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1 Introduction

In this master thesis we study an approach to singular Stochastic Partial
Differential Equations (singular SPDE or SSPDE for short) based on mild
formulations of PDEs in the context of the paracontrolled calculus.

Mild formulations are integral equations representing certain initial value
problems corresponding to evolution equations (see [12] for an introduc-
tion). The methods developed here will combine these integral formulations
with ideas of the paracontrolled calculus.

The paracontrolled calculus was introduced by Gubinelli, Imkeller and Perkowski
in [8] and provides us with a framework for giving a meaning to a certain
highly singular SPDEs.

In order to deal with the mild formulations of singular SPDEs, we will con-
sider random integral operators and study their regularity in suitable spaces.
Finally, we will apply the developed techniques to study a certain singular
SPDE called Parabolic Anderson Model or PAM for short.

This be more precise, we will

1. in the first chapter agree upon some conventions and recall basis prop-
erties regarding the Fourier transform

2. then introduce the Littlewood-Paley decomposition, Besov spaces and
Bony’s paraproduct, all concepts and tools essential to our approach

3. in the third chapter study (random) integral operators in Besov spaces
and derive regularity results in terms of control of the corresponding
integral kernels

4. finally deal with the PAM, derive a sensible concept of solution for
this equations in terms of the introduced concept of enhanced noise,
show that this formulations admits solutions in a well-posed way and
prove that the most important noise for the PAM, called white noise,
fits within this framework.

The rest of this introductory chapter is structured as follows:
First we will recall the basic ideas of the paracontrolled approach to singular
SPDEs in an intuitive fashion.
After that, we will heuristically introduce the ”mild approach” that will be
developed rigorously in this master thesis.
Finally, we agree on some notational conventions.

1.1 Paracontrolled Approach

For T' > 0 we consider the (linear) Parabolic Anderson Model (PAM) which
we formally write as the Cauchy problem

Ou=Au+u-£&on [0,T] x T, w(0,-) =u°(-)



where T? denotes the two dimensional torus and u is function periodic in
space. Here £ denotes space white noise which heuristically can be thought
of independent identically distributed standard Gaussian random variables
attached to each point in space and therefore intuitively space white noise

0 is a suitable initial con-

should be ”a very irregular function”. Moreover, u
dition.

In view of the PAM, the first question we ask ourselves is how to interpret
the product w - £ appearing in the formulation of the equation, i.e. we have
to understand the analytical properties of the realizations of the white noise.
One can prove that white noise can be thought of being a Schwartz distribu-
tion on the torus, i.e. £ € ./ (Chapter 3.3). Even better, we can prove that
for each v € (0,1) we have that ¢ € 72 where ¥* denotes the Holder-
Besov space with regularity a on the torus (Chapter 3.1).

In the latter spaces one can multiply two distributions provided suitable
regularity assumption (Chapter 3.2):

€ x €F — ™) (yv) s u-v

is a bounded bilinear map if a4+ 5 > 0.

Assume now that u is a solution to the equation on the time interval [0, 7.
The product u - £ has to be well-defined and in view of the above theorem
it is sensible to assume that u - £ € C([0,T); €772).

Solving the equation, the Laplacian increases the regularity by two ( see the
Schauder estimate, Chapter 3.1) and we expect u € C([0,T];€7).

Then, however, the product is ill-defined in terms of the above theorem and
consequently the naive approach fails: We cannot give a meaning to the
PAM.

As it turns out, in order to get a proper meaning for this equation, we need
to renormalize the PAM, i.e subtract an ”infinite constant” in a suitable way.
To achieve this, the paracontrolled approach uses Bony’s paraproduct (Chapter
3.2), which provides us with a way to decompose the product of two distri-
butions u, v as follows:

U-V=U<V+UOCV+U>V

u < v and u > v are called paraproducts and uow is called the resonant term.
Bony'’s crucial observation was that, provided v € € and v € €7, paraproducts
always exist. Furthermore, we can think of u < v as a frequency modulation
of v and heuristically © < v behaves like v at small scales.
However, u o £ is only well-defined if o + 8 > 0.
Thus, we localized the difficulty of interpreting the product in the term uo€.
The paracontrolled ansatz now is as follows: We define paracontrolled dis-
tributions to be distributions u that can be decomposed in the following
way:

u=1uf+u¥ <X



Here uf € C([0,T];€%") and uX, X € C([0,T]; ") where X is constructed
from the white noise and 4 can be thought of an derivative.

We can heuristically think of paracontrolled distributions as distributions
that admit a first order noise approximation (since uX < X behaves like X
at small scales and uf has better regularity than the first term). Since the
white noise is the only source of irregularity in the PAM it is thus sensible
to assume that a hypothetical solution of the PAM is paracontrolled.
Assuming this, we can write the troubling part of the product as

wof=ufol+ (u¥ <X)ot

Provided that v € (2/3,1) the first term is well-defined. The second one can
be dealt with by using a purely analytical commutator lemma [7, Chapter
5, 5.2, Lemma 14]:

(uX < X)o& =u*(X 0&)+ better remainder

Since the remainder has better regularity, we only need to handle X o &.
We make an educated guess and define

t
X(t) = /0 Piedr.

where P; is the action of the heat semigroup (Chapter 3.1). Consequently,
X satisfies the equation

X = AX, X(0)=0.

and setting formally

t t
X(t)of:/o Prfdrofz/o P.£o&dr

one can calculate .
o= [ BlPgogdr—oo
0

Hence the term X o¢ admits singular behavior. However, we can prove that

t
Xog(t):/o P.§o& — gpdr

is in fact well-defined and has right regularity. Plugging this into the above
equation, we can derive a renormalized equation which read as

Ou=Au+uof, u0,-)=u’)

and using standard methods we can prove the well-posedness of this equation
in a suitable space.



Bibliographical remarks: Paracontrolled distributions were introduced in [8].
In this paper (besides other equations) the following more general version
of the PAM is treated:

O = Au+ F(u)-€on [0,T] x T?,  u(0,-) = u® (1.1.1)

Here F' € C?*¢ for a suitable € > 0.
See [7] for a gentle introduction to the topic. Moreover see the review in [6].

A different approach to certain singular SPDEs was provided by Hairer in
[10].

1.2 Mild Formulations and Paracontrolled Calculus

In the approach put forward in this thesis we consider the mild equation of
the PAM which reads as

t
u(t) = /0 P;_yu(r) - &dr + P,

Using Bony’s paraproduct and the resonant term we formally write this as
t

= t u(r T tt w(r) o &)dr - (u(r r+Pul.
u(t)/OPt—r( (r) < €)d +/0 Pr(u(r) 0 £)d +/OP H(u(r) = )dr +P

N~ n'g v~

=B<(u,§)(t) =Bo(u,£)(t) =By (u,§) ()
Motivated by the paracontrolled ansatz we hope that

u(t) = u(t) = B<(u,€)(t) € C([0,T);6>)

again has better better regularity as it resembles the first order noise ap-
proximation in terms of the integral formulation.
For uf we derive the equation

u* = Bo(B<(u,€),€) + By (B<(u,£),€) + Bx (uf, €) + Pl

Using estimates for the paraproduct and the resonant term (Chapter 3.2),
we conclude that the operator u — B (B<(u,§), &) is the only one not well-
defined.

We formally set

Bu(B-(0:.9) = [ P ([ Prectuts) <005 oar

- /0 ‘. ( /0 Py(u(s) <€) sds) dr

and alike above, we can prove that this operator admits singular behavior.
Consequently, we need a renormalization to obtain something well-defined.
In order to do so, we write

t t
o = 3 :
/0 P_s(u(s) <€) o&ds /0 /Tzv (t, ;7 2)u(r, z)dzdr,
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i.e. in terms of an integral kernel. One now can prove that

U /Ot /[r2 (vé(t,a:;r, z)—E [vg(t,x;r, Z)D u(r, z)dzdr

is a well-defined bounded operator and thus we can give a sound meaning to
the renormalized equation of uf which we can solve via fixed point iteration
arguments in a well-posed way.

Finally, we can solve the equation

u = B(u, &)+ uf

again by a fixed point argument in a well-posed way and thus obtain a notion
of solution to the renormalized PAM.

1.3 Notations

In writing a < b for positive real numbers a, b we mean that there is a con-
stant C' > 0 independent of @ and b such that a < Cb. Similarly, we define
a 2 bby b < aand write a = b provided a < b and b < a. If we want to
denote dependence on some variable explicitly we write a(t) <; b(t) or use
similar notation.

For a complex number z € C we denote its complex conjugate by z*.

For a multiindex p € N we write |u| = p1 + ... + pg and O* = 0}*...04".
We denote the torus by T = R/(27Z and write T for the d-dimensional
torus. If not stated differently, all functions spaces will have domain T% and
codomain C, e.g. we write LP instead of LP(T%; C).

For o € R we write C® for the space of |«]-times differentiable functions
for which the derivatives of order ||«]| are (o« — [« |)-H6lder-continuous.
For a Banach space X we denote by C7X the space of continuous maps
from [0,7] to X and write for v € CrX the norm of this space as follows:
ullo,x = supo<i<r lu(t) | x- In writing CX we mean the space of continu-
ous maps from [0,00) to X.

Moreover, for a € (0,1) we denote by C3X the subspace of CrX such that
the functions are a-Holder-continuous. For u € U3 X we use the following

notation
_ [u(t) —uls)llx
lullgax = TR
T o<s<t<T |t — 3
and write C*X for the space of functions that are locally in time a-Holder-
continuous in X.
Finally, for Banach spaces X,Y we denote by L (X,Y) the space of bounded

operators from X to Y.
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2 Preliminaries

In this chapter we will briefly recall the very basic tools needed for our
analysis of singular SPDE and settle on some conventions.

We introduce Schwartz distributions and the Fourier transform both on the
torus and the euclidean space. The first provide us with a general framework
for handling ”irregular functions”. The second is an indispensable tool for
the techniques presented below.

We follow the conventions used in [7]. See [4, Chapter 3| for a general
introduction to the theory.

Definition 2.0.1. (Schwartz function on torus)The space of Schwartz func-
tions on the d-dimensional torus T?, denoted by .7 = . (T?) is defined as

= C*>(T%C)

The space of continuous linear functionals on the Schwartz space can be
characterized as follows:

Definition 2.0.2. (Schwartz distribution on torus)A linear functional f: % —
C is a Schwartz distribution if there exists a constant C' > 0 and a natural
number k € N such that for any ¢ € .

[f(@)l=[p, /)l <C  max  sup[d”f]|.

veNe: |v|<k peTd
We denote the space of Schwartz distributions by ..

Example 2.0.3. Let g € L'(T?) be an integrable function. This functions
induces a Schwartz distribution Ty € /" defined by

Ty(p) = (p,9) = /Td pgdx

for any ¢ € . In the following, we often will identify T, with g

Next, we turn to the fundamental objects of Harmonic Analysis on the
torus: The Fourier coefficients and the Fourier series.
In the following we use the notation ej(-) = e*"¥) /(27)%2 and denote its
complex conjugation by e} ().

Definition 2.0.4. (Fourier transform)Let f € % be a Schwartz distribution
and k € 7Z¢. We define the k-th Fourier coefficient of f by

f(k) = (e, f)-

Remark 2.0.5. In view of the identification of T, with g for g € L' we
write for k € 7 g(k) instead of Ty(k).



Recall that the Fourier transform of a Schwartz distribution f € . is
at most of polynomial growth, i.e. there is a natural number N € N such
that

sup | f(k)|(1 + [k))~N < oo.
kezd

Definition 2.0.6. (Fourier inversion)Let (ax),eza be a sequence of complex
numbers of at most polynomial growth. We then define the inverse Fourier
transform with respect to this sequence as

FYay) = Z ager,.

kezd
If f: R* — C is of at most polynomial growth we define
F =T flza):
Moreover, for f € %" a Schwartz distribution we use the notation
¢=F'f (2.0.7)
We have the following basic results:

Proposition 2.0.8. ([5, Chapter 3, 3.39 and 4, Chapter 12, 12.5.3]) Let ¢ €
< and f € .S’

1. The Fourier coefficients (p(k))peza are of rapid decay, i.e for any N €

N we have

sup (k) (1 + k)" < o0

keZd
and

F @) =pin .7

Moreover, for any sequence (ay)ycze which is of rapid decay, F 1 ((ag)yeza
converges to a Schwartz function 1 in .7 and (k) = ay, for all k € Z2.

2. The sequence (f(k))peza is at most of polynomial growth and
7 ) =Ffins

Moreover, for any sequence (ay)peza which is of at most polynomial
growth .#~Y(a;) converges to a Schwartz distribution g in /' and
G(k) = ay, for all k € 7.

The above proposition implies that the inverse Fourier transform in fact
yields a well-defined object.
We moreover need to notion of convolution.



Definition 2.0.9. Let ¢ € . be a Schwartz function and f,g € '
Schwartz distributions. We define

1. fxp(2) = (p(- = 2), f)
2. frg(u) = (gxa,f)

Proposition 2.0.10. ([4, Chapter 12, 12.6.4 and 12.6.5]) Let f,g € .’ be
Schwartz distributions and ¢ € % a Schwartz function.

1. fxp e .S is a Schwartz function.

2. fxge .S is a Schwartz distribution and satisfies

Frglk) = f(k)a(k).

Moreover, the convolution of distributions is commutative and associ-
ative.

In the course of this thesis we will also need the corresponding notions
on the euclidean space:

Definition 2.0.11. (Schwartz functions on euclidean space)A smooth func-
tion p € C®(R?) is a Schwartz functions on R? provided that for any N € N,
o e N¢

sup (1 + |:1:|)N|8°‘<,0(:L‘)| < 0.
zERI

The space of Schwartz functions on R? will be denoted by . (R%).

Remark 2.0.12. We say that a function g: R — C is of rapid decay if
the values decay faster than any polynomial at infinity, i.e. for any natural
number N € N we have

sup g(z)(1+ |z))Y < .
zeR

Using this mode of speaking, a smooth functions ¢ € C(R?) is a Schwartz
function if and only if any derivative of ¢ is of rapid decay.

Definition 2.0.13. (Fourier transform on euclidean space)Let ¢ € .7 (R?).
The Fourier transform of o is defined by

~ 1 i(x,z
Frap(z) = §(z) = W /Rd el >gp(w)d:c.

Moreover, the inverse Fourier transform is defined by
Fai pla) = Frap(—2)

Recall that the Fourier transform on the euclidean space of a Schwartz
function is again a Schwartz function.

10



3 Littlewood-Paley Decomposition and Bony’s Paraproduct

In this chapter we recall the basics of Littlewood-Paley theory as well as
Besov spaces. Moreover, we will introduce Bony’s paraproduct and provide
fundamental statements regarding this notion.

For a general introduction to the topic see [2, Chapter 2]. Besov spaces -
as well as their natural counterparts: Triebel-Lizorkin spaces - on the torus
are extensively treated in[12, Chapter 3].

Finally we introduce Bony’s paraproduct and provide foundational results
for this notion.

In this account, we again loosely follow [7, Chapter 3 and Chapter 5, 5.1].
See also [8, Appendix A.1].

3.1 Dyadic Blocks and Besov Spaces

Generally speaking, Littlewood-Paley theory provides us with a technique to
decompose distributions into smooth functions, the so called dyadic blocks.
The main feature of this decomposition is that the obtained functions are
spectrally supported in either a ball or an annulus.

We first need to introduce a family of functions with respect to which we
want to define this decomposition:

Definition 3.1.1. (Dyadic partition of unity) Let x,p € C>®(R%0,1])
be two smooth, compactly supported radial functions for which the support
suppy = £ = {x: x| < a} for a suitable a > 0 is a centered ball and
suppp = & = {x: b<|z| < c} for suitable ¢ > b > 0 is a centered annulus
such that

1. for any v € RY, x(x) + >i>0 p(27x) =1

2. suppx Nsuppp(277-) =0 if 5 > 1 and suppp(277-) Nsuppp(2=) = ()
fori,j >0 whenever |i — j| > 1

Writing '
p-1:=x,  pi(:)=p27")fori>0
we call the family (p;)j>—1 of functions a dyadic partition of unity.
First note:
Proposition 3.1.2. ([2, Chapter 2, 2.10]) Dyadic partitions of unity ezist.

In the following we fix an arbitrary dyadic partition of unity (p;);j>—1.

Definition 3.1.3. (Dyadic blocks)Let f € . be a Schwartz distribution and
j > —1. The j-th dyadic block of f is defined by

Ajf=F " pif) = pi(k)f(k)ef.

kezd
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We moreover set -
i
Sif =Y Ajf
j>—1

Remark 3.1.4. Setting K; = (271)_d/29_1pj a straightforward computa-
tion yields
Kj * f = A]f

for f e Z.

It is an immediate consequence of the definition that for a Schwartz
distribution f € ./ and natural numbers ¢,j > —1 both A;f and S;f
are Schwartz functions and the Fourier transform of both A;f and S;f is
compactly supported.

Furthermore, we have:

Proposition 3.1.5. 1. Let f € .¥'. Then S;f — f in .&%".

2. There exists a centered annulus /" such that for all Schwartz distri-
butions f,g € " and numbers i,j € N such that i < j — 2 we have

supp.F (AigAj f) c o,
Proof. The first assertion follows from the facts that

(0, Ajf) = (Ajo, f)

and S;p — ¢ as i — oo in & for all ¢ € ..
The second assertion can be proven by noting

F (Dighif) (k) =Y piW)pi(k = Da() f(k — 1)
lez?
and the properties of the dyadic partition of unity. O
After this preparation, we are able to define Besov spaces. These spaces

consist of Schwartz distributions whose dyadic blocks enjoy certain regular-
ity properties:

Definition 3.1.6. (Besov spaces)Let o € R and p,q € [1,00]. We define
the Besov space By, by

Q=

By, = Bg’q(Td) = {f .7 HfHBgﬂq = Z (Qja 12 £l 1) < oo}

j>—1
with the usual modification if ¢ = oo . Moreover, we set

€~ .= B% |-

00,007

vo =g -

The latter spaces we call Hélder-Besov spaces.

12



Our definition of Besov spaces rely on the dyadic blocks and thus might
be dependent on the chosen dyadic partition of unity. This is issue is dealt
with in the following proposition:

Proposition 3.1.7. ([13, Chapter 3, 3.5.1]) For all & € R and p,q € [1, o0]
the space By, is a Banach spaces. The norm ||| ga is dependent on the

choice of a specific partition, but the space By, is not and different norms
induced by different dyadic partitions of unity are equivalent.

We also may interpret the Holder-Besov spaces in a more elementary
way as already suggested by its name:

Proposition 3.1.8. ([13, Chapter 3, 3.5.4]) Let « € R\N. Then €% = C“.

In our analysis of singular SPDE we will mostly work in the context of
Holder-Besov spaces. The following fundamental inequalities will be of used
heavily throughout the text:

Proposition 3.1.9. ([7, Chapter 3, 3.10]) We have

L | llga < Nllgs provided o < 8

2. 'l e Sa ll*llga provided o >0

3. llga S Il oo provided a <0

4o 1Si-ll oo S 2% |lgpa provided v < 0O

We moreover need to understand how Besov spaces with different para-
meters are related. This is dealt with in the following theorem.

Theorem 3.1.10. ([12, Chapter 3, 3.5.5]) (Besov embedding)Let 1 < p; <
pp < o0 and 1 < g < ¢ < 00 as well as o € R. Then BY C

P1.q1
a—d(1/p1—1 . . .
sz,qQ( /=12 s o continuous embedding.

Furthermore, we will need conditions under which we may conclude that
a certain function is in fact contained in a suitable Holder-Besov space:

Lemma 3.1.11. ([7, Chapter 3, 3.10])

1. Let o/’ be a centered annulus and o € R. Assume that (uj)j>—1
is a family of Schwartz functions such that suppFu; C 279/’ and
sl oo S 277 Then

wi= Y u; €6 and [ullga S 1[2%7 fusll oo -
j>—1

13



2. Let #' be centered ball and o > 0. Assume that (u;)j>—1 is a family
of Schwartz functions such that supp.Fu; C 208" and ||uj|; . S 277%.
Then

u = Z uj € € and |ju
Jj=-1

go S 1129 1] oo oo -

When dealing with the Parabolic Anderson Model we will also need to
gain temporal scaling factors in order to set up fixed point iterations. This
is accomplished by working in the following parabolic spaces.

Definition 3.1.12. Let T > 0 and « € (0,2). We define the parabolic space
L8 = Ore° N CEL™

).

and endow this space with the norm HH,%;} = max (||l ¢pga H-HC%LOO
T

We have

Proposition 3.1.13. For T'> 0 and o € (0,2) the space Zf is a Banach
space.

Proof. Noting that by proposition we have ||| ;00 < ||[lga, the claim
follows. O

In the parabolic spaces we can in fact gain scaling factors by passing to
a larger space:

Proposition 3.1.14. (]9, Chapter 2, 2.3, 2.11|)Let T > 0 and « € (0,2),
d € (0,) as well as uw € Lf Then

a—§
ull s ST77 |lull ga + [[u(0)ll4s
T T

Next we deal with the issue of gluing functions in the parabolic spaces. In
the following we denote the time shift of a function f by 77 f(t) == f(T +1).

Proposition 3.1.15. Let T > 0 and Ty € (0,T). Moreover, let a > 0 and
assume that u € Z5. Then

T
Jull g < Nl g, + 17"l g,

Conversely, if u € Cp€“ such that v € Zp and ™y € L 1, then
ue€ Ly
Proof. Clearly
T
lullgpge < lulley, g + (17 1UHCT7TIW. (3.1.16)

14



Thus, it suffices to show

ull g o < Mull g o+ 7l
1

T-Tq

Let s,t € [0,7]. The only cases we need to consider is s < T} < t and
t < T1 < s. Without loss of generality, we may assume s < 17 < t. We
calculate

() = w(s) | oo < ut) = u(T) oo + u(T1) = uls)ll L~
<[lull gy, =T+ ull g, (T3 - 5)°/2

< (Jlrm

which implies the first claim.
The second claim follows immediately from the last inequality. O

_ )o/2
2y, + g ) €9

Next we are concerned with the Schauder estimate for the heat semig-
roup.
The action of the heat semigroup on a distribution f € .’ is given by

F(Pif)(k) = e f(k)
We state two lemmata first:

Lemma 3.1.17. ([8, Appendix A.1, A.7])Let T' > 0 and assume t € (0,T].
Let uw €. and § > 0.

8/2 6/2 |

|Prtllgess ot ullge  and (| Prullgs Szt flull

If Fu is supported outside of a ball centered at 0 the estimates are uniform
mt > 0.

Lemma 3.1.18. ([8, Appendix 1, A.8]) Let a € (0,1) and 8 € R. Assume
that w € €2. Then for all t > 0.

1(P = Id)ull oo S % [Ju

@
These two lemmata can be used the proof the Schauder estimate:

Theorem 3.1.19. ([7, Chapter 3, Lemma 11}, see also [8, Appendix A.1 A.9])
(Schauder estimate) Let a € (0,2). For f € C€* 2 we define If(t) =
fot P,_,.fdr. We then have

1 fllge S A+T)fllcpga-2

for all T > 0 and for g € €¢

1Pgll g < lullge

15



In the course of this master thesis we also need a variation of the Schauder
estimate which deals with functions that are singular at 0.

Theorem 3.1.20. Let o € (0,2). Assume that for a sufficiently small
0 < e < 1 we have that rf(r) € Cr€*2 . Then

I fll go—2e S ()l cpga—s

Proof. First note that there exists 0 < 5 < 2 such that « —2+ 3 > 0. Using
lemma B.1.18 we estimate

/ 1P (f (7))l oo dr < / 1P f (1) lga2ss dr
t
S / P (= 1) e f () gaa dr
0
t
= [ F () |y g / (¢ — r)5dr

S fr)llepga-2-

where we used that the last integral is bounded.
Thus, using the Fubini-Tonelli theorem, we obtain

=(/ t Psear) = [ T (P () dr

and consequently for j > —1

t t
Aj/ P (u( dr—/ AjP( dr—/ P, (Aju(r))dr.
0 0

Now let j > 0 and ¢ € (0,¢/2). We consider

t 5 t
/OPt_T(Ajf(T))dr:/O P,,(Ajf(t—fr’))dfr’%—/(S P.(Ajf(t—r))dr.

On the one hand, we obtain

I B (A f( ) dr

)
< /O It = ) DG F (= 1) o (£ — 7)~dr

Lo

) )
<)l pas 27D / (t— ) dr
0

< H?“ef(r)HCT(ga_2 9—i(a—2)sl—e
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where we used the inequality

1 < 1
(t—r) = (6—r1)

On the other hand, we estimate using lemma

6for0§r<(5.

Lo

H/; P, (Aju(t —r))dr
:

< [ e D00 (e ) dr
19
“jtamzez-g) [ 1
S F @l eyigs 2 | ==

t
< ||a-€ o 2—j(a—2+2(1—e))5—1+e/ d
<1 0y e

S F(1)pgan 277220 N g1

where we moreover used that

1
F S F for ¢ S S
Now setting § = 272/ we obtain that

sup 27BN AGIf| oo S N7 F ()l pigae -
P

and hence I f € Cp€*2¢.
We now apply lemma [3.1.18| to estimate

ILf(#) = Lf ()l poe S

t
(Pr_s — IA)T£(3)|| oo +/ [P f (r)]] oo dr

t
St = sl 22 fl gyponac+ [ I T redr

S f(n)llopga— (|t _pfle=20/2 4 e _ 51_6>
ST ||T6f(r)||CT%ﬂa72 |7f — r|(o‘_2€)/2

where we used
1€ —p17¢| < |t — r|2€ for 7, t > 0.

This proves the assertion. ]

3.2 Bony’s Paraproduct

In this section, we deal with the paraproduct and the resonant term. These
notions were introduced by Bony in [3]. For a modern introduction see [2].
We again loosely follow [7]. See also [8] for a similar, brief introduction.
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Definition 3.2.1. (Paraproduct and resonant term)Let f,g € %" be Schwartz
distributions. We define - whenever well-defined - the paraproduct

j—2
f<g= Z ijlfAjg = Z Z AifAjg
j>—1 j>—1li>-1

and the resonant term

fog= > AifAjyg

i,j=2—1: [i—j|<1

Remark 3.2.2. The idea of the paraproduct is to split a "product” of dis-
tributions f,g as follows:

fr9=f<g+fog+f>g (3.2.3)

where f < g respectively f = g can be thought of frequency modulation of g
respectively f. On the other hand, f o g takes frequencies of similar ranges
mto account.

The crucial point: f < g and f = g do always exist as well-defined distribu-
tions.

However, f o g exists only given suitable reqularity assumptions on f,g and
thus, if ill-defined, may be heuristically interpreted as resonance.

The above remark is made precise in the following proposition:

Proposition 3.2.4. ([7, Chapter 5, 5.1, Theorem 4]) (Paraproduct estimates)
The paraproduct and resonant term enjoy the following bounds:

1. Let B € R. Assume that f € L™ and g € €°. Then
1f < glligs Sp I1Fll o< lgllgs -
2. Let <0 and B € R. Assume that f € €% and g € €°. Then
1f < 9llgors Sap [1fllge llgllgs -

3. Let a, B € R such that o + 3 > 0. Assume that f € €% and g € €°.
Then

1 0 gllgats Sap 1 fllga llgllgs -

Proof. By proposition we conclude that the Fourier transform of S;_1 fA g
is supported in 2’7’ for a suitable annulus 27’. We moreover have

155 £ =19l e < 1558 e 18501 e € 2777 1f 1l oo N9l e
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Now lemma [3.1.11] implies the first claim.
The second claim follows by noting

155 fll e S 27 111l

provided o < 0 (proposition [3.1.9)).
The last claim follows again from lemma [3.1.11] noting that for 4,5 > —1

such that |i — j| < 1 the Fourier transform of A;fAg is supported in a
suitable ball %’ and

125 FAjgll e <MD lzo0 18591l S 279277 Il lgls -

These estimates immediately imply the following theorem:

Corollary 3.2.5. Let a, 8 € R such that o+ 8 > 0 Then

¢ x €8 — gmin(eh)
(f.9)— fg

1s a bounded bilinear map.

As already mentioned in the introduction, our approach to singular SP-
DEs will based on integral operators combined with the use of the paraproduct
and resonant term in the spirit of the paracontrolled calculus.

To define integral kernels that correspond to these integral operators we
need to understand how to interpret the paraproduct and the resonant term
as multipliers in Fourier space.

This we will deal with next.

Proposition 3.2.6. Let u € €%, n € €% for a, B € R. For k € Z we have

Flu<n)(k) =Y a(k)ilks)m<(kr, ko)
k1+ko=k

where the multiplier m~ is given by

<(k1, ko) = Z Z pi(k1)pj(k2)

j>—2i=—-1

Proof. Recall that by the regularity assumption we made
U=n= s ST Ajuly € ErinBA1e) is a well defined distribution

on T¢.
Moreover, we recall that

supp.Z (Aul;n) C 2o/’ (3.2.7)
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whenever ¢ < j — 2 for a suitable centered annulus .7’.
We now calculate

F(u < n)(k) = (u=<n)(ex)

Je  §-2
= Z ZAWAJ’U (ex)
j>—1i=—1

where Ji is a finite number such that
k ¢ suppZ (Ajuljn) for j > Ji, i < j—2.

To find such an Jj is indeed possible due to (3.2.7).
Noting that

A,-uAjn

= Z ezlﬁ(k‘l)pi(kl) Z eZQﬁ(kQ)pj(k?)

k1€72 ko€72

=Y e > @ )pi(k1)p;(k2)

kezZd  ki+ko=k

we conclude that the k-th Fourier coefficient is given by

F (u < n)(k Z Z Yok D ak)ik)pi(ky)ps(ka) | (k)

j=—li=—1KeZd  kitha=k

Z Z > aka)ilka)pi(kn)pj(kz)

j=—11=—1k1+ko=k

Je j-2
= > ( (k0)i(k2) > Y pilka)pj(ka)

ki1+ko=k j=—1li=-1

j—2
a(k)i(ka) Y > pilk)p;(ka)

j>—1i=—1

M

ki1+ko=k

a(k1)n(ka)m<(ky, ko)
ki1+ko=k

where the interchange is justified due to all sums being finite sums. O

Proposition 3.2.8. Assume that u € €, n € €° where a + 3 > 0. Then
for k € Z¢ we have

Fluon) (k)= Y alka)i(ka)mo(ki, ky)

ki1+ko=k
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where the multiplier mo is given by
mo(ki ko) = Y pilki)pj(ka).

li—j]<1

Proof. By the assumptions, we have that v on € €8 is a well defined
distribution.
Note first that for arbitrary 7,5 > —1 we have

F(Diulgm)(k) = > pilkr)p;(k)au(k)i (k)
k1 o=k

and that the sum is finite.
Now let J;, > —1 such that for all j > J; + 1 we have k ¢ suppp;.
Thus we conclude

F (uon)(k)

:nh_>rgo Z Z Auljn | (ex)

j>—1iq: |[i—j|<—1

i
=3 > (AwlAm)(er)

Jz=Lli:Ji—j|<-1
Iy,

=3 Y Y alske)at)it)
§>—14: [i—j|<—1 k1+ko=F

- Z a(ky)N(ko)mo(ky, ko).

k1+ko=k
L]

In using these multipliers effectively the following bounds will turn out
to be crucial:

Proposition 3.2.9. (Multiplier estimates)

1. There are constants c1,C1 > 0 such that for all ky, ko € 74 the follow-
ing estimate holds true:

m< (k1 k2) < Ly <y L ko | <y +a| <Cu s

2. Moreover, there are constants co,Co > 0 such that for all ki, ko € Vi
satisfying k1| > 2c¢ or |ka| > 2¢ the following estimate holds true:

Mo (K1, k2) < Lyt |< k| <Colka]

if k1, ko # 0. If moreover for numbers k, k1, ko € Z% one has mo(ky, ko) #
0 and ki + ko = k we may conclude k| < |ki], k2.
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Remark 3.2.10. In the following we will omit the constants cq1,C1,co, Co
and just write

M (k15 k2) < Ty < oo | Lo <oy ko |< o
and
Mo (k1, k2) < Liy (< ko <k

Proof. Let ki, ks € Z% such that m~(ky, k2) # 0. Then by definition |ki| <
|k2|. The second claim follows from the fact that

suppp; + suppp; C 277"

provided j — 2 > 1.

Let now ki, ko € Z% such that mo(k1,k2) # 0. The assertions now follows
from the fact that if k1 € suppp; and ko € suppp; then |[i — j| < 1 and
consequently ¢2¢ < |kq], |kz| < C2¢ if i > 1. The second claim follows from
this fact as well. O

3.3 White Noise

To close this chapter, we briefly introduce the space white noise. Here we
choose to use a rather easy definition of white noise lacking the sophistication
of more detailed expositions (see for example [11, Chapter 1, Example 1.16]).
We will, however, prove some analytical control for white noise which enables
us to use the analytical tools developed below.

Definition 3.3.1. (Space white noise)Spatial white noise on T¢, denoted by
&, is a centered Gaussian process on a suitable probability space (2, o7, P)
indexed by L? with covariance

for f,g € L?.

Remark 3.3.2. One can show that white noise is linear in its indez-arguments
almost surely.

Proposition 3.3.3. ([7, Chapter 2, 2.1]) There exists a random variable £
on (2, o/, P) such that for allw € Q &{(w) € " is a Schwartz distribution

and P [g(f) zé(f)] —1 forall f € L2

In the following we will often write £(k) = £(e;) where k € Z4.
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Proof. For 0 < A < 1 consider

B [ eOOR)

1+ |kjd+t
kezd
= >+ [FT) T [exp(ER)P)]
kezd
= Y @) [ exp(Afaf?) 2m) Y exp(~ ol )d < oc.
kezd Re

where we used that & (k) is a centered Gaussian random variable with vari-
ance 1. Hence

3 exp(AE(k) )

< o0 almost surely

1+ |k|d+1
kezd
and thus ,
AlE(k
W — 0 as |k| — oo almost surely.
Consequently |€(k)| < In(|k|) almost surely. This implies the claim. O

Proposition 3.3.4. ([7, Chaper 3]) Let € > 0 arbitrary. Then & € €~4?~¢
almost surely.

Proof. Consider for arbitrary a € R and p > 1
. ~||2p
- Jjo2p ,
|2 | 5 2oy,
j>—1
= X v fad]
= 34| o
j>—1

-5 o [ [iagn

2p

s ¢

«
B2py2p

i>—1 T4
. ~ p
S Z 2]a2p/ E [|A]£|2:|
i>—1 T

where the inequality is due to Gaussian hypercontractivity [11, Chapter 3,
Theorem 3.50].
We calculate

B[IAER) 1< Y0 pilkops(ka)E [Ek0ER)]

k1 ko Zd

= > pi(k1)p;(k2) Ly k=0
k1,ko cz7d

< 9Jd,
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Using this we obtain

2 ¢

provided that 2o +d < 0, i.e. @ < —d/2, and hence § € Bj,, 5,
Thus, using the Besov embedding theorem, we obtain £ € €*~%2P for any

p>1.
Since p > 1 can be chosen arbitrarily large, this implies the claim. O

2p
B (21107213

:| < Z 2ja2p2jpd < 00
j>—1

In the following we will identify ¢ with &.

4 Regularity Results for Random Integral Oper-
ator

In this chapter we devote ourselves to the study of (random) operators given
by (random) integral kernels. The goal is to prove regularity results in
Holder-Besov spaces for this kind of operators provided the integral kernels
satisfies suitable regularity assumptions. As already mentioned, these kind
of operators emerge in a natural way in the mild approach to certain SPDEs
studied below.

The general set-up we will work in is as follows: For a positive time T' > 0
and a measurable function u : [0, T] x T¢ — C, we consider integral operators
of the form

t
Vu(t, z) = Viu(z) = / / v(t, z;r, 2)u(r, z)dzdr for 0 <t < T.
0 Jrd

where v is a (random) measurable function such that for any 0 < ¢ < T
’U(t, 7y ) : Td X [O,t) X Td — C.

We say that the kernel v induces or gives rise to the operator V.
Moreover, we will impose impose the following conditions on the kernel:

L ||v(t, 237, 2) || oo oo <00 forall 0 <r <t

2. the kernel is time-homogeneous, i.e. for any s > 0 and 0 < r < t we
have
v(t+ s,z + s,2) = v(t,x; T, 2)

We call a kernel satisfying these assumptions admissible.

As we will see, the class of admissible kernels provides a convenient frame-
work for discussing the regularity of integral operators of the above form.
The rest of this chapter is structured as follows:
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First, in a purely analytical step, we will establish the aforementioned reg-
ularity results given suitable control of the kernel. Here, probability is not
taken into account.

Then we will show how to extend these results to a probabilistic setting and
thus break the soil for applications in the study of singular SDPEs. We will
especially be concerned with deriving assumptions that not only yield the
regularity results but also allow feasible verification.

4.1 Integral Operators in Besov Spaces

An immediate consequence of admissibility is the following:

Lemma 4.1.1. Let v be an admissible integral kernel and uw € L°°. If
0<r<tandkeZ® then

F (/]I‘d v(t, z;r, z)u(z)dz) (k) = /Jl“i Fo (v(t,z;7, 2)) (k)u(z)dz

Proof. Since

/Td /Td’v(t,x;r, 2)||u(z)|dzdz < vol(T9)? ||u(t, z, 7, )| poo poo Ul oo < 00

we conclude that

Td

A ( /T ot z)u(z)dz) (k)= | Fu(v(t,z;r,2))(k)u(z)dz

by the Fubini-Tonelli theorem. O

Proposition 4.1.2. Let v be an admissible integral kernel and u € L.
Then if 0 < r <t for any j > —1 we have

Aj (/ v(t, z;r, 2)u(r, z)dz) = Aju(t, z;r, z)u(r, z)dz.
Td Td

Proof. The proposition follows immediately from an elementary computa-
tion using the last lemma and the fact that the sum appearing in the defin-
ition of the dyadic bloc is finite. O

The last proposition essentially provides us with a way to compute dyadic
blocks of integral operators given rise to by admissible integral kernels. Thus
we can calculate the Besov-norm of functions being defined in terms of these
operators.

In order to prove the desired regularity results for integral operators, we also
need to understand what role the domain of the operator plays in estimating
Besov norms.

First note:
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Lemma 4.1.3. Let f,g € L?. Then
gdz = g / Ajfgdz.
! f j>—1 T ]f

Proof. We first establish S;f — f in L? as i — o0o:

Note that - .
Sif (k) =Y DjFk) =" pilk) (k)
j=—1 j=—1
from which we conclude
i—1
SR < Y oI < |f)] and lim Si7(k) = f(k).
j>—1

Hence for all i € N we obtain using Plancheral’s theorem

|(SiF ()0 (F (k) hez

<|
2(zd) ~

ey = Iz <

and applying the dominated convergence theorem we conclude
(Sif (R)keza = (F(R)za in £3(Z7) as i — oo.
Using Plancheral’s theorem again, we obtain

=0

Jim [18:f = Fllzs = Jim || SiF ) = FEDazs| .,

and finally
Lim [|(Sif = f)gllpr < lim (1S f = fll 2 Il 2 = 0.
1— 00 1—00

This implies
E /Ajfgdz:'lim/ Sifgdz:/ fgdz.
jZ—l Td 1—00 Td Td
O

Using this, we can indeed provide a way of taking the regularity of the
domain of the integral operator into account:

Lemma 4.1.4. Assume that u € €“ where o > 0 is an arbitrary positive
number and let f € . be a distribution. Then

[, A fuds) Sa 2 ul, 1,
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Proof. First recall that A, f € ..
Lemma |4.1.3| implies that

A jfudz = lim Z Aijiud:L’.

n—oo

From

&Mﬂ*::(Adu@ﬁ%@ﬁk>*:iédu@rfﬂzﬁb::uﬂ—k)

we conclude

(Bgu)* = 3 enl@)p; (R)aF (k) = Aju*

kezd

where we used that p; is real and radially symmetric. Hence
(F (D)) (k)" = (pj(k)ur (k)" = F(Aju)(—k)
and therefore, Parseval’s Theorem reads as
/ AjfAudx
Td
= | Aif (Aw)) da
Z F((Agu)") (k)"
:ZﬁAf F(Agu)(—k)
k

Furthermore, the dyadic blocks satisfy
supp(Z A, f) Nsupp(F Aju) =0 (4.1.5)

whenever |i — j| > 1. We conclude

[, A rudal =) im, by [, 8 Adal

= lm 3 ST F (A1) (0)F () (k)

i=—1 pezd

=Y F(A)K) (F(Ajoru)(—k) + F(Aju) (k) + F (Aj1u)(—k))|

kezd

:|/ Aijj_ludx—l—/ Aijjudx+/ AijjHudx\
Td Td Td

S (A1l oo + 1Al oo + 1A 11ll oo ) 1251
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where we used Parseval’s theorem and (4.1.5) to cancel almost all summands
with respect to 1.
Using the estimate

1A ull oo <27 [ullga

we obtain

]/ ul\j fdx|

27007 Jlullga +27% Jullga + 27V [lullga) [Aifl 1
_(2" + 1427279 [lullga 1A £ 1 -

O]

In order to apply this in our study of regularity of integral operators we
introduce double dyadic blocks.
In writing

AjuAj(t, x;r.z).

we mean the i-th resp j-th dyadic block with respect to (p;)j>—1 in the z
resp. z-variable of v.
We have:

Lemma 4.1.6. Let T > 0 and o > 0, 8 € R as well as u € CpE* and
assume that v is an admissible integral kernel. Then for any p > 1 and
t € [0, 7] we have

t
IVeull o 5/0 > 2720 full g 1A (t, w57, 2) | 1 g

Proof. Noting that
Z At xyr, 2)u(r, z)dz = Ajv(t,x;r, 2)u(r, z)dz
j=—17T T
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by lemma we estimate using lemma

Vil

t

// v(t, z;r, 2)u(r, z)dzdr
0 Jrd
t

By
S/ / v(t,z;r, z)u(r, z)dz dr
0 /T4 BE,
1
t . p\7
:/ Z 98 Av(t,xz,r 2)u(r, z)dz dr
0o \;ST Td LE
t .
g/ 221/3 Z/ At zsr, 2)u(r, z)dz||  dr
0 >"1 ==’ Lp
t . .
5/ ST 28 [N 27 lufl g /dmwAj(t,x; r, z)|dz dr
0571 \y>1 T L
t
< ||u|yCT%,,a/ > 2—Ja21ﬂ||Al-uAj(t,x;r,z)HLgL; dr.

where to obtain the second inequality we used that [|-||,, < ||-[|,1 for any
p>1. O

Remark 4.1.7. We could have deduced a slightly stronger result if we would
not had used the inequality ||-||,, < |||, in order to get rid of the exponent

p. It seems, however, that this generalization is only of little use in practice.

Thus we in fact reduced the question of regularity of V to a question
about the regularity of the doubly dyadic blocks A;vA; of the kernel.
The last lemma motivates the following definitions:

Definition 4.1.8. Let a >0 and S € R, as well as 1 <p < oo and T > 0.
Let v be an admissible kernel.

1. For 0 <t <T we write
t
0o 0.7) = / S 2700 A A (t @, )y dr (409)
0 jj>—1 '

and denote by X*PP((0,t)) the space of all admissible kernels v such
that HUHXayﬁ;p((O’t)) 18 ﬁm'te.

2. We write

||U||Xo<,ﬁ;p(T) = OiltlET ||U||Xa,g;p((07t))
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and denote by XPP(T) the space of all admissible kernels v such that
[0l xepw(ry 18 finite and such that for any 0 <t <T

S
h]/q%/ Z 27999 || Ajulj(t, w57, 2) — AjwAj(s, w37, 2 ppdr =0
S 0 ’L’jzfl Tz

and

zle{ﬂ/ E 27999 || Aju (L, w7, 2) — AjulAj(s, x;r, 2)|| dr = 0
sfo .4
17]271

as well as

t
lim/ Z 27999 || AjuA(t, w7, 2)| dr = 0
e Ss 550

3. Finally, we write
xaBir .— ﬂ Xaﬁ?P(T),
T>0

Remark 4.1.10. The conditions in 2. connected to a one-sided limit will be
used to obtain continuity in time.

These spaces enjoy the following basic properties:

Proposition 4.1.11. Let a >0 and B € R as well as 1 < g < p < o0 and
T > 0.

1 (Xa,ﬁ;p(T), H'Hxaﬂ;P(T)) is a normed vector space

2. Forv € X*BP(T) we have

T
HUHXa,B;p(T) = /0 Z 27]0‘21[8 HAZUA](T7x7 T, Z)HLZL% dT’.

3. The inclusion XPP(T) C X*P9(T) holds true, to be more precise
-l xe sy Sa Il xesm(ry -

Proof. The first assertion is evident.
By definition we have

T
/ Z 27792 || Aju A (T 3, Z)HL@Lé dr < vl xa.s (1) -

0 gj>-1
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We calculate, using the time homogeneity of the kernel and the transform-
ationr — T —t 4+,

t
/ Z 9 —jagif HAiUAj(t,x;r,z)HLng dr

0 45>—1

t
:/ Z 9jagif HAivAj(T—t—&—t,a:;T—t—i—r,z)HLng dr

0 j>—1
T
:/ ST 27902 A (T, 237 2) oy dr
T- tz]> 1
/ Z 27999 || Aju (T, z, 7, z)HLle dr
i,j>—1

This proves the second claim.
Finally, noting that the inequality

||A’ivAj(tv €T, Z) HL%L% Sd HAlUAJ (ta T, Z) ”L?;L;
holds true, we may conclude the last assertion. O

In the upcoming sections, the following subspaces of X*#P(T) will be
of great importance:

Definition 4.1.12. Let & > 0 and 8 € R as well as k € [0,1), § > 0,
1<p<ooandT >0.

1. We write X2PP(T) for the space of admissible integral kernels v such
that o
S 22 A (T2l g S (T =)
ij>—1

where the constant is independent of r.

2. We write X ”B’p for the space of integral kernels v € Xy ’ﬂ’p(T) such
that in addztzon to the requirements in 1. for all0 <r < s <t <T
we have

Z 279991 || Aju (L, w37, 2) — AjuAj(s, x; 7, ppp S (- 5)2(s —1)7"
h,j=—1

where the constant is independent of t, s and .

3. We define
):8717 = m X 7B7p
T>0

These spaces enjoy the following basic properties:
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Proposition 4.1.13. Let a > 0, 8 € R as well as k,x" € [0,1), p > 0 and
T > 0.

1. Both X2PP(T) and X*PP(T) are vector spaces
2. Letv e X?’B;p(T). Then for all 0 <r <t <T we have

Z 27999 || Aju (L, ;7 ppp S (- )70,
ij>—1 ’

3. The inclusion Xg’f;p(T) C XBP(T) holds true, to be more precise,
we have
HUHX%B;P(T) S Tli”'

4. If &' < K the inclusion X3PP(T) C X:,’B;p(T) holds true.

Proof. The first assertion follows from straightforward calculations.
Let v € X(‘;"B P(T). Using the time-homogeneity of the kernel we conclude

for0<r<t
At zsr,z) = Ao (T, ;T —t + 135 2).
Consequently, we may estimate

S 2B | AwA(t asm, 2)|

ij>—1
= Z 9 Jogif |A VA (T, 2T —t 4, Z)”LgL%
ij>—1
S(T-T+t—r)"°
=(t — r)f‘s.

This proves the second statement.
Now let v € X:’f;p(T). By definition v € X2#*(T). Consequently

[0]| a0 (1)

T
:/ Z 27999 || Aju (T, z; 2)| o dr
0 ij>-1 ’

T
,S/ (T —r) "dr
0

rSTl_H'
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Moreover for 0 < t < T we have

/S Z 27999 || Aju A (t, w5, 2) — A (s, asr, gy dr
0 ij>—1
:(to— 5)°s1 7" = 0.
and

t
/ S 2P A At w51, 2) | oy dr
S i,jZ—l z

<f-n

:(t _ S)l—l’i

Now taking limits s ¢ as well as t \, s for the first term and the limit
t \y s for the second term we conclude v € X5P(T).

The final claim follows from the elementary inequality
(t— r)n—n’ < Tr—K
provided 0 < r <t < T which implies
(t—r)" < T (8 —r)~"
O

The above introduced spaces of kernels provided a natural framework
for the desired regularity results:

Theorem 4.1.14. Let a >0, B € R, as well asp > 1 and T > 0. Assume
that for 0 <t < T we have v € X0+d/Pp((0,1)).

1. We have
||Vt||CT<ga_><gB IS HUHX%B%P((O,t))‘
2. If instead v € XPTUPP(T), we have

||V||CT<ga_>CT<gB N ||UHXa»B;p(T)-

Proof. Using proposition [{.1.6jwe estimate
[\l

p+4d
CT(éja%Bp’p p

t ) ) 4
5/ Z 9—jagi(B+y) |AvA;(t, x;m, Z)”ngLl dr
0 4j>-1 :

< |‘U||Xa,,@+d/p;p((0,t))
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Now the Besov embedding (theorem [3.1.10| )yields the first statement.
Next we turn to the second statement of the theorem.
We calculate

Viu(z) — Vsu(z) =

/ / (t,z;r, 2)u(r, z dzdr—i—/ / v(t,xz;r, z) — (s, x;r, 2))u(r, z)dzdr.
Td Td

Similar arguments to the ones made in the proof of proposition yield

Vi — VsUHBﬁw/d

NHUHCTWY/ Z 971 B+A/P) | A A (t, 3, 2) — Ajwlj(s, 3 t z)HLpL1 dr+
i,j>—1

t
ull e > 27l B | Ao At 2l dr
8 qg>—1

The first summand vanishes for each one-sided limit s ¢ and ¢t \, s by
assumption. Using the dominated convergence theorem one concludes that
also the second summand vanishes for the limit s  t. For the limit ¢ \, s
the term vanishes by assumption. Hence

lm Ve = Vall g =0

T(fo’) *)Bp P

and, invoking the Besov embedding again, we conclude that

Vullgrgs S 10llxasnry lullopgea
O

Corollary 4.1.15. Let o« >0 and 8 € R as well as k € [0,1), 6 >0, p >0
and T > 0.

1. Ifve Xg’ﬁ;p(T), then for any 0 <t <T
H‘/tHCT%”aH%,B <7
2. Ifve X2JP(T) then
IVle,gamsopgs S T 7.

Proof. The result follows from the last theorem and proposition [4.1.13] [

Later on, we will also need to understand in how far convergence of these
kind of integral operators in operator norm can be reduced to convergence
of their integral kernels. The basic statement in this context is the following;:
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Theorem 4.1.16. Let a >0 and S € R as well as 1 < p < oo and T > 0.
Assume the for n € N v v € XOPH/PP(T) such that

V" = v in XOPHPP(T) as n — oo,

Then
V- Vin L (CT‘KO‘,C’T‘Kﬁ) as n — oo

Proof. Using the above theorem we obtain the bound

V" =Vllepgascres S 10" = vllxaso(r

which implies the theorem. O

4.2 Random Integral Operators in Besov Spaces

In this section we will extend the above developed results to a probabilistic
setting. To be more precise, in the following we will assume the integral
kernels under consideration to be random with respect to a probability space
(Q, o7, P), such that for a random integral kernel v we have that P-almost
surely it is admissible. In the rest of this chapter all integral kernels will be
assumed to be random and P-almosut surely admissible. For simplicity, we
will call these random integral kernels admissible as well.

Most of the results presented here have natural counterparts in the last
section. After having proved the basic estimate and having adjusted the
definitions, the statements can be proven mutatis mutandis. Therefore we
refrain from giving these very apparent proofs.

The investigation starts with a rather technical observation:

Lemma 4.2.1. Let 1 < ¢ < p and f: T¢xT¢ = C be a random, measurable
function. We then have

E (I, llgzze] < |[EDS (@)

LAL
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Proof. We have

E[I1f(z, 2)ll Ly L]

_E (/T ( Td|f(a;,z)\qdz)gdx>p

—

-

q Ok
<E /’H‘d( Td\f(:z:,z)] dz> dx]

S

D
q

/Td <E [</’Jl‘df(x’z)|qdz>5]>z N
</T </TE [If(x,,z”qg}f,dZ)gdx)p

=|[E 0@ 27

=

IN

LiL:

where in the first inequality, we used the Jensen inequality for concave func-
tions and the second inequality is a Minkowski-type inequality for multiple
integrals which is applicable since p/q > 1 (see [1, Chapter X, Theorem
6.21]). O

This leads to the following proposition:

Proposition 4.2.2. Let o >0 and B € R as well asp>1 and T > 0.
Assume that v is an admissible integral kernel.

1. Let 0 <t <T. Then

t . .
E[”Unxa,ﬁ;p((o,t))} </0 Z 9—jagifl

ij>—1

’EHAZ-vAj(t,x,r, z)|p}% dr

LPLL

2. We moreover have

t . . 1
E ([0l o | < sup /0 > 27098 [E[|AwA (¢ 2ir, )] || dr
Zu]z*l

0<t<T

= 279!
D>

i,j>—1

dr
L2l

[ [ AwA(T, 57, 2) ]
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Proof. We have that

E[Wﬂxmmwwﬁﬂ

t
_ / S 27098 | Al (t, 3,7, ) | g dr

ij>—1
t . .
- / > 27iegiR [||AivAj(t,:c;r,z)lngLl}d?"
0 ij>-1 z
t L 1
< e (D NN
_/0 z'j>z:—1 LR P

where we used Fubini’s theorem and lemma for the inequality.
Recalling that

T
ol sy = / S 209 A A (T, a2 | s

we deduce, following the first part of the proposition,

T
E / > 27790 | Ao A (T, @i r, 2)|| o gy dr
0 v

i,j=>—1

T
—jogifl DA : Py
<[ ¥ rrotEraes@an i,
17.]2_1
Noting that for any 0 < t < T we have
t
9-jagiB E[|AjvA(t, z;r, z)\p]% dr
J LPr1
0 ;ji>-1 v
T . ,3 1
—jaei A . Pl
</0 Z 27792 ’EHAZUAJ(T,x,T,zﬂ & o dr
17.]2_1
we conclude. O

These basic results motivate the following definitions:

Definition 4.2.3. Leta > 0, B € R, aswell asp > 1. Let v be an admissible
integral kernel.

1. For 0 <t <T we write

t
||U‘|Xa-ﬂ;p((07t)) ::/0 Z 2*J0‘2@5

ZJZ—l

dr

’]E [|AvA;(t, z;r, 2) |p]%

(4.2.4)
and we denote by X*PP((0,t)) the space of all admissible kernels v
such that [|v|[xa.sw (0, 8 finite.
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2. We write
v B = sup |v 8
H ||XaBP(T) P ” Hxaﬂp((o,t))

and denote by X*FP(T) the space of all admissible kernels v such that
HUHXQ,BW(T) is finite and such that for any 0 <t < T

S . 1
E/‘H%/o Z 9—Jagif ’]E [|AwA;(t, ;7 2) — Ajulj(s,x;r, 2) [P oo dr=0
i,j>—1
and
s o 1
%{1;/0 Z 9—Jagif ’EHAivAj(t,x,r, z) — AjwAj(s,x;r, z)[P]» oo dr =0
i,j>—1
as well as
t o )
%{I;/s Z 9Jagif HEHAi’UAj(t,ZE;T, z)|p]r|[dr =0
>-1
We have the following basic properties:
Proposition 4.2.5. Let o > 0 and B € R as well asp > 1 and T > 0.
1. (X8 (T), [lxxe.8:0 (1)) 15 @ normed vector space
2. If v e X%HP(T), then almost surely v € X5P(T).
Proof. The first assertion is evident.
The second claim follows from immediately from proposition [4.2.2 O

Analogously to the non-random case, we introduce the following sub-
spaces of X®HP(T):

Definition 4.2.6. Let o > 0 and 5 € R as well as k € [0,1), p > 1 and
T >0.
1. We write Xg’ﬁ;p(T) for the space of admissible kernels such that for
0<tLT
3 gy HIE I AWA (T, z; 7, 2)|P)7

i,j>—1

<(T—r)™"

LBl ™

where the constant is independent of r.

2. We write Xi’(’?;p for the space of integral kernels v € X%”B?p(T) such
that in addition to the requirements in 0 < r < s <t <T we have

< A Y P
oy S (=9 =)

Z 9 jagif H]E AWA;(t, x5, 2) — Ajvli(s, 3, z)\p]%
ij2—1

where the constant is independent of t, s and r.
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3. Finally, we define

7ﬁyp ﬂ Xa va
>0

For these spaces we have analogous statements to the non-random case
studied above:

Proposition 4.2.7. Let « > 0, 8 € R as well as k, k" € [0,1), 6 >, p>1
and T > 0.

1. We have
Xg:g;p(T) C Xa,ﬁ;p(T)

and moreover
E [l[oll o) ST
2. If &' < k, then
Xg,ﬁ;p(T) C Xi‘,’ﬁ’p(T)
Proof. Using proposition the proof follows from proposition O

The spaces X*2?(T) provided a natural framework for regularity results
for random integral operators given by random integral kernels in Besov
spaces

Theorem 4.2.8. Let a > 0, § € R, as well asp > 1 and T > 0. Assume
that for 0 <t < T we have v € X®A+d/Pp((0, 1)),

1. We have
E [Villopgeis] S I0lxasnion)

2. If instead v € X*PH/PP(T) we have

S llv

E [HVHCT%O‘—)C‘T%B] S ollxesw(ry -

Proof. Recalling theorem and proposition the claim immedi-
ately follows. O

Corollary 4.2.9. Let o« > 0 and f € R as well as k € [0,1) ,0 >0, p >0
and T > 0.

1. If v € X&PP(T), then for any 0 <t < T
E |:||‘/t||CT<5’a_><gﬁ} <7
2. If v e X2JP(T) then
E [IVllgyonscran] ST
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Proof. This follows from the last theorem and proposition O

Theorem 4.2.10. Let o« > 0 and 8 € R as well as p > 1 and T > 0.
Assume the for n € N v v € X®P(T) such that

V™ — v in X¥HP(T) as n — oc.

Then
VP —-Vin L (C’T%O‘, C’T‘Kﬁ) in probability as n — oo
Proof. This follows from theorem [4.1.16] O

5 The Parabolic Anderson Model

In this section we treat the (linear) parabolic Anderson model (PAM) in two
dimension. We formally write this as the Cauchy problem

Ou—Au=u-€on [0,T] x T? u(0,-) = u’. (5.0.1)

where T' > 0, «? is an initial datum and ¢ is the space white noise on T2.
In the introduction we already discussed the difficulty of giving a proper
meaning to this equation.

A natural approach to the PAM is to understand its solution as the limiting
object of solutions to equations with smoothly approximated noise. Due
to the heuristic analysis, we expect that in order to obtain a well-defined
limit, we in fact need to renormalize the appearing equations in a suitable
way, that is subtract large appropriate terms that drift to infinity as the
approximations of the driving noise tends to the white noise.

The goal of this chapter is to rigorously derive an intrinsic formulation and
show that the in this way obtained renormalized equation is globally well-
posed. Moreover, we want to show that these solutions are indeed sensible:
We will prove that the approximate solutions converge to the ”intrinsic
solutions” after a suitable renormalization.

This, however, is not only possible for the white noise but for a wider class
of noises satisfying certain properties introduced below.

Our ansatz will be based on the mild formulation of this equation combined
with a slight variation of the paracontrolled ansatz. In order to deal with
the troubling product, we will - like already explained in the introduction -
employ Bony’s paraproduct.

First, we will be concerned with the simpler case of smooth driving noise.

5.1 Mild Formulation and Random Operators

For T > 0 we consider the Cauchy problem

Ou — Au=wunon [0,T] x T2,  u(0,-) = u"
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where ug is an initial datum and n denotes a smooth driving noise not
depending on time.
The mild formulation of this equations reads as

t
u(t) = /0 P (u(r)n)dr + Pau®. (5.1.1)

The approach we will develop settles around this equation.
Using Bony’s paraproduct and the resonant term, we may rewrite (5.1.1) as

t t
u(t) = /0 P (u(r) < n)dr +/0 P (u(r) = n)dr + PP,

This decomposition naturally leads to the following operators:

B (u,n)(t) = /0 Pr_(u(r) < m)dr

as well as .

Bs(u,n)(t) = ; P (u(r) on)dr

and
t

Be(un)(t) = | Pip(u(r) = m)ar.

We moreover set By := B, + B, and
B<i(uv 7, n)(t> = BE(B<(U7 77), U)(t)
We analogously define the operators B4, and B.. .

Remark 5.1.2. For notational convenience , we will in the following often
omit the explicit time argument t when writing above the operators bi- and
trilinear operators.

These operators enjoy the following properties:

Proposition 5.1.3. 1. Let B3 € (0,2). Then
B :CrL™® x Cr6° % = £
() o> [ Preslate) <)
is a well-defined and bounded operator.
2. Let o, € R with o+ 8> 0. Then
B, :Cr6® x Cp6" — Lot +2
(wn) o> [ Butr) o)y

is a well-defined and bounded operator.
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3. Let a € R, B < 0. Then

By :Cr6® x Cp6P — 2o+
t
(uym) / Pr(u(r) = n(r))dr
0

is a well-defined and bounded operator.

Proof. The proof is an application of the Schauder estimate (theorem |3.1.19)
combined with the estimates for the paraproduct and the resonant term

(proposition [3.2.4). O
Using this operator, we rewrite the considered equation as
u = B<(u,n) + B (u,n) + P’
and motivated by the paracontrolled ansatz, we define

uf = u — BZ(u,n).

Combining these two equation, we obtain
u¥ = By (u,n,n) + B (uf, n) + Pl (5.1.4)
The following observation is a crucial motivation for our approach:

Proposition 5.1.5. Let T > 0 as well as o > 0 and assume that u® € €°.
Then a function u € CpE€® is a solution to the equation (5.1.1) if and only
if uf satisfies equation (5.1.4)

Proof. Since 7 is smooth, all appearing paraproducts and resonat terms are
well-defined.

Thus, if u is a solution to equation (5.1.1), then u* clearly satisfies equation
(5.1.4).

For the second implication, we consider

u — B<(u,n) =u’
=B (u,n,7m) + Be(uf, n) + P’
=By (u,n,1) + Bx(u,n) — B=(B<(u,n),m) + P’
=By (u,n) + P

from which may conclude

u(t) = B<(u,n)(t) + B=(u,n)(t) + Pl = /0 P (u(r)n)dr + Pal.
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Before we start paying attention to the aforementioned renormalization
in the next section, we more carefully investigate the operator B-,: We want
to derive a representation of this operator as an integral operator. This will
turn out to be useful later and will serve as an easy benchmark for our kernel
based approach.

We start with the following observation:

Lemma 5.1.6. Let T > 0. Assume that uw € Cp L. Then for any 0 <t <
T and k € Z? we have

9(/5})”( (r) < 1) dr) / F (P (ulr) < ) (k)dr

Proof. Since 7 is smooth, the paraproduct estimates (proposition im-
ply that v < n € C7L*°. Now

t
L, [ 1Pertat) < my@)drds < ol flu < gy g < 50
T2 JO

and the claim follows from the Fubini-Tonelli theorem. O

Proposition 5.1.7. Let T > 0 and assume u € CpL*>. Then for any
0 <t <T we have

| st <o = [ Psutr) <)o
0 0

Proof. Lemma 5.1.6 implies that for any ¢ > —1

A < /0 P (u(r) < n)dr) _ /0 " AP (u(r) < n)dr

Since for any 0 < r <t < T we have that P,_,(u(r) < n)on is smooth (note
that 7 is smooth) and

n
Z AP (u(r) < n)Ajn — P_p(u(r) <n)onin .7 as n — 0o
i.j>—1: i—j|<1

we conclude

/Pt r %n)ondr—/ lim Z AP ( < n)Ajndr

li—j|<1

¢
= lim Ai/ Py (u(r) < §)drA;n
i—jl<t 70

_ /0 P (u(r) < m)dr o
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where the interchange of the limit and the integral is justified by dominated
convergence. O

To represent the considered operator as an integral operator we define

vty z) =

> er(@)eny (2)ma(ks, ka)mo(ky, ko + k) oy (ka + k3)(kr )7(k2).
kl,kg,kgezz

Before proving that this integral kernel indeed gives rise to the considered
operator, we need to prove a result concerning the summability of this kernel:

Lemma 5.1.8. For any 0 <r <t we have

Y ma(ky, ka)mo (ki ko + ka) ey (ko + k) (k1) [[(k2)| < oc.
kl,kg,kSGZQ

Proof. Let k' € Z2. Set ki1+ky+ks = k. Using proposition we calculate

> Lpmwme(ks, ka)mo(ki, ko + k) Py (ko + k)i (k1 )7k,
k1,k2,k3€ZQ

< Z Dpemter Uiy <o) Lfken| S ot | < o] Lk | S ko | S ey | P (B2 =+ 3) 7 (K1) 7 (K2).
k1,ka,k3z€Z?

Since 7 is smooth, its Fourier coefficients decay faster than any polynomial.
For an arbitrary number N € N we may estimate the last sum - up to some
constant - by

— —2N
D Lkt L) L <o ksl <l (1 [ )TN (1 + [Rea])
k1,ko,k3€72

_ —N —N
<D T Ly i o < b i (1 )TN (L [R2) N (1 + Js))
kl,k:g,k‘gEZQ

S R ¢ S 1) B SR C I 1 C I o1

k1€72|k1 | 2| K| ko,ks €72
S+ [K)~VH

where we used that for a constant ¢ > 0 chosen suitably

S @+ khY 5/°° (14 2) Ndz

k1€Z2: [k |2IK| clk’
S+ k)N
S+ [N
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provided NV € N is large enough. We then have for any K, K3, K3 € N the
uniform bounds

> m(ks, k2)mo (K1, ka + k3) P (k)| (k1)| |7 (Kk2)]
k1,ko,ks€Z2: |k;|<K;

<>y > Lyo—irm< (K3, ko)mo (1, ko + k) Pr—y (ko + k3) (K1) |7 (k2)]
k'eZ? kl,k:g,k‘gEZQ: |k:z|§K1

<) <o
k'ez?
again, if N is large enough.
From this we conclude the summability claim letting the K;’s tend to infinity.
O

The last lemma implies that v" is an admissible integral kernel (note
that the time-homogenity trivially holds).
Now we are finally able to prove:

Theorem 5.1.9. Let T' > 0 and assume that u € CpL*™. Then for any
0<t<T we have

t t
/ P (u(r) <n)dron= / / v1(t, ;v 2)u(r, z)dzdr.
0 o Jr2

Proof. From proposition 5.1.7 we know that

t t
/ P (u(r) <n)dron = / P, (u(r) < n)ondr.
0 0
For arbitrary k' € Z? we calculate
F (Pr—y(u(r) <) on) (K)

= Y ma(ks, ka)mo(ky, by + ks)Pr—y(ka + k3)i(ky ) (ka)a(r, ks)
kl,k‘g,kSGZQ

=, ( /T L2l z)dr)

Since the above Fourier-coefficients are of rapid decay ( proposition [2.0.8)
we conclude

P (u(r) <n)on= /1?2 vtz 7, 2)u(r, z)dz

which yields the assertion. O
Setting
t
Vu(t, x) = / / v(t, z; 7, 2)u(r, z)dzdr
0 JT2
we are now able to write

Bo(u,n,m) = IV (u).
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5.2 The Renormalized PAM

In this section, we want to provide the announced notion of solution to the
linear PAM with suitable driving noise, prove that such solutions exist and
that solutions to the renormalized approximate equations converge to this
solutions.

The formulation of the main result of this section is orientated towards the
respective result in [7, Chapter 5, 5.5]. See also [8, Chapter 5].

In a first step, we will introduce a framework of general noises for which we
can solve the PAM.

Then, in the next section, we will show that space white noise on the two-
dimensional torus T? indeed fits within this framework.

Motivated by the heuristic analysis made in the introduction, we assume in
the following considerations - in order to be able to later set up a fixed point
iteration - that u € Cr%” for some positive time T > 0.

In view of proposition 5.1.4 we consider the equation

uf = B_+(u,n,n) + Bx (uﬁ, n) + Pug.

Assuming a priori that uf € Cr%?" for some v € (2/3,1), one easily sees
using the estimates for these operator (proposition |5.1.3)) that the second
term is well-defined. Splitting the first operator into its two summands, we
note:

1. B<s(u,m,m) € f;ﬁ’ using the above regularity results for the appear-
ing operators

2. Bo(u,m,n) is not well-defined since B<(u,n) € Cr€” and 2y —2 % 0

Thus we localized the singular behaviour of the SPDE in the term B~o(u,n, ).
We hope that after a suitable renormalization the troubling term yields a
well-defined operator.

As we will need to renormalize the singular operator with a sequence of
constants ¢,, we introduce the operator

M = f xu(t)

where f =3, 0 e} € .7 is a Schwartz distribution.
Provided that u is smooth in its spatial variables and ¢ € C we have

cMyu(z) = cu(t, x).

~

since ]\/L\u(k) = f;k\u(k) = u(t)(k) for any k € Z? and we can apply propos-
ition 2.0.8

Moreover note that if « € R and u € Cr€® then Mu(t) € €% due to the
above Fourier computation, to be more precise, we have

[Meullga = JJu(t)

G-
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In the following we make a virtue out of the necessity of renormalization
and will start by defining a notion of enhanced noise for which we can solve
the PAM.

Definition 5.2.1. (Mild PAM-enhancement) Let v € (2/3,1).
Let T > 0. We write (n,V) € Z(T) if

1. n € €772 and (Vy)o<t<r is a collection of bounded operators in L(£,; €*'~2)
such that s — Vs is continuous in time on the interval (0,T] in

L(ZL),€%) and IV € L(Z), £27)
2. there are sequences (Mg )n>0 in C and (cp)n>0 in C such that
N — 1 in €72 asn — oo
and for all0 <t <T

(V™ —¢,M)— IV in L(ﬁ%,fﬁw_) as n — oo.
We moreover endow the space Z7(T) with the norm

[ (m, V)H%W(T) = Inllgv—2 + ‘|IVH$T7_>37%‘Y*

The distance induced by this will be denoted by d g-~(r)-
Finally, we write
27 =) 27(T)
T>0
Remark 5.2.2. Note that by assumption (177L,V7;7 — cnI)n>0 converges to
(n, V') with respect to the distance d g~ (r)-

If (n,V) € ZVT) for T > 0 we will in the following often use the
notation
B<<>(u77]777) =1Vu

for u e £
The above notation is chosen to be reminiscent of the renormalized PAM
derived in [8, Chapter 5] written as

Oou=Au+ucok.

Here the term w ¢ € is the renormalized product around which the approach
to the PAM in [8] settles.

Remark 5.2.3. In order to avoid awkward notation we will in the rest of
this section without loss of gemerality assume that IV € L(f;,fi,%v), i.e.
the codomain of IV is .,%%'y instead of .,24‘,2177.

The crucial point of the regularity issues dealt with in the enhanced noise
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is that the regqularity of the codomain of IV determines the regularity of u*
and if v € (2/3,1)

By (u%€), ue Ly
is well defined since 2y +~v —2 > 0.
However, if uf € DS,”T%_ the operator is still well-defined because there exists
€ >0 such that 2y —e+~v—2>0 anduefT%_e.
As we do not want to deal with this nuisance, we choose this convenient
simplification.

Proposition 5.2.4. Let T > 0 and assume that (n,V) € Z7(T).
Then for all 0 < T < T we have that (n, Vo) € Z7(T") and

| (n, Vi)

Remark 5.2.5. Abusing the notation we write (n,V) € Z7(T")

Proof. We first need to check that IV € L($%7,$T27). This, however,
follows immediately from the definition of the operator I.

Now let u € £},. We define a function @ by

‘(%"W(T/) < H(n’ V)H%'Y(T) :

a(t,z) = u(t,z) if t € [0,7"] and u(t,z) = u(T’, x) else. (5.2.6)
where x € T? arbitrary.
One now readily checks that @ € ,ZT% and ||| o = |u|| 4o . This shows
T/
||IV||;/TW/_>$;7 < HIVH}/}’—&Z%W
which allows us to conclude. O

The above framework now enables us to formulate a notion of solution
for the PAM. Motivated by proposition [5.1.5] we define:

Definition 5.2.7. Let T > 0 as well as v € (2/3,1). Assume that (n,V) €
2 V(T). We say that u € £} is a (local) mild solution to the renormalized
PAM with noise (1,V) and initial datum ug € €7 provided that uf =
u— B (u,n) satisfies

uﬁ = B<<>(ua 77777) + B<>(ua 77771) + Bt(uﬁvn) + Ptuo

If moreover (n,V) € Z7 we call u € L7 a (global) mild solution to the
renormalized PAM with noise (n,V') provided that for any T > 0 ulg1) is a
(local) mild solution to the renormalized PAM with noise (n,V) € Z7(T).

Finally, we call uy, a (local) approzimate solution to the renormalized PAM
with noise (n,V) € Z7(T) and initial data (ul),>0 in €27 if uh = uy, —
B (up,ny) satisfies

u?l = Bo(Un, My M) + B (Un, i, Mn) + Bt(ugl, M) + Ptug —cpIMu,,.

Similarly, we define global approximate solutions to the renormalized PAM.
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Assume that (n,V) € Z7(T) and that u, is a smooth approximate
solution to the renormalized PAM. Then by definition

UBL = B-<O(Un7 Mn, nn) + B—<>(Um M, 77n) + Bi(“?m nn) + Ptug —cpluy
Noting that ugl = u, — B<(u,n,) we obtain the equation
Un = B-<(un777n) + Bt(un)nn) + Ptugl — cpluy,.

Since 7y, is smooth we have by definition of B, By

t
un(t) = / P (tn (1) 0n — cpun(r))dr + Pl
0
which is the mild formulation of the Cauchy problem

Opun, = Aty + UpTp — Cplly ON [O,T] x T? un(0,-) = uO()

n

We now are able to formulate the main result of this section:

Theorem 5.2.8. Let v € (2/3,1) and assume that (n,V) € 2. Let
moreover u’ € €. Then the renormalized PAM with noise n has a unique
mild global solution v € L7

Moreover, the mild solutions depends Lipschitz-continuously on the initial
datum as well as the driving noise in the following sense:

Let T > 0 s well as M > 0 be a constant. Let ul,uy € €* two initial
conditions and (n1, V1), (n2, Va) € &7 two driving noises. Assume that

16l e+ 100, V)l ) < M

for i € {1,2}. Then, for the respective mild solution of the renormalized
PAM uq,us, the following holds true:

lur = w2l gy S [|ug — ||z + daa ) ((7]1, V1), (m2, V2))- (5.2.9)
From this we can derive an immediate corollary:

Corollary 5.2.10. Let v € (2/3,1) and assume that (n,V) € 2. Let
u’ € €% and assume that a sequence (ud),>o in €27 converges to u° in
€ as n tends to infinity.

Let (un)n>0 a sequence of approzimate solutions with initial conditions (u2)n>0-
Then

Uy — u €LY as n — oo.

Proof. The proof is a consequence of the Lipschitz-continuity on the initial
data of mild solutions to the renormalized PAM on the initial data as well
as the assumption on (uQ),>0 and on the approximate solutions. O
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We break down the proof of theorem 5.2.8 in several steps:

Lemma 5.2.11. Let T' > 0 as well as v € (2/3,1). Assume that we have
(m, V1), (m2, V2) € Z7(T) and ||(ni, Vi)l g~y < M fori € {1,2}. Moreover
assume that ui,uy € £} such that |[uil| ¢ 4, [[u2llo.gv < C. Then
HB<<>(U1»7717771) - B<<>(U277]2a772)||$% + ||B<>(U1,7]1,771) - B<>(u277]25772)||g7%“/
§C,M (1 + T)2 ||U1 - u2||CT<€W + (1 + T)Qd%'Y(T) ((7717 V1)7 (7727 VVQ))

Proof. We estimate

||B<<>(ula 771,771) - B<0(u277]27772)||$72ﬂ

= HIV1u1 — IVQ'U;QHX’Z%W

< [HVi(ur —u2)l| g2y + [|(1V2 = IVo)usl| 42n

<Vill s e s =zl g + 11V = IVall e el o

<M luy = ugl g7 + Cd gy ((m, V1), (112, V2))

Swmc llur — U2||,s,ﬂ; +d gy ((m, V1), (2, V2))

Moreover
| B<w(u1,m1,m1) — B<>(“2ﬂ72ﬂl2)”g§ﬁ
< 1B (s — a1, 1) g0+ Bty — 20| g0+ 1B o1 — )

S 1+ 1) (Il = wall gy Ims

vz + luzllcpgy Im = n2llgr—2 Imlle-2 +

lallyi Wallg-2 i = mellgn2 )
Sare (L+T)? fluy = ual| gy + (1 +T)?dyrry (1, V1), (2, V2))
This implies the claim. O

Lemma 5.2.12. Let T > 0 and v € (2/3,1) as well as (n,V) € Z7(T),
u € 3{1 and u® € €27, Assume that uf € 37217 solves

uﬂ = B-<<>(ua 77777) + B~<>(ua 7777]) + Bt(uﬁvn) + Ptuo

Then
[ o0 S Tl 1 + 062 V-
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Proof. Let T' < T. By assumption

H ﬁ”zﬂ
u
o

<|[B=o s mm)l 2y + 1B (wsmm)l g + | B[ o, + | P
T!

2
SV, 22 llull g, + (1 + T2 G-z 1ull opegr

+ (14T

o = + 1" [[u”]| 2,

C'T/(@OQ'V_2
Now let 2¢ > 0 such that 3y — 2 — 2¢ > 0. We estimate

Jo#=

uﬁ>-77‘

<
CT/CKQ'Y_2 CT/‘K?"Y_2_2e

N

#
@ g Il

N

uﬁ 372]726 Hn Er—2

AT I

G2 -

2y
,S,”T/

We conclude

H uH
u
227

S (10 Vo) + U+ TP llgr2 ) el g + T [0 oo + (1 4+ T)T

Now for sufficiently small but fixed T”, which we may depending only on
uniform constants and 7', we derive

)
Recall that by 7° we denote the time-shift of a function.
Considering 77" uf and using u#(7”) as initial datum instead of u® we first
note that on the time interval [0, 7 — T"] 77" u? solves the equation

uO

Huﬁ“f;7 <0 (10 V)l - Il

TT/uﬂ = B-<<>(TTIU7 m, 77) + B-<>(TTIU7 m, 77) + BE(TT/uﬁv 77) + Ptuﬁ(T/)

We then obtain a similar estimates for HTT,Uﬁ’ where 0 <T” < T’ . In

0
T
view of proposition [3.1.15] we can now estimate

|+

ey 1
<z

"ul
z2 B H;:f27
T/+T// T

<o (10 VLol s )

Iterating this argument up to time 7" and again using proposition |3.1.15| -
note that the iteration terminates since 7" only needs to be smaller than 7"
if 7"+ T" > T- the claim follows. O

o1

|

2y
.ZT,



Remark 5.2.13. Many of the subsequent results will be established by em-
ploying similar iterative arguments. To avoid cumbersome and rather lengthy
proofs, we will often refer to this technique by using the keywords ”by itera-
tion” and indicate how to establish the results on the "macroscopic” interval
from the "microscopic” intervals.

Next we will be concerned with the well-posedness of the equation of u#:

Lemma 5.2.14. Lety € (2/3,1) and T > 0. Assume that (n,V) € Z7(T).
Then for initial data uw € Cr€" and u® € €7 the equation

u? = B_o(u,n,n) + By (u,n,n) + Bx(u*,n) + Pug

has a unique solution in .,2”7217. Moreover, the solution depends Lipschitz-
continuously on the initial data in the following sense: Given M > 0 as well
as ud,ug € €, uy,uz € L3 and (m, Vi), (2, V2) € 27(T) such that

U |2y < M

luill 2 + i, Vi)l gy + |
for i € {1,2}, then

[t = ]|, Srar llus = wall gy [ — 8
=T

@2 +d%7(T) ((7717 ‘/1)7 (772? V2)>

Proof. Let 0 < T" < T. Define the space Zj%,'y(uo) ={v e .,?7217 v(0) = u’}.
Since $T27(u0) - $T27 is closed we conclude that - with the induced norm -

$T27(u0) is a Banach space. Next consider the map
2 2
®: L (W) — L) (u0),
v = B<<><v7 m, 77) + B<>—(v7 m, 77) + Bt(’l), 77) + jjtuo-

Since by assumption 3y —2 > 0 for v € ijﬂ we conclude that Bx-(v,n) €
jng'y is well defined and hence so is ®.
We estimate

19 (v1) — ®(v2)l] 2
= ”Bt(vl - UQJ?)Hg;y

SA4+T) [(v1 —v2) = e, g2

using the Schauder estimate.
Let € > 0 such that 3y —2 — 2¢ > 0. Then

[ (or) = B(ez)]| 2,

SA+T) (v = v2) = nlle,, g2
<L+ T [[(v1 — v2) = nlle,, gar—2—2
SA+T) [Jor - v2ll g2y [l
SA+T)T Inllgr-2 llor = vall g2 -
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For small enough 7" > 0, this map becomes a contraction and we obtain a

unique solution to the equation on the time interval [0, 7] by Banach’s fixed

point theorem.

Iterating the process after adjusting the initial data -choosing T u¥ instead

of u® as well as 77" instead of u in a first step, then accordingly- and thus

also the space we obtain a function uf € .Zfﬂ after gluing the piecewise

solutions according to proposition [3.1.15]

By construction, this function is a solution to the considered equation.

Assume now that uﬁ, ug € .i”j% are two solutions corresponding to the initial

data uy, u) and ug,ud as well as driving terms (11, V1), (12, Vo) which satisfy

the above stated bound.

By Lemma we know that HugHgQ”f < C(T,M) for a constant C(T, M) > 0.
T

We have

=

z2
< HB_<<>(U1, 7717771) - B<<>(u277727 772)”$j%7 + ”B<>_(U1,7’]1, 772) - B<>_<’U/2,772, 772)‘|_§f;7
+ HBE(uqﬂﬁ) - Bi(ugaTD)Hggy + Hptu? - Bug“gfj
T/

ST HB-<<>(U17 7717771) - B<0(U2,772,?72)||$7%v + ”B-<>(u177717 772) - B-<>(u277727 7]2)”9%12;7

|| Bt ) = B )|, + [P = P e
T!

The first two term may estimate according to the last lemma, the last term
can be estimated using the Schauder estimate. Moreover, we may estimate
for a suitable € > 0

HBE(UTLT/I) - Bt(uﬁgﬂh)H

22
< HBE(UL} - u&m)”w + HBt(Uﬁzmz - "71)H$27
T’ T/
5(1 + T/)T/€ ug — ugHX’Y Hnl “v—2 + Hugsz’y Hnl - 772 Ev—2
T’ T’
SO+ DTM || = |, + O M) oy = mal 2
T/

For small enough 7" < T we obtain

[t =] ., Srar s = wall g+ s — 8

w2 T (1) ((771, V1), (n2, V2))-

Using proposition [3.1.15] which allows us to estimate ||| 72 in terms of
||| y2v and HTS‘HZQW for 0 < S < T, we obtain the desired result by an
S “T-S

iteration argument. O
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Having gathered these results we are now finally able to prove the the-
orem:

Proof. (of Theorem) Let T' > 0 arbitrary. By the above Lemma for any
u € L7, u’ € € there exists a function I'(u,u,n) € .,2”7%7 for which we
have

F(u7 UO) = B<<>(u7 m, 77) + B<>(’LL, n, 77) + BE (F(uv uO)’ 77) + Ptuo‘ (5215)
Let 0 < T < T. Consider the linear map
U :f;, — f;,
v = B< (’U, 6) + F(’U, UO)‘

This is a well-defined, bounded operator since B(v,&) € £} by prop and
37%7 - ZT27 C £, are continuous embeddings. We estimate for a suitable
e>0

[ (v1) = (v2)] 7,
<|[B<(vr = v, m)ll g, + T (01, u®) — F(U27UO)H$Tv,

SA+T) (01 = v2) < W)l gm2 + /2 [Tz (v1, u®) — Do (vg, UO)HiﬂfJ

SA+T") [Jor = valley, o< I

SA+T) [Inllgr-2 T [lvr = vall 27, + T2 |y — v2ll 7, -

g2 T o1 — vall ¢,

For small enough T we have that ¥ is a contraction and hence Banach’s
fixed point theorem yields a unique fixed point.

An iteration argument yields existence up to time 7" and hence there is a
function u € £ such that u* == u — B<(u,n) = I'(u,u°), i.e.

uﬁ = B<<>(U,77, 77) + B<>(u,’l’], 77) + Bi(uﬁﬂ]) + Ptuo'

Consequently, v is a mild solution of the renormalized PAM with noise (1, V)
and since T" was arbitrary (and hence can be chosen arbitrarily throughout
the above calculation) we conclude that there exists a mild solution u € £7
to the PAM with noise (n, V).

Next, let T > 0 and u?,u3 € €% and (m, V1), (2, V2) € 27 such that

[ 4[|z + 100 Vil gy < M- (5.2.16)

for i € {1,2}.Let uy,us € 2, the solutions according to these initial data
and driving noises.
Setting uzﬁ = u; — B<(ui,m;) for i € {1,2} we know by Lemma that

e =], Srar lhus = wall gy + ([0 = 68l s + sy (0, V), (2, V2))
T
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Moreover, we can estimate

[ B<(u1,m) — B<(U2>772)H:/T”
< [1B<(ur = uz,m)l gy + [|B<(uz,m =12l 420
S+ T) lur — gl oo Imlligr—2 + (1 +T) [luzll &7 llm — 2
Sv(1+ )T lur = wall gy + dary ((m, V1), (02, V2)) -

(6772

Putting both estimates together we obtain

et = wall g < 1B (w1, m) — Bz, me) | +||uf — 3

k74
Seo (T +T72) |Jug — uall g + U = wd| oy + daner) ((m1, V1), (m2, V2))

from which the desired result follows again from an iteration argument. [J

5.3 Enhanced White Noise

Finally, in order to be able to solve the renormalized PAM with white noise
as driving term, we need to show that indeed white noise fits within the
framework of enhanced noise defined above.

Motivated by the results of the penultimate section, for » > 0 we want study
the operator

Véu = /T Pr_gs(u(s) < &) o&dr.
0

We hope that an anlysis of this operator provides us with a way to construct
operators (V;)¢>o such that V; € L (£, 4*~2) such that (n,V) € 27(T)
almost surely for any T > 0.

First, we want to find a representation of V¢ using an integral kernel. Since
in this case the noise is not smooth, we cannot directly apply theorem [5.1.9
but rather have to slightly alter the above made arguments in the following.
Like above, setting k = k1 + ko + k3 we define

Ve (t, ;7 2)

= Y ep(@)ery(2)m(ks, ka)mo(ky, ko + k) Prop (ko + ka)€(k1)é (ko).
/4:1,k2,k3622

Lemma 5.3.1. For any 0 <r <t we have

D melks, ka)mo(ki, ke + k) Py (k2 + k3) € (k)€ (k2)| < oo,
kl,kg,k3€Z2

Especially, v¢ is an admissible integral kernel.
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Proof. Recall that the Fourier transform of £ is of at most polynomial
growth, hence there is a natural number N € N such that for any k € Z?
we have |(k)| < (1 + |k|)N. Furthermore note that P,_, is of rapid decay
provided that 0 < r < t.

Set ki + ko + k3 = k and let ¥’ € Z2. For an arbitrary M € N we obtain

D Tumwm(hka, ka)mo(ka, ks + k) Py (ky + k3) E(k1)|[€(k2))|
/4:1,k2,/€3622

S Tk Dikai< il Lol SlhathalSlkal Lk [ ko-+ks ks X
k’l,kg,k‘gEZQ

(1+ [k + ks ) 7>M (L + [k )V (1 + [Ra] )Y

S ) D (R k)M )M+ R DN (L 2N
ki: |k‘/|§|k1| kz,k3€Z2

S+ [N
for sufficiently large M where we used that
(L4 k2 + k)™ < (L elhal) ™ S (14 [R2)™™ < (14 ks~

and analogous estimates for the other terms. Now for large enough M € N
we have for any K1, Ko, K3 € N a uniform bound

> m (k3, ka)meo(ky, ko + ks) Py (k) [€ (K1) [|€ (ko)
k’l,kg,k‘gEZQ: |k1|§K1

<) > Ly (K, ka)mo (ky, ko + k3) Pr—r (k2 + k3) € (k1) |€ (2)|
k'ez? kl,kg,k[;EZQ: |kl|§K1

S @+ E)M < oo
k'ez?

This allows us to conclude.
Since ©v¢ clearly is homogeneous in time the admissibility follows immedi-
ately. ]

We now can prove:

Proposition 5.3.2. Let 0 < v < 1 as well as T > 0 and u € CpE". Let
0<r<t<T we have

P (u(r) <& o&= / V8 (t, @y, 2)u(r, 2)dz.
T2
Proof. For any 0 < r < t we know that P;_.(u(r) < &) o £ is a smooth

function .
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Provided 0 < r < t we may conclude that for any &' € Z?

F (Pr(€ < u(r) o €) ()
= Z ]lk1+k2+k3:k’m-<(k53a k‘z)mo(kb k2 + kS)Pt—r(k2 + kS)é(kl)é(k2)a(T7 k3)
kl,k27k3€Z2

_7 ( /T (b 2)ulr z)dz) (k)

Since the Fourier-coefficients with respect to x are of rapid decay for 0 <
r < t < T and thus equality of the Fourier coefficients implies equality of
the functions and we may conclude

(Pi—r(u(r) < &) o &) (z) = /TQ vg(t,x, r, z)u(r, z)dz

O]

Thus we derived an expression for the operator B-,(-,&, &) that can be
-at least in principle - treated with the methods we obtained in Chapter 4.
However, we have the following result:

Proposition 5.3.3. The kernel E [v(t, x;r, z)] admits singular behaviour, to
be more precise, for anyt > 0

t
/ / E {vg(t,:v;r, z)] dzdr = o0
0 JT2

Proof. Fort 0 < r <t we calculate

E [vg(t,x; r, z)}

=E | Y ei(@)en(2)m=(ks, ko)mo(ky, by + ks) Pr_s(ka + k3)€(k1)E(k2)
k‘1,]€2,k‘3€Z2

= Z er(x)ery (2)m<(ks, ka)mo(k1, ko + k3) Pr—s(k2 + k3)E [é(kl)é(lﬁ)}
ki ko, k3 €72

= Z GZ(SC)ekS (z)m<(k3, kg)mo(kl, ko + k3)PT_S(k2 + k3)1k1+k2:0
k1,ko,k3€Z2

= > epl@)ew(2)mo (K kymo(k,k + K)P_o(k+F).
k€72

where the interchange of the expectation and the sums is justified by the
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Fubini-Tonelli theorem since

S E [m(kg, ko)mo (1, ko + k3) Py (k2 + k‘3)|é(k1)g(k’2)|}
k1,k2,k3

< Y ma(ks ka)mo(ky, by + k) Py (ka2 + ks)E [If(klﬂ
k1,ko,k3€Z2

< Y ma(ks ka)mo(ky, by + k) Prp (ko + ks) < o0
kl,k:g,k‘gEZQ

D=

B [é(k)2]

due to a slight modification of the proof of lemma [5.3.1
We consider

/TQ E[o(t, 27, 2)] d=

= /T , D er(@ew (2)m< (K k)ymo(k,k + E) Py (k + K)dz

k&' €72
= Y en(@ma (K Bymo(k b+ K Pk + K) / ew (2)d2
kK €72 T2
=) m(0, k)ymo(k, k) Py (k)
kez?
— Y e
kez?: 1<|k|

Here, the interchange of the sum and integral is justified by the Fubini-
Tonelli theorem and the above estimate. We conclude

t
/ S ey,
0

kez2: 1<k
t 2
. / L
kez2: 1<[k| " ©
1— etlkl?
-2 TR ™
kez?: 1<)k
which proves the assertion. ]

The last proposition especially implies that the operator V¢ is singular.
The strategy to show that we can enhance white noise is as follows:
First we will prove that after a suitable renormalization the singular operator
in fact is well-behaved.+
Then we will show that smooth approximations of the noise give rise to
integral kernels that - after a renormalization - converge to the renormalized
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operator in a convenient topology.
Since this renormalization will not consist of sequence of constant but rather
a sequence of (deterministic) functions, we will in a next step show that
these deterministic functions can be renormalized with suitable sequence of
constants thus proving the desired result.
The diverging integral motivates the definition of the following renormalized
kernel:

etz 2) =0t (tasr, 2) — E [vg(t,m; T, z)}

The random integral operator defined by this kernel will be denoted by RE.
In order to being able to handle the kernel more easily in the upcoming
computations, we set

b(t, z;7; ks3)
=) €tk (@M (s, k2)mo (R, ko + k) Prp (k2 + k) (k1) (a).
kl,k2€Z2
In the proof of proposition |5.3.1| we provided the estimate

1

> ma(ks, ka)mo(k, ky + k) Py (ka + k)| (k1) |I€ (k2)| Sn (1+ [ks)N

k1,ko€Z2

foranykgEZQ,O§r<t§TandN€N.
Using this, we may rewrite the kernel as

re(t,z,r, 2) = Z ek, (2)b(t, 75 k3)
ks€Z?

due to an application of the Fubini Tonelli theorem.
We moreover use the abbreviation

b(t, x5 73 k) = b(t, w35 ks) — B [b(t, ;75 ks)] .
Lemma 5.3.4. Let 0 < r <t <T. For the double dyadic blocks of the
renomarlized kernel the following holds true:
AirgAj(t, ;T Z)

= ) eny(2)p;(ks) Aib(t, ;73 k)
k‘3EZ2
= > ery(2)pj(ks) (Aib(t, ;75 ks) — B [Aib(t, ;73 k3)])
ks€Z?
Proof. To obtain the desired results one needs perform multiple applications
of the Fubini-Tonelli theorem. These are justified by the bounds we derived
for the appearing sums in the above. Moreover note that for j > —1 and
ks € VA
AGE bty r, k3)] = E[A;b(t, 257, k3)]

which also follows from these arguments. O

99



Lemma 5.3.5. 1. Let v € (5,1). Then there is x € [0,1) such that for
sufficiently large p > 2 we have

ré e Xp2—2+d/pp,

2. Moreover, there are numbers 0 < k < k' numbers 6 > 0 such that
I3 v,2y—2+d/p;p
rs e X;«J,& .

Proof. Let T > 0. For arbitrary 2 < p < oo we first note that, due to
Gaussian hypercontractivity [11, Chapter 3, Theorem 3.50], we have

1

1 1
E[laréa, o 2P| S B |8t 2)F]
for 0 <r <t <T. Moreover, note that

HE [|Air£A]~(t,x;T, z)ﬂé < HE [!AiréAj(t,:c;r, z)ﬂé

L} L2

which follows from Jensen’s inequality.
In the following we set k := ki + ko + k3, k' = k| + kb + k3. Plancheral’s
theorem yields

12
B (1208 air 2]

L2
2

=K /11‘ Z 623(2)pj(k)Ail~)(t7x;r;k3) dz

2
kscZ?

=" p(ks)’E [|Az-5(t,x;r, z)lﬂ

kJ3GZZ

= Z pj(kig)ZVaI‘ [A;b(t, z;7; k3))
ks€Z?

S aal Y alOnl)ei()eh @mka, ks (k. k)
k3€Z2 k‘l,k"l,kz,k’éEZ2

Mo (K1, ka + k3)mo (k) kb + k3) Py (ka + k3) Pr_y (Ky + k3)Cov |€(k1)E(k2), E(K))E(KD) | -

Now Wick’s theorem [11, Chapter 3, Theorem 1.28] implies

Cov [£(k1)E(k2), E(K))E(KY) | = Loy iy =0 Lkg -k =0+ Lky 4k, =0 g +kiy=0-
(5.3.6)
We split the following calculations in two parts corresponding to the two
summands in the equation (5.3.6).In the following, the constant ¢ may
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change from line to line.
Using proposition the first sum can be bounded as follows:

Z p;j(k3)?pi(k)pi (K Ym<(ks, ka)*mo (kv, ke + k3)mo (ki , ks — k) x
kl,kg,k)gGZQ
Pt—'r(kQ + k3>B&—r(k2 - k3)
<D pi(ks)P i) i (K )L kg <iia) Lk S ot < ol Liks [k hs S| X

k1,ka,k3€22
]l‘kl|§‘k2*k3|5|k1|ei(tir)|k2+k3|267(t77~)|k2,k3|2
S Z Z pj(k3),02‘(k)pi(k’)@*Q(t*r)clkl\2
kit |k1|>max(2¢,29) ko, ks €Z2
§22i22j Z o—(t=m)2clk1 |2
k1: |ki|2max(2¢,27)

522i22j (t - T)—le—(t—r)CQ% e—(t—r)CZQj

where we used that

o0
Z o= (t=r)2clkf2 < / e (t=r)2ea® g
¢’max(2%,29)

k: |k|>max(2¢,27)

2

(t _ T)flef(tfr)Zcmax(T,Qj)z

IN A

(t _ ,r)—le—(t—r)c22ie—(t—r)cQZj )

For the second sum we note:
Z p;i (k3)?pi(k) pi(K'Ym< (ks, ka)m (s, k1 )mo (K1, ko + ks) X
kl,k27k3€ZQ
mo(ka, k1 — k3) Py (ko + k3) Pi—r (k1 — k3)
S D0 piks) (k) iCk ) Lk <fhat Lk <lha-t ks < kol Liks|<lhs  Liki ks kol S ks | X
k1,k2,k3€Z?
Loy |S o+ kalSler | Lk Sl — ks S lka| Peer (B2 + 3) Prr (k1 — k3)
< > S B lks)pilk)pi (ke ek
k1€Z2: |k1|Zmax(2%,27) ko,k3€Z?
<92i92j (t - r)—le—(t—r)022i e—(t—r)c2Zj

by the same calculations carried out above.
We hence have for 0 <r <t <T

HE [\A#A-(t ;T z)ﬂ H2 < 2292 (¢ — T)—le—(t—'f)622ie—(t—r)c22j
2 g\ Fy Ty Lg ~ .
Thus we may conclude

< (t _ T)—%Qie—(t—r)c?2je—(t—r)c22j )

1
B [|Ana;(tar, )]
LlLg
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Finally we consider

> A B[ AwA (¢ @i, )]

17 00
17]271 LZLI
< Z 22‘(27—24—%)2—j'y2i2je—(t—r)c22ie—(t—r)022j (t _ T)_%
i,j>—1

SJ(t . 7“)_% /OO 2z(27—1+g)e—(t—r‘)022mdx /OO 2J:(1—'y)€—(t—r)022zdx
1 —1

The transformation z — (t — 7")%2‘” in the both integral leads -up to a
constant- to

_1 [ —L(2y—142) 2y—242 _;p2 > —L(1=), . —y+e, —ca?
(t—r) 2/ (t—r) 2 v p/ Y re C“da:/ (t—r) 31V gp=rtee—cr® 4
0 0
S(t—r) 20

where the integrals are finite provided that v > % — %. If moreover v < 1— %
we have that v + 1 + % < 2. Setting kK = (y+ 1+ %)/2, we conclude
¢ e X2?V"FP(T) for any ~ € (1/2,1) which can be guaranteed by choos-
ing p sufficiently large.

It remains to prove the second assertion. Again by Gaussian hypercon-
tractivity we have respectively

1
E [|Air5Aj(t, z;r, 2) — At A (s, z)\p} g
1

SPE |:|AZT£A] (ta €T, Z) - Aﬂ“gAJ’(S, €T, Z)‘Q] :

for 0 <r < s <t <T. In order to obtain the desired result we need to
estimate

- 112
E |Air§Aj(t,x;r, z) — AirgAj(s,x;r, z)\Q] ?
L L%
_ 1112
2
=B |1 > pilks)ei, (=) (bt w57 k) = bs, w573 ks) ) P
_kgEZQ 1.2
= 37 pi(k) B [[b(t, 737 Ky) — B, w37 k)
kseZ?
= Y pjlks)*Var [b(t, @373 ks) — b(s, x; 75 ks)]
k3€Z2

for0<r<s<t<T.
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Since
b(t, ;75 k3) = b(s, ;75 k3)

= > ep(@)ma(ks, ko)mo(ky, ko + ks) Py (ko + k3)E (k1) (k2)
k1,ko €72

— > en(@ma(ks, ko)mo(ky, ko + ks) Po—r (ko + ka)€ (k1 )€ (k2)
kl,kQEZ2

= 3 ci@)maks, ka)mo (ki by + ks) (Pier (ks + k3) — Po_p(kz + k2)) E(k1)é(k2)
k1,kocZ2

the above expression leads to sums being almost identical to the one we dealt
with in the proof of the first part with the sole exception that P, (ks +
k3)P,—, (kb + k3) is replaced by
(Prs(ka + K3) = Proy (ko + k) ) (Por (B + K3) = Poor(k + K3)). (5:3.7)
Noting that for arbitrary 0 < a < b and any ¢ € (0,1/2) the inequality
1—e 0% < (h— )220

holds true for any = > 0 one concludes that (5.3.7) is -up to a constant -
bounded by

(t = 8)% ko + k| |k + ky e (o) (ot ha kG ksl
Since for each k3 € Z? we have for changing constants ¢, ¢
o0
Z ]1|k1|§|k3"k1’26€—(s—r)20|k1\2 5/ p1H20 —(s=r)e2a? g

k1€22 k3|
< (s — r)~ (0 g (s=r)elhs]?

we can put forward essentially the same computation like in proof of the
first statement, i.e. invoking Wick’s theorem etc. and end up with

. 2 .
Z 9! (21=243) 9= HE [’AiréAJ(t,w;r, 2) = At Aj(s, a5, 2)
h,j=—1

<(t—5)°(s — r)_%(1+7+5+%).

~

for all v € (1/2,1) after possibly haven chosen p sufficiently large. Since we
may choose p > 1 arbitrarily large, we can choose for a given vy € (1/2,1) the
constant § > 0 such that 1+~v+0+2/p < 2. Setting ' = (1+~v+5+2/p)/2
the assertion follows: O

Corollary 5.3.8. For any T > 0 The operator
RE: Cré¢" — CT(52’Y_2
is well-defined and bounded.
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Proof. This follows immediately from the last lemma combined with corol-

lary u

Next we want to show that the operator R¢ is the limit of suitably renor-
malized kernels of smooth approximations of the white noise.
In order to show this, we first need to choose a family of smooth approxim-
ations:
Let ¢ a smooth mollifier on R?, i.e. a symmetric function ¢ € .%(R?) such
that ¢ > 0 and [, ¢(z)dz = 1. Set ¢n(-) = n?¢(n-) and define &, = ¢, *&.

The smooth approximations enjoy the following properties:

Proposition 5.3.9. Let k € Z?. Then

En(k) = Fpeo <k> Ek). (5.3.10)

Proof. We calculate
F ({6, n*d(n(z + 27k —1)))) (k)
E(k)F (n*¢

Enlk) =
k
= (n(z + 27k") (k)
k
¢

2
2
0 S [ atwnotnle +2nk s

k'ez?

=£(k) Z /1r2 epron ()2 P(n(x + 27k'))dx

k'ez?

—é(k) /R ex@)n?g(nz)da
—E(k) Fantd (’“)

n

where we used dominated convergence to combine the sum and the integral
to an overall integration over R2. O

Corollary 5.3.11. For ki, ky € Z? we have
~ ~ k k
1D [fn(kl)f(/@)} = Liy4hp=0-F ¢ (nl> T¢ (;)

Proof. This is an immediate consequence of the last proposition. ]

Recall that in theorem [5.1.9] we associated an integral kernel v"to each
smooth noise 7. We set ré := vé» — E [vfn].
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Lemma 5.3.12. Let v € (1/2,1). Then there is p > 2 such that for any
T >0
rén — S in X THP(T), (5.3.13)

Proof. By definition
ré — =8ty 2) — vt (ta,r, 2) — B |:U§(t, ;7 z) — e (BEne)

(5.3.14)
Using Gaussian hypercontractivity, we obtain

B =

E [|Aﬂ‘5Aj(t,x; rz) — AirgnAj(t,x; T, z)|p]

[

SpE [|Air5Aj(t,x; 7y 2) — At A (t, @ z)|2]

Noting that if we set k = k1 + ko + ko we have
Aﬁ‘A§ (t,z;r,z) — AirAg-” (t,z;7, 2)

= en(2)pilks) D en(@)pilk)m(ks, ko)mo(ky, ky + k3) Py (ka + ka)€ (k1 )€ (k2)
k3ez? k1,ko€22

3" enpilks)(2) D en(@)pilkym<(ks, ka)mo(ky, ko + ks) Pr—r (ko + k3)én(k1)&n(k2)
k3€Z2 k1,ko€Z2

= e (2)pilks) Y <€Z($)Pi(k)m<(k3,kz)mo(kl,kfz + k3) Py (k2 + k3) <
k3€Z2 k1,ko€Z2

(1 — T2 <I;1>) <1 — Fge (ﬁf)) f(h)é(b))

where we used proposition We calculate

H]E [AiréAj(t,a:;r,z) - Airanj(t,a:;r,z)} ‘

z

< H]E [AirgAj(t,x;r, z) — AirgnAj(t,x;r, z)} HL2

SY 0k Y ek @)k m o kym (K, k)
k‘3€ZQ k:l,k:/17k2,]€éEZ2

mo(k1, ko + k3)mo(k, kb + k3) Py (ko + k3) Pr_ (kb + k3)
(1= () (-2 () (-5 (3)) (-2 ()~
n n n n
Cov [€(kn)é (k). E(RDE(RS)]
Recall that

sup Fpep(x) < 00, Fr2¢(0) = 1.
z€R?
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In view of the proof of lemma the last sum is - up to a constant -

bounded by
1

and like above we may conclude for sufficiently large p and suitable x € [0, 1)

9i9J ef(tfr)c22"‘ e (t—r)c2%

1

Z 9—i79i(2y=2+d/p)) ‘ [|A TNt @, ) — At At @ Z)|p]p

i,j>—1
<(t—r)"".

LiLg

Since this is integrable against r on the intervall [0,t) we can apply the
dominated convergence theorem to conclude that ré* converges to r¢ in
X727=2+2/P(T) for any T > 0 as n tends to infinity. O

Corollary 5.3.15. For any T >0 and v € (2/3,1)
R — RS in L(Z,, 37%772) as n — oo in probability.
Proof. This follows from the last lemma as well as theorem O

As already mentioned above, E [vf’b] is not a constant and thus not a
suitable renormalization in terms of the enhanced notion of noise we intro-
duced above.

The aim of what follows is to correct this flaw and show, that we can also
renormalize with a sequence of constants.

The proofs that follow will be structurally very similar. To avoid too lengthy
arguments, we will spell out all details only in the first proof and indicate
what to use in the later ones.

Before we proceed we need to introduce some notation:

We set
ko
E 'm< 0 k |]{}’2JR2¢< >

keZ?

and for u € %" we define

t
Wl ::/ / ]E[vgn(t,x;r,z)] u(r, z)dzdr
0 JT2

as well as

TPy = / / €(t2.7.2)] (u(r,2) — u(t, 2))dzdr

and

t
Ty () = /11‘2 u(t, z)/o E [U£" (t,z;mr, z)} drdz — chu(t, x).
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We clearly have
7 + 15, = thn — ¢ M.

The ultimate goal of the following is to prove that W™! converges in L(.£", ¢ ~?)
for any t > 0.
Recall that

E [vg(t, x;r, z)}

K\ 2
=Y en(2)ep(@) > ma(k, K )ymo(k, k+ K)Pr_y(k + k') e <n) .

kez? k'ez?
and consequently for 4,5 > —1 we have
E [Aﬂ}g"A]‘(t,l‘;T, z)} #0
only if |i — j| < 1.

Lemma 5.3.16. For anyt > 0 there ewists an operatorT1; € L (.Z{Y, ‘527_2)
such that

Ty = Ty in L(L),6072) asn— oo, |Tigllgy gm—2S1 (53.17)

Proof. Let t >0 and u € %".
First, we deal with (17%;)n>0. We estimate

i
<

By assumption [|u(r) — u(t)]| ;0 < ||u||jtw (t —7)?/2. Thus we may estimate

dr
L

A /11‘2 E [vgn(t,x;r, z)} (u(r,z) —u(t, z))dz

dr
Lge

|AE [vg" (t,z;r, z)} [lu(r, z) — u(t, z)|dz

’]I‘Z

/11‘2|E [vg" (t,z;mr, z)} ||u\|54w (t— T)V/de

Slullyy =2 ([ B o i) Pas)
t ,]1-2

where we used Jensen’s Inequality.
Now Plancheral’s theorem implies

|AE [vg" (t,z;r, z)} ?dz
T2

2
S pilk)? (Z m<(k, K mo(K' k + K )P (k + k') Fga o) (’;))
k/

kez?
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Note that for k € Z2

k;l

] E m~(k, k’)mo(k:’, k + k’)Pt_r(k: + k’)ﬁmz () |
n

k'€z?

—(t—r)c|k’|?
S Y Lgygperye”
k'eZ?

o0 2
/ xe—(t—'r)cx dx
c'|k|

< 1 e—(t—r)c”|k‘|2

(t—r)

for suitable constants ¢, c’,¢” > 0. For i > —1 we consequently obtain
Lge

t
/
1/2

t
1 1! 2
- /2 ) 2 - —(t=r)2d|k|
5”“”3]/0@ r)? ];EZ?Pz(k) t—r2° dr

N

dr

A; /11‘2 E [vg" (t,z;r, z)} (u(r,z) —u(t, z))dz

t /2 2 1 (t ) ///221' 1/2
< _ Y 2 —\t—7)c
Shily [ 6= (252 e )

; t t - 7/2 i 11
< HUHDZ“ 21/ ( _T) e—(t—r)22 <" /24,
¢ o (t—r)

oo
S HUHgW 2’52—1'7/ 747/2—16_%////2(174
t
0
5 ||u”a%7 21'(177)

where we used the transformation r — t —r as well as r — 22 and the fact
that the last appearing integral is bounded.
Hence

/t/ E |:’U§" (t,z;r, z)} (u(r, 2) — u(t, z))dzdr
o Jr2

t
< sup 21272) /
>l 0

€27 —2

dr
L

‘Ai /T B[ (w7, 2)] (ulr, 2) — ult, 2))dz

< sup 27377 || n 270
i>—1 ¢

< llull g
since v < 1. Thus we established that for all all n > 0
I8 gy sipmn2 S 1
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Here the constant is independent of n and thus the sequence (17;)n>0 is
bounded in L (£, ¢*7~?) for any ¢ > 0.
Next, for n,m € N we estimate

H (Tlrft - Tﬁ) uHCKQ’y—2

:iszu_p1 21(27=2) /Ot /T2 (AiE [fug" (t,x;r, z)} gAY {vsm (t,x;r, z)D|u(r,z) —u(t, z)|dz

t
< s 20 ul o (X (X s Kyl e KBy 0+ 1)
iz—1 0 " peze k' €72

/N 2 N\ 2
| Fre <’“) ~ Fra ("’) ) -y 2ar

n m

dr
L

Note that the above made arguments imply that

sup /O ( > ek (Y ma(k K ymo(k, k+ K )Py (k + k)

0<t<o0o

kez? k'ez?
A K2\ 12
B <n> — T <m> ) =)y 2ar
< 2i1=7)

Since for any fixed L € N and ¢ > 0 we may choose K € N such that for

m,n > K we have
K 2 K\ 2
| FR20 <> —9R2¢< ) | <e
n m

for |[k’| < L and noting that the above bound is indeed uniform in ¢ we con-
clude that (Tﬂ’t) is a Cauchy sequence in L(.Z,", 4?7~2) and consequently the
sequence (17" )n>0 converges for any ¢ > 0 to an operator 71 € L&), 6%2)
in this space. This proves the assertion. ]

Remark 5.3.18. Note that the proof also implies that that for e > 0 we can
choose K € N such that for all m,n > K we have

HTﬁt - T{?ﬁH%’Y7%27_2 <€

independent of t. Since this will also occur below we say that the Cauchy-
property of 7", is independent of time.
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Next, we deal with the operators (73';)n>0. Consider
t
:/ u(t, z)/ E [Uf(t,x;r, z)} drdz — ¢, Myu
T2 0
t . k,/
— /T ult, 2) /0 > ei(@)en(z) > ma(k, K )ymo(K k+ K) Py (k + &) P (n> drdz

kez? k'ez?
— cnMu
[ Y ciwents) X meth Km0 7 (B a
= [ ut,z er(x)er(z m<(k, K )mo(K, k + JR2<> z
E kez? ’ k'ez? ) [k + k/‘Q "
— cnMiu
In order to be able to easier handle 73, we define operator
' ’ ' e kKT
ST pu = _/W u(t, z) Z er(x)er(z) Z m~(k, kK" )mo(K', k+k )mdz
kez? k'ez?
as well as
Sgtu
* / / / 1 kJ
= [ wu(t, z) Z ep(x)er(z) Z m(k, K )mo (K k + k') s Fregp | — | dz — e Myu
E kez? k'ez? ‘k ‘ "

Note that we have: T3, = ST, + S3.

Lemma 5.3.19. For anyt > 0 there exists an operator S1; € L (£, €*772)
such that for each ¢ > 0

1
Ste—= S € L(L,¢7%), |Suly < 5

Proof. Note that for each € > 0 we have
e tEHE > < S
~ ts’k + k/’Qe
and thus for k € Z2
e~ tlk+k?

Z m<(/€, k/)mo(k,, k + k‘l)m

k'e72
1 1
< e kl<Ib arae
k'eZ?
L1
L€ |k.‘26
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By the Fubini-Tonelli theorem we obtain for j > —1

i} e tlk+E|? N\ 2
Aj /Td ult,2) Y er@er Y m<(k, K)mo(K k+ k/)mﬁwﬁb <) dz

kez? k'ez? K
/ / / e tIkHk? K\ 2
:/Td u(t, z)A; Z ep(x)er(z) Z m<(k, k" )ymo (K k+ k )mﬁwgb <n> dz.
kez? k'ez?
since Fpa¢ is of rapid decay.
Using Placheral’s theorem, we estimate
' ' / e tk+R? A 2
. * a7
/TQ|Z pi(k)er(@)en(z) D> mo(k K )mo(K  k+k )m,/m <n> 2dz
kez? k'ez?
2 / / ! e_t|k+k/|2 K 2 2
a;.
S o) DD ma(k K ymo (K k + k ATty (n)y
kez? K €72
1 5.1
< ___9%
Nt?ez 24je”
and consequently, using lemma
/ / / e kK K 2
A /Tdu(t,z) > er@er(z) > ma(k, K ymo(K  k+k )mﬂw (n> dz
kez? k'ez? Lo
e-t‘k+k’|2 k/ 2
— / U(t, Z)A] Z BZ(IL')ek(Z) Z m.<(k, k/)mo(k/, k =+ k/)wﬂRQd) <> dZ
e kez? K ez I+ F " L
. e—t|k+k/|2 k/ 2
S llullgy 2777 Z pj(k)er(x)er(z) Z m<(k, k" ymo (K, k + k/)mﬁ\ﬂ@mﬁ (n)
kez? k'ez? LeL2
Mullgr oi0—y)g—ion

which proves that S?,u € €*7~% and
st ;

1,1‘,H$t"/7(5/2772 S t7

for all suitably small € > 0 uniform in n.

A very similar argument to the one used in the proof of lemma [5.3.16] shows
that (S7';)n>0 is a Cauchy sequence in L(.wa, €2,

This implies the claim. ]

Here again, the proof implies that the Cauchy-property of (Sﬁt)nzo is
independent of time.
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Lemma 5.3.20. For anyt > 0 there exists an operator So; € L (.,%7, %27_2)
such that

S5y = S20 € L(L,C72), 182l gy g2 S 1

Proof. Recall that

Sﬁtu
* / / / ]‘ k,
= [ wu(t,z) Z er(x)ex(2) Z m<(k, K )ymo (K k + k) T2 | — | dz — ¢ Myu
b kez? k'ez? id "
Setting

n_zekz(m (b K ymo b b+ ) s k,‘g (k/)

keZz? k'€l

- (0.K) ¢< ))

we first conclude that for all n > 0 we have that S, € .’ and
Sy u = Sy x u(t) in .
Now recall that for j > —1
NSy xu(t) = K+ Sy, xu(t)

and for i/geq — 1 we have > ;5 | AjA;S, x u(t) = A;jSy * u(t) and
only if |i — j| < 1. We estimate using Young’s inequality

| K % Sk Kk u(t)|| oo < || K+ Sl 1 |G+ u(t)|| o - (5.3.22)
First note that

1K * u(®)ll oo = AU e S 2797 [l g (5.3.23)

Next we estimate by using Jensen’s inequality

|| K5 * Sn””LHl S ”AJ’SnHm .

We have
A;S,
= 3 i1k 3 (ol K)o 7 ()
= et |k + K| n

k
m<(0, k)WyRQ(ﬁ (73) )
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For k € Z? we define sets Ay, = {k' € Z?: m(k,k’) # 1}. Plancheral’s
theorem allows us to estimate

IAS][7
< 2 / / 1 K
S= 20 AP 3 (mahs Kmolho k4 ) s 7
kez? k'eZ

(0.8 Froo (2 ))2

Note that for every n € N the term Fp2(k’/n) is of rapid decay in k' and
hence the double sum if finite.
We split the inner sum into two parts. Consider

Z Z (m.<(k:,k:’) —m<(0, k,)) |I;|2=%R2¢ (ljl,> .

keZ2 k' ¢ Ay,

We have

S (mah, k) — m(0,K)) |;|29R2¢> (5)

k'¢ Ay
1
DY L i<kl oz
K €Z2: k'#£0
< In([k)

Now we need to deal with the sum

1 K\ k4 kN
Z mo(k,k;“‘k/)m <‘?R2 <n> —ERQ < n > .

k'eAg

Using that .Zg2¢ is a Schwartz function on R? we conclude:
k+E\? A
| Fge ( ha > — T <> |
n n
k+ K K k+ K K
| T ( ki ) — T ()@RQ < ha ) + P ()
n n n n

W__ 1
n (1+|k/n])
K|

(K]

A
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This allows us to estimate

1 K\ k+ K\
Z mo<k,k+k/)m <9R2 <n> —Q\RQ < n )

kIEAk

k|
S Liki< v PR
k%% k[ <] lW‘Q( 1+ [

Sk ]l\k\<|k'\|k,|3
k'ez?
<1

Hence we conclude that
14;Snll 2 S 2% (In(2') +1)°
and we conclude that
HAng‘,tuHLoo 1Ay, * ull
S A ull e 18;Snll 2
SPEj ull g
which implies that 53 ,u € %272 with an uniform bound in n.

Using the approach, we can akin to the above also show that (Sgt)nzo

constitutes a Cauchy sequence in L (.i”tv, ¢ — 2) and hence, for any ¢ > 0
there is an operator Sa; € L (.,?47, ‘527_2) such that

Syp—> Sarin L (L), €*?) as n — oo.
O

Finally note that also for this operator the Cauchy-property is independ-
ent of time.
This enables us to prove the following corollary

Corollary 5.3.24. For anyt > 0 there exists an operator Toy in L(Z,€772)
such that for each k > 0

~

Tgft — Ty in L(,Z?,%M_Z) as n — 0o, ||T2’t”-ff—>%”2” o Smax(t7",1).

Proof. Using the respective results for the operators Sy, S the claim fol-
lows. O

Corollary 5.3.25. For anyt > 0 there exists an operator Wy € L(ZL],€*72)
such that

W] —c,M; — Wy in L(Z),€%7%) as n — oo, HWtHgt”/’cngy—z < max(t ", 1).

~

Moreover,the map s — Wy is continuous on (0,t] in L <%27; %27—2).
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Proof. For the first claim we just just have to use the respective results for
the operators 17 ¢, T .
For the continuity recall first that by definition

t
Wt”u:/ / E [Ugn(t,x;r, z)} u(r, z)dzdr
0 JT2
For 0 < s <t we consequently have

Wiu — Wiu

_ / t /T B[ (i, 2)] ur,2)dzdr
+/OS /TQ (E [Uﬁn(t,m;r, z)] _E [vﬁ(s,x,r, z)Du(r, 2)dzdr

Since

k;l
> i) D> m(k K Ymo(K &+ K) Py (k + K) | Fge () K
kez? k' €72 "
e—(t—r)cQQi

(t =)

We now can prove using the same arguments as above

t
HA]-/ / E {vgn(t,a:;r, z)] u(r, z)dzdr
s JT2

S 222’

Lg
) ) t e—(t—'r)c22j

< J =37 -

Sl 2277 [ G

t
; 1
1—
< llullg,gm 2 7)/S =iz

The last integral is finite since by assumption s > 0 and converges to zero
as s — t.
Moreover note that for 6 € (0,1)

ef(sfr)|k+k’|2 _ ef(tfr)|k+k/| < (t . S)ﬂk + k/,éef(sfr)\kJrk’P

and using this, we obtain by very similar computation

' A, ( /0 ) /T (B[ )] ~ B [, 2,7 2)] ) i, z)dzdr)

S llull e 2/ (1 — 5)°

Lge

On the other hand, one can by the same methods show that
len Myu — ¢, Msu
S [lu(t) —u(s)

E2v7—2

€
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and consequently, for each n € N the continuity property holds. Then

E2v7—2

lim |Wu — Wiu
s—t

<lim [|W}* — ¢, My — Wiu
s—t

G2y—2 lin% |W"ug — e Msu — W'u — ¢, Msu
S—>

E2v7—2

+ lli}]% ”Wgu - CnMsu - WsuHCgQw—Q

tends to zero uniform in u if n — oo since the Cauchy-properties of the
operators that add up to W;* is independent of time.
This proves the claim. O

Set V := R + W. We note that for all t > 0 by construction
RS —e,My; =V in L (&), 6%72) asn — o0

since Rf” — e, My = Rf” - WP+ WP —cp M.
Using this, we are finally able to prove:

Theorem 5.3.26. Let y € (2/3,1) then (§,V) € 27 almost surely.

Proof. Using the results obtained above we first note that for all T > 0 we
have (V;)o<t<T is a sequence of operators in L (.,?f, %QV”) and satisfies us-
ing (£,)n>0 as a sequence of smooth approximations for £ the approximation
and continuity properties.
Next note that for each 7" > 0 and ¢ > 0

HVHO%'Y—)(K?’Y*Q < max(t*, 1)

~

Hence
tVi € L (L7 Cre®7?).

Now we can apply theorem [3.1.20| to conclude that IV € L(Z£}; XT%’_) for
any 1" > 0.
We conclude (n,V) € 2. O

We now get the following theorem

Theorem 5.3.27. Let u® be a random variable that almost surely takes val-
ues in €.

Then the renormalized PAM with driving noise (n,V') and initial datum u
admits a unique global solution uw € £7 and if we the take smooth approz-
imations of the white noise constructed above (i.e. &), for the approximate
solutions to the renormalized PAM w, € £7 with initial data (ud)p>o in
€ such that v converges to u® in probability we have

0

U, — w in £7 as n — oo in probability.
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