N)
n − Ũ ′(N)

n −R(N)
n ‖Bn ≤ Cλγ(N−n)λ(2−3γ)n,
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4 The analysis of the fixed point equation

we obtain the bound

‖Ũ (N)
n − Ũ ′(N)

n ‖Bn ≤ Cλγ(N−n)λ(2−3γ)n + C(λ)λγ(N−n)λ(2−10γ)n

≤ C(λ)λγ(N−n)λ(2−11γ)n.

Now, as before, we get

‖F̃n(U
(N)
n−1 + ν

(N)
n−1)− F̃ ′n(U

′(N)
n−1 + ν

′(N)
n−1 )‖Bn−1 ≤ λγ(N−n)λ(3− 1

4)n + λ
1
2
n‖ν(N)

n−1 − ν
′(N)
n−1 ‖Bn−1 .

Since Ln is linear, it holds

‖Ln(ν̃(N)
n − ν̃ ′(N)

n )‖Bn−1 ≤ Cλ−
5
2 ‖ν̃(N)

n − ν̃ ′(N)
n ‖.

Now assume inductively that

‖ν̃(N)
n − ν̃ ′(N)

n ‖Bn ≤ Cλγ(N−n)λ(3− 1
4)n.

Then using that

ν̃
(N)
n−1 − ν̃

′(N)
n−1 = Ln(ν̃(N)

n − ν̃ ′(N)
n ) + F̃n(U

(N)
n−1 + ν

(N)
n−1)− F̃ ′n(U

′(N)
n−1 + ν

′(N)
n−1 )

we find that
‖ν̃(N)
n−1 − ν̃

′(N)
n−1 ‖Bn ≤ Cλ

γ(N−n+1)λ(3− 1
4)(n−1)

for γ small enough and where C is independent of N . Thus by induction, it holds

‖ν̃(N)
n − ν̃ ′(N)

n ‖Bn ≤ Cλγ(N−n)λ(3− 1
4)n

for all m ≤ n ≤ N . This shows convergence of ν(N)
n and also that the corresponding limit is

independent of the chosen cut-off.
Together with convergence of ũ(N)

N and Ũ
(N)
n to cut-off independent limits, this establishes

convergence of ṽ(N)
n to a cut-off independent limit ṽn. �

4.3 Proof of the main theorem

Now that we showed existence of the flow, we can turn to the proof of the main theorem, i.e.
reconstruct the solution to the cut-off equation and show convergence to a non-trivial limit.
Recall that we wanted to study the limit of the solutions to the equation

ϕε = Gε(−ϕ3
ε − rεϕε + Ξ)

on the time interval [0, 1
2λ

2m] (where we still assume ω ∈ Am). We will reconstruct ϕλN from
the flow starting at n = m and φm defined on [0, 1] the solution to

φm = G1(v(N)
m (φm) + ξm).

We study the localized iteration

f̃
(N)
n−1(φ) = hn−1−ms

−1f̃ (N)
n

(
s(φ+ Γλ,1(ṽ

(N)
n−1 + ξn−1))

)
where f̃ (N)

n = hn−mf
(N)
n .
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(4.6) Proposition
Let ν̃(N)

n ∈ Wn(Bn), m ≤ n ≤ N be the fixed point constructed in Proposition (4.5) and let
ṽ

(N)
n = ũ

(N)
n + Ũ

(N)
n + ν̃

(N)
n . Then for m ≤ n ≤ N it is f̃ (N)

n ∈ Wn(Bn) and we have the
decomposition

f (N)
n (φ) = φ+ η(N)

n + g(N)
n (φ)

with
‖g̃(N)
n ‖Bn ≤ λ

3
4
n.

Furthermore, g̃(N)
n converges as N →∞ inWn(Bn) to a limit g̃m ∈ Wn(Bn) that is independent

of the choice of the cut-off χ. �

Proof
Recall that

f
(N)
n−1(φ) = s−1f (N)

n (s(φ+ Γλ,1(v
(N)
n−1(φ) + ξn−1)))

and f (N)
N (φ) = φ. By induction, we thus get

g̃
(N)
n−1(φ) = hn−1−m

(
Γλ,1vṽ

(N)
n−1(φ) + s−1g̃(N)

n

(
s(φ+ Γλ,1(ṽ

(N)
n−1(φ) + ξn−1)

))
.

Since g̃(N)
N = 0, if we assume by induction that ‖g̃(N)

n ‖Bn ≤ λ
3
4
n, we get using Lemma (4.2)

‖g̃(N)
n−1‖Bn−1

≤ ‖hn−1−mΓλ,1‖Vn−1→Vn−1‖ṽ
(N)
n−1‖Bn−1 + ‖hn−1−ms

−1g̃(N)
n

(
s(φ+ Γλ,1(ṽ

(N)
n−1(φ) + ξn−1)

)
‖Bn−1

≤ C(λ)λ(1−3γ)(n−1) + Cλ−
1
2λ

3
4
n

≤ λ
3
4

(n−1).

The convergence and cut-off independence follows immediately from that of ṽ(N)
n . �

Recall the main theorem:
(4.7) Theorem
For every ε > 0 there exists rε such that for almost all ω there exists t(Ξ(ω)) > 0 such that (2.2)

has a unique smooth solution ϕε on t ∈ [0, t(Ξ(ω))], x ∈ T3 and there exists ϕ ∈ D′([0, t(Ξ)]×T3)

such that ϕε → ϕ in distributions. Furthermore, the limit is independent of the chosen cut-off
χ. �

Now we have collected everything to be able to proof the theorem.

Proof
Step 1: We first reconstruct the solution ϕ(N) = ϕλN of

ϕλN = GλN (−ϕ3
λN − rλNϕ+ Ξ).

Claim: if ω ∈ Am, then ϕ(N) is given on the time interval [0, 1
2λ
−2m] by

ϕ(N) = s−mf̃ (N)
m (0).
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We reconstruct in the following way. Define φn ∈ Φn iteratively via

φm = 0,

φn = s
(
φn−1 + Γλ,1

(
ṽ

(N)
n−1(φn−1) + ξn−1

))
.

To prove the claim, we first prove that the φn are the solution to the effective equations

φn = G1(ṽ(N)
n (φn) + ξn).

Recall that

G1f(t) =

ˆ t

0
(1− χ(t− s)) e(t−s)∆f(s) ds

where χ(t) = 1 for t ∈ [0, 1]. So, whenever t ∈ [0, 1], we have t − s ∈ [0, 1] so that G1f(s)

vanishes identically on [0, 1].
For the induction step assume that φn−1 ∈ Bn−1 satisfies

φn−1 = G1(ṽ
(N)
n−1(φn−1 + ξn−1).

We first show that φn ∈ Bn: here we use Lemma (4.2) and the bound on sΓλ,1ξn−1 since
ω ∈ Am.

‖φn‖Φn =
∥∥∥s(φn−1 + Γλ,1

(
ṽ

(N)
n−1(φn−1) + ξn−1

))∥∥∥
Φn
‖

≤ λ
1
2 ‖φn−1‖Φn−1 + ‖s

(
Γλ,1

(
ṽ

(N)
n−1(φn−1) + ξn−1

))
‖Φn

≤ λ
1
2 ‖φn−1‖Φn−1 + C(λ)‖ṽ(N)

n−1(φn−1)‖Vn−1 + λ−γn

≤ λ
1
2 ‖φn−1‖Φn−1 + C(λ)λ−γn

≤ λ−2γn.

Thus φn ∈ Bn. Furthermore, we compute

φn = s
(
φn−1 + Γλ,1

(
ṽ

(N)
n−1(φn−1) + ξn−1

))
= s

(
G1(ṽ

(N)
n−1(φn−1 + ξn−1) + Γλ,1

(
ṽ

(N)
n−1(φn−1) + ξn−1

))
= s

(
(G1 + Γλ,1)

(
ṽ

(N)
n−1(φn−1) + ξn−1

))
= s

(
Gλs

−1s
(
ṽ

(N)
n−1(φn−1) + ξn−1

))
= G1

(
λ2s

(
ṽ

(N)
n−1(φn−1) + ξn−1

))
= G1

(
hn−1−m(λ2·)ṽ(N)

n (φn) + ξn

)
= G1

(
ṽ(N)
n (φn) + ξn

)
.
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Since φm = 0, we get

f̃ (N)
m (φm) = h0s

−1f̃
(N)
m+1(φm+1) = h0s

−1h1s
−1f̃

(N)
m+2(φm+2)

= h0h1(·/λ2)s−2f̃
(N)
m+2(φm+2) = h0s

−2f̃
(N)
m+2(φm+2).

Iterating this, we see that

f̃ (N)
m (φm) = h0s

−(N−m)f̃
(N)
N (φN ) = h0hN−m(·/λ2(N−m)s−(N−m)φN = h0s

−(N−m)φN .

φN ∈ BN solves
φN = G1(ṽ

(N)
N + ξN )

and here ṽ(N)
N = hN−mv

(N)
N where

v
(N)
N (φ) = −λNφ3 − (λNm1 + λ2N (m2 log λN +m3)φ).

Also recall that hN−m(t) = 1 for 0 ≤ t ≤ λ−2(N−m) − λ2 so that

φN = G1(ṽ
(N)
N + ξN ) = G1(v

(N)
N + ξN )

on [0, λ−2(N−m) − λ2]. Thus, applying s−N , we get that ϕ(N) = s−NφN solves

ϕλN = GλN (−ϕ3
λN − rλNϕ+ Ξ)

on [0, 1
2λ

2m]. We get
h0(λ−2m·)ϕλN = s−mf̃ (N)

m (0).

Step 2: We need to show convergence of ϕ(N) in D′([0, 1
2λ

2m]). By Proposition (4.6) f̃
(N)
m (0)

converges in Vm to a limit ψm independently of the chosen cut-off function χ. Convergence in
Vm implies convergence in D′([0, 1] × Tm). Now s−m : D′([0, 1] × Tm) → D′([0, λ2m] × T]) is
continuous, so that

h0(λ−2m·)ϕλN = s−mf̃ (N)
m (0)→ s−mψm

converges in D′([0, λ2m × T]). �

4.4 Synopsis
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5 Regularization via mollification

Chapter 5 - Regularization via mollification

In the existence proof we regularized

∂tϕ = ∆ϕ− ϕ3 − rϕ+ Ξ. (5.1)

via truncating the heat kernel, i.e. removing its singularity. In ?? the dynamical Φ4
3 model is

regularized by mollification of the space-time white noise. In ?? the limiting process is given
by rescaling of a stochastic PDE with smooth noise. The regularization scheme as described in
section 2 cannot handle these situations initially. The purpose of this section will be to describe
how to adapt the renormalization group and the existence proof given in sections 2 to 4 to this
situation. We shall later discuss additional problems for which the scheme discussed in 5 here
can be applied to.
Consider a space-time mollifier ρ = ρ(t, x) and consider

ρε(t, x) = ε−5ρ(ε−2t, ε−1x).

Define the regularized space-time white noise by

Ξε = ρε ∗ Ξ.

Then Ξε is a smooth function and we can write down the regularized PDE

∂tϕε = ∆ϕε − ϕ3
ε − rεϕε + Ξε. (5.2)

Remark
Assume that ρ is a radial bump around 0, i.e. ρ(−t,−x) = ρ(t, x). Then we may, informally,
compute the covariance of Ξε

E[Ξε(t, x)Ξε(s, y)] = E
[ˆ

dt′ dx′
ˆ

ds′ dy′ρε(t− t′, x− x′)Ξ(t′, x′)ρε(s− s′, y − y′)Ξ(s′, y′)

]
=

ˆ
dt′ dx′

ˆ
ds′ dy′ρε(t− t′, x− x′)ρε(s− s′, y − y′)E[Ξ(t′, x′)Ξ(s′, y′)]

=

ˆ
dt′ dx′

ˆ
ds′ dy′ρε(t− t′, x− x′)ρε(s− s′, y − y′)δ(t′ − s′)δ(y′ − x′)

=

ˆ
dt′ dx′ρε(t− t′, x− x′)ρε(s− t′, y − x′)

=

ˆ
dt̃dx̃ρε(−t̃,−x̃)ρε(s− t− t̃, y − x− x̃)

=

ˆ
dt̃dx̃ρε(t̃, x̃)ρε(s− t− t̃, y − x− x̃)

= (ρε ∗ ρε)(s− t, x− y).

Especially if |x− y| is large, then the covariance vanishes.
Of course, is non-rigorous since there are no point processes for space-time white noise. But this
computation can be made rigorous by using the corresponding operators on distributions. We
omit it here deciding that the non-rigorous computation is clearer. To simplify the perturbative
analysis, we will assume that ρ is radial. �
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5 Regularization via mollification

As usual we relate solutions to the equations 5.1 and 5.2 to a fixed point problem via
Duhamel’s formula. Define the heat operator

(Gf)(t) =

ˆ t

0
e(t−s)∆f(s) ds.

Then a solution to (5.1) is formally given by ϕ that solves

ϕ = G(−ϕ3 − rϕ+ Ξ).

A solution to (5.2) is given by a fixed point solving

ϕε = G(−ϕ3
ε − rεϕε + Ξε).

5.1 Effective equation

So consider the regularized problem

ϕε = G(−ϕ3
ε − rεϕε + Ξε) = G(Vε(ϕε) + Ξε) (5.3)

for ϕ(t, x) given on (t, x) ∈ [0, τ ]× T3 and where at scale ε the nonlinearity is given by

Vε(ϕ)(t, x) = −ϕ3(t, x)− rεϕ(t, x)

for rε to be determined later. We want to study the limit of ϕε as ε→ 0. We first describe how
to obtain the solution at level ε in terms of the scales at ε′ > ε. While this is a simple one-step
argument if one regularizes the heat kernel as it is done in ??, we need a two-step argument
for the regularization of the noise. The first step consists of splitting the full heat kernel. We
introduce the short-scale cut-off χ which is a smooth function from R+ → [0, 1] such that χ ≡ 1

on [0, 1] and χ ≡ 0 on [2,∞). Then we decompose

G = Gε′ + Γ̃ε′

where

Gµf(t) =

ˆ t

0

(
1− χ

(
t− s
µ2

))
e(t−s)∆f(s) ds

and

Γ̃µf(t) =

ˆ t

0
χ

(
t− s
µ2

)
e(t−s)∆f(s) ds.

Remark that Γ̃µ heuristically takes care of the scales between 0 and µ2 and Gµ of the scales
greater than µ2. We then decompose the solution ϕε into

ϕε = ϕ′ε + Z(ϕ′ε)

where Z = Z(ϕ′ε) satisfies

Z(ϕ′ε) = Γ̃ε′(V (ϕ′ε + Z(ϕ′ε)) + Ξε). (5.4)
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Remark that since the noise is smooth, this is a well-defined function. Also remark that we do
not change the regularization parameter of the noise in this decomposition. We will describe
the flow only in terms of Ξε. Then ϕ′ε necessarily satisfies

ϕ′ε = Gε′(V
′(ϕ′ε) + Ξε) (5.5)

where the new effective potential is defined by

V ′(ϕ′ε) = V (ϕ′ε + Z(ϕ′ε)).

Combining this with (5.4), V ′ satisfies the fixed-point problem

V ′(·) = V (·+ Γ̃ε′(V
′(·) + Ξε)). (5.6)

To continue the renormalization group we have to take care of (5.5). Now we are in the
exact same setting as with the heat kernel regularization so that for ε′′ > ε′ we can use the
decomposition

Gε′ = Gε′′ + Γε′,ε′′

where for µ < η

Γµ,ηf(t) =

ˆ t

0

(
χ

(
t− s
η2

)
− χ

(
t− s
µ2

))
e(t−s)∆f(s) ds.

This term involves all scales between µ2 and η2. Then we decompose

ϕ′ε = ϕ′′ε + Z2(ϕ′′ε)

where Z2 now involves the scales from ε
′2 to ε′′2, i.e.

Z2(ϕ′′ε) = Γ̃ε′,ε′′(V
′(ϕ′′ε + Z2(ϕ′′ε)) + Ξε). (5.7)

Then ϕ′′ε satisfies the new effective equation

ϕ′′ε = Gε′′(V
′′(ϕ′′ε) + Ξε)

where we define the new effective potential via

V ′′(ϕ′′ε) = V ′(ϕ′′ε + Z2(ϕ′′ε)).

Combine this with (5.7) to derive the fixed-point problem

V ′′(·) = V ′(·+ Γε′,ε′′(V
′′(·) + Ξε)).

Now this second step can be iterated to get a flow. Therefore fix λ < 1 and let ε = λN ,
ε′ = λN−1. We furthermore set V (N)

N = VλN . Then we define V (N)
N−1 as the effective potential of

the first step, i.e.
V

(N)
N−1(·) = V

(N)
N (·+ Γ̃λN−1(V

(N)
N−1(·) + Ξε)).
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5 Regularization via mollification

For n ≤ N − 1, we now iterate the second step to get at level λn−1:

V
(N)
n−1(·) = V (N)

n (·+ Γλn,λn−1(V
(N)
n−1(·) + Ξε)).

As before, we also define the reconstructing functions F (N)
n iteratively. Also here, we have a

two-step scheme:

F
(N)
N (ϕ) = ϕ,

F
(N)
N−1(ϕ) = F

(N)
N

(
ϕ+ Γ̃λN−1(V

(N)
N−1(ϕ) + ΞλN )

)
,

F
(N)
n−1(ϕ) = F (N)

n

(
ϕ+ Γλn,λn−1(V

(N)
n−1(ϕ) + ΞλN )

)
for n ≤ N − 1. As before, the purpose of these functions will be that

ϕ = F (N)
n (ϕn)

is the solution of
ϕ = G(V

(N)
N (ϕ) + ΞλN )

where ϕn solves
ϕn = Gλn

(
V (N)
n (ϕn) + Ξλn

)
.

5.2 Rescaling the flow

For µ > 0 define the parabolic scaling operator

sµf(t, x) = µ
1
2 f(µ2t, µx).

(5.1) Lemma
We have the following identities:

sµ ◦G ◦ s−1
µ = µ2G, sµ ◦Gε ◦ s−1

µ = µ2G ε
µ
,

sµ ◦ Γ̃ε ◦ s−1
µ = µ2Γ̃ ε

µ
, sµ ◦ Γε,ε′ ◦ s−1

µ = µ2Γ ε
µ
, ε
′
µ

,

sµΞ
d
= µ−2Ξ(µ), sµΞε

d
= µ−2Ξ

(µ)
ε
µ

where by Ξ(µ) we denote space-time white noise on the R× µ−1T3. �

Proof
Heuristically, assuming Ξ were a coordinate process Ξ(t, x) the last identity follows from the
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calculation

sµ

ˆ
ε−3ρ

(
x− y
ε

)
Ξ(t, y) dy

=µ
1
2

ˆ
ε−3ρ

(
µx− y
ε

)
Ξ(µ2t, y) dy

=µ
1
2

ˆ
ε−3ρ

(
µ
x− y′

ε

)
Ξ(µ2t, µy′)µ3 dy′

=

(
ε

µ

)−3 ˆ
ρ

(
x− y
ε
µ

)
sµΞ(t, y) dy

=µ−2Ξ
(µ)
ε
µ
.

The rigorous proof is very similar using the corresponding operators on distributions and we
omit it here. �

Now we define the dimensionless variables. We rescale to Tn = λ−nT3. Define

v(N)
n = λ2nsλn ◦ V (N)

n ◦ s−1
λn , (5.8)

f (N)
n = sλn ◦ F (N)

n ◦ s−1
λn . (5.9)

We furthermore define
φn = sλnϕn

where we drop the superscript whenever the scaling is clear from the context. Then we can
compute, setting s = sλ and using s ◦ sλn = sλn−1 ◦ s = sλn

v
(N)
N−1(φ) = λ−2s−1v

(N)
N

(
s(φ+ Γ̃1(v

(N)
N−1(φ) + ρλ ∗ ξN−1)

)
,

v
(N)
n−1(φ) = λ−2s−1v(N)

n

(
s(φ+ Γλ,1(v

(N)
n−1(φ) + ρλN−n+1 ∗ ξn−1)

)
where we set

ξn = λ2nsλnΞ.

Then ξn = Ξ(λn) is distributed as space-time white noise on R× Tn. For example, the second
equation follows from the following calculation

v
(N)
n−1(φ) = λ2(n−1)sλn−1 ◦ V (N)

n−1 ◦ s
−1
λn−1(φ)

= λ2(n−1)sλn−1 ◦ V (N)
n

(
s−1
λn−1φ+ Γλn,λn−1(V

(N)
n−1(s−1

λn−1φ) + ΞλN )
)

= λ−2s−1λ2nsλn ◦ V (N)
n ◦ s−1

λn

(
sφ+ ssλn−1Γλn,λn−1

(
V

(N)
n−1(s−1

λn−1(φ)) + ΞλN
))

= λ−2s−1v(N)
n

(
s
(
φ+ Γλ,1(v

(N)
n−1(φ) + λ2(n−1)sλn−1ρλN ∗ Ξ)

))
= λ−2s−1v(N)

n

(
s
(
φ+ Γλ,1(v

(N)
n−1(φ) + ρλN−n+1 ∗ ξn−1)

))
.
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Remark
Upon iteration the noise becomes rougher and rougher since λN−n → 0 as N − n→∞. �

We also compute that

f
(N)
N−1(φ) = s−1f

(N)
N (s(φ+ Γ̃1(v

(N)
n−1(φ) + ρλ ∗ ξN−1))), (5.10)

f
(N)
n−1(φ) = s−1f (N)

n (s(φ+ Γλ,1(v
(N)
n−1(φ) + ρλN−n+1 ∗ ξn−1))) (5.11)

for n ≤ N − 1. As before, define the RG map v(N)
n 7→ v

(N)
n−1 to be

v
(N)
n−1 = Rnv(N)

n .

Remark
We get the same scheme if instead of a mollified space-time white noise, we approximate the
space-time white noise by the scaling limit of smooth fields. I.e. let η a centered Gaussian noise
with stationary covariance

E[η(t, x)η(s, y)] = C̃ε(t− s, x, y)

for C̃ε(t− s, x, y) = Σ(t− s, x− y) if dist(x, y) ≤ 1 for a smooth, positive function Σ: [0, 1]×
B(0, 1)→ R+. Then it is well known that the rescaled fields

ηε(t, x) = ε−
5
2 η

(
t

ε2
,
x

ε

)
converge in distribution to the space-time white noise on R× T3. �

5.3 Main theorem

We want to prove that also regularizing the equation by mollification of the space-time white
noise leads to the same result as the one proved in sections 2 to 4.
(5.2) Theorem
For every ε > 0 there exists rε such that for almost all ω there exists t(Ξ(ω)) > 0 such that (5.2)

has a unique smooth solution ϕε on t ∈ [0, t(Ξ(ω))], x ∈ T3 and there exists ϕ ∈ D′([0, t(Ξ)]×T3)

such that ϕε → ϕ in distributions. Furthermore, the limit is independent of the chosen cut-off
χ and the choice of the mollifier ρ. �
Remark
It is well-known, see ??, that the correct choice of the renormalization constant for this problem
is given by

rε =
m1

ε
+m2 log(ε) +m3

where m1 and m3 depend explicitly on the choice of the mollifier ρ and on the choice of the
cut-off χ and m2 is universal. �

With the renormalization group scheme introduced in the previous paragraphs, the analytic
part of the proof will basically be the same as before. Since mollification is a continuous
operator on Vn, the stochastic estimates for the noise fields will, up to constants that we will
not care for, remain the same. Setting up the perturbative analysis as done before, we will end
up with adapting the proof of Propositions (4.5) and (4.6) to get the result.
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5.4 Perturbative analysis

We adapt the perturbative analysis like done in section 3. There are some minor changes since
random fields will now involve the non-truncated heat kernel. We will adapt the notation from
3 and drop superscripts (N) in the definition of the operators belonging to the perturbative
expansion of the RG map.
Fix N ∈ N. Define the linear flow map Ln = DRn(0) given by

(LNv)(φ) = λ−2s−1v(s(φ+ Γ̃1(ρλ ∗ ξN−1))), (5.12)

(Lnv)(φ) = λ−2s−1v(s(φ+ Γλ,1(ρλN−n+1 ∗ ξn−1))) (5.13)

for n ≤ N − 1. As before, it holds

v
(N)
N−1(φ) = (LNv(N)

N )(φ+ Γ̃1v
(N)
N−1(φ))

v
(N)
n−1(φ) = (Lnv(N)

n )(φ+ Γλ,1v
(N)
n−1(φ)).

It is obvious, that the linear flow with initial data uN is given by

un(φ) = (Ln+1 . . .LNuN )(φ) = λ−2(N−n)sn−NuN (sN−n(φ+ η(N)
n )).

Here we define the stochastic field η(N)
n to be

η(N)
n = Γ̃1(ρλN−n ∗ ξn) =: Γ(N)

n ξn.

As before, we may write

Γ(N)
n f(t, x) =

ˆ t

0

ˆ
χ (t− s)Hn(t− s, x− y)ρλ(N−n) ∗ f(s, y) dsdy.

Also, our linear flow has the same "eigenfunctions"

Ln(φ+ η(N)
n )k = λ(k−5)/2(φ+ η

(N)
n−1)k

so that if uN (φ) = φk, it is

un(φ) = (Ln+1 . . .LN )uN (φ) = λ(N−n)(k−5)/2(φ+ η(N)
n )k

and we obtain the same behaviour as N − n→∞. As before, we have divergence of

E[η(N)
n (t, x)2] = E

[(ˆ
χ (t− s)Hn(t− s, x− y)(ρλ(N−n) ∗ ξn)(s, y) ds dy

)2
]

=

ˆ ˆ
dsdy ds′ dy′χ (t− s)χ

(
t− s′

)
Hn(t− s, x− y)Hn(t− s′, x− y′)ρλ(N−n) ∗ ρλ(N−n)(s− s

′, y − y′)

The limiting behaviour of this object is as in section (3) since ρλ(N−n) ∗ρλ(N−n)(s− s′, y−y′)→
δ(s − s′)δ(y − y′) and we get a first renormalization constant θ (that was called ρ before)
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dependent on χ and ρ and Lemma (3.1) also holds in this case.
We run the linearized flow with initial data given by

u
(N)
N = −λNφ3 − λNm1φ = −λNφ3 + 3λ2NρNφ

where we set
ρk = λ−kρ.

As before, it is
u(N)
n = −λn

(
(φ+ η(N)

n )3 − 3ρN−n(φ+ η(N)
n

)
and we decompose

v(N)
n = u(N)

n + w(N)
n .

Also in the perturbation theory of second order, the only objects that change will be the
coefficients of the analytic functions that decompose the effective potential. We review the
notation here since the operators for the first renormalization group step n = N need to be
adapted. It is straight-forward that the coefficients have the same limiting behaviour as before,
especially we get the same renormalization behaviour.
Define

GN (v, v̄)(φ) = (LNv)(φ+ Γ̃1v̄(φ))− (LNv)(φ),

Gn(v, v̄)(φ) = (Lnv)(φ+ Γλ,1v̄(φ))− (Lnv)(φ)

for n < N so that
v

(N)
n−1 = Lnv(N)

n + Gn(v(N)
n , v

(N)
n−1).

Recall that we decomposed v(N)
n = u

(N)
n + w

(N)
n where u(N)

n−1 = Lnu(N)
n and

w
(N)
n−1 = Lnw(N)

n + Gn(u(N)
n + w(N)

n , u
(N)
n−1 + w

(N)
n−1).

The initial condition for w is given by

wN (φ) = −λ2N (m2 log λN +m3)φ.

Since

GN (u
(N)
N , u

(N)
N−1)(φ) = u

(N)
N−1(φ+ Γ̃1(u

(N)
N−1(φ)))− u(N)

N−1(φ),

Gn(u(N)
n , u

(N)
n−1)(φ) = u

(N)
n−1(φ+ Γλ,1u

(N)
n−1(φ))− u(N)

n−1(φ)

for n < N , by Taylor expansion, it is

GN (u
(N)
N , u

(N)
N−1)(φ) = Du

(N)
N−1(φ)Γ̃1u

(N)
N−1(φ) +O(λN ),

Gn(u(N)
n , u

(N)
n−1)(φ) = Du

(N)
n−1(φ)Γλ,1u

(N)
n−1 +O(λn)
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for n < N where it is

Du
(N)
n−1 = −3λn−1

(
(φ+ η

(N)
n−1)2 − ρN−(n−1)

)
.

For a fixed w(N)
n , w(N)

n−1 then satisfies

w
(N)
N−1 = LNw(N)

N−1 +Du
(N)
N−1Γ̃1u

(N)
N−1 + FN (w

(N)
N−1),

w
(N)
n−1 = Lnw(N)

n−1 +Du
(N)
n−1Γλ,1u

(N)
n−1 + Fn(w

(N)
n−1)

for n < N where

FN (w
(N)
N−1) = GN (u

(N)
N + w

(N)
N , u

(N)
N−1 + w

(N)
N−1)−Du(N)

N−1Γ̃1u
(N)
N−1,

Fn(w
(N)
n−1) = Gn(u(N)

n + w(N)
n , u

(N)
n−1 + w

(N)
n−1)−Du(N)

n−1Γλ,1u
(N)
n−1.

We can also decompose
w(N)
n = U (N)

n + ν(N)
n

solving up to second order where we define

U
(N)
N−1 = LNU (N)

N +Du
(N)
N−1Γ̃1u

(N)
N−1,

U
(N)
n−1 = LnU (N)

n +Du
(N)
n−1Γλ,1u

(N)
n−1

and ν(N)
n solves

ν
(N)
n−1 = Lnν(N)

n + Fn(U
(N)
n−1 + ν

(N)
n−1)

with initial conditions

U
(N)
N = −λ2N (m2 log λN +m3)φ, ν

(N)
N = 0.

By continuity of dependence on the mollifier, m2 and m3 can be determined by the stochastic
analysis as before. Especially, up to constants, the noise estimates will hold for the mollified
noise. We compute that

U (N)
n = DunΓ̃1un − λ2n(m2 log λN +m3)(φ+ η(N)

n ).

5.5 Proof of the main theorem

We use the stochastic bounds given in Definition (3.2) and the spaces introduced in Definition
(4.1). Since we have the same bounds, the only change in the analysis lies in the first RG step.
It is obviously sufficient to show that Proposition (4.5) does hold for this new scheme. If we
can construct ν̃(N)

N−1 ∈ WN (BN−1) and it satisfies the bound

‖ν̃(N)
N−1‖Bn ≤ λ(3− 1

4)(N−1)
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we will immediately have proven the proposition. The rest of the analysis then is identical to
the proof given in section 4 and we refer to it. Recall that we defined ṽ(N)

n = hn−mv
(N)
n where

m ∈ N is fixed such that ω ∈ Am. The localized flow for ν̃(N)
n is given by

ν̃
(N)
n−1 = hn−1−m

(
Lnν̃(N)

n + F̃n
(
Ũ

(N)
n−1 + ν̃

(N)
n−1

))
, ν̃

(N)
N = 0

with
F̃n(w) = Gn(ũ(N)

n + w̃(N)
n , ũ

(N)
n−1 + w)−Dũ(N)

n−1Γλ,1ũ
(N)
n−1.

The main difference to the proof before is that the fixed point problem involves the operators
Γ̃1 that is not infinitely smoothing.
Recall from the proof of Proposition (4.5), that one needs to study

GN (v, v̄) = (LNv)(φ+ Γ̃1v̄)− (LNv).

The bounds on the linear equation only depend on those obtained for Γ̃1(ρλ ∗ ξN−1) that we
get by smoothness of the noise. We then studied

f(v, v̄) = λ−
5
2 s−1v(s(φ+ Γ̃1(ρλ ∗ ξN−1) + Γ̃1v̄(φ))).

Essentially, the bounds we obtained in section 4, followed from the fact that sΓλ,1v̄ ∈ BN
which in turn yielded that f is an analytic function. It will thus be sufficient, to ensure that
sΓ̃1v̄ ∈ BN whenever v̄ ∈ WN−1(B′). This is clear though since at this scale, sΓ̃1v̄(φ) will be
at least as smooth as φ is using the usual properties of the heat kernel and φ ∈ ΦN . The bound
now can be obtained as in the proof of Lemma (4.2).
Now, redoing the proof of Propositions (4.5) and 4.6, we end up being in the same situation as
before and we can construct the solution as it is done in the proof of the main theorem.

5.6 Synopsis
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Chapter 6 - Index of symbols

Funktionenräume
Tn n-dimensional torus
Ξ(µ) space-time white noise on R× µ−1T3

Ξε mollified space-time white noise ρε ∗ Ξ

χ smooth bump, χ ≥ 0, χ(t) = 1 for t ∈ [0, 1], χ(t) = 0 for t ∈ [2∞)

G heat kernel Gf(t) =
´ t

0 e
(t−s)∆f(s) ds

Gε truncated heat kernel Gεf(t) =
´ t

0

(
1− χ

(
t−s
ε2

))
e(t−s)∆f(s) ds

Γµ,η small-scale part of heat kernel Γµ,ηf(t) =
´ t

0

(
χ
(
t−s
η2

)
− χ

(
t−s
µ2

))
e(t−s)∆f(s) ds

Γ̃µ Γ̃µf(t) =
´ t

0 χ
(
t−s
µ2

)
e(t−s)∆f(s) ds

sλ scaling operator
s s = sλ for fixed λ
V

(N)
n flow of effective potentials
v

(N)
n rescaled flow of effective potentials, v(N)

n = λ2nsλn ◦ V
(N)
n ◦ s−1

λn

F
(N)
n reconstructing functions for flow of effective potentials
f

(N)
n rescaled reconstructing functions f (N)

n = sλn ◦ F
(N)
n ◦ s−1

λn

Rn renormalization group map, Rnv(N)
n = v

(N)
n−1

Ln first order term of Rn, see ??
Gn second order term of Rn, see ??
Fn third order term of Rn, see ??
u

(N)
n first order part of v(N)

n , see ??
w

(N)
n remainder: v(N)

n = u
(N)
n + w

(N)
n

U
(N)
n second order part of v(N)

n , see ??
ν

(N)
n remainder: w(N)

n = U
(N)
n + ν

(N)
n , see ??

K1 K1 = (−∂2
t + 1)−1 on L2(R)

K2 K2 = (−∆ + 1)−2 on L2(Tn)

K K = K1K2

Vn function space, see Definition (4.1)

Φn function space, see Definition (4.1)

Bn open ball centered in origin with radius rn = λ−2γn in Φn

Wn(Bn) function space of analytic functions Bn → Vn, see Definition (4.1)
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