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1 Introduction

In this master thesis we study an approach to singular Stochastic Partial
Differential Equations (singular SPDE or SSPDE for short) based on mild
formulations of PDEs in the context of the paracontrolled calculus.
Mild formulations are integral equations representing certain initial value
problems corresponding to evolution equations (see [12] for an introduc-
tion). The methods developed here will combine these integral formulations
with ideas of the paracontrolled calculus.
The paracontrolled calculus was introduced by Gubinelli, Imkeller and Perkowski
in [8] and provides us with a framework for giving a meaning to a certain
highly singular SPDEs.
In order to deal with the mild formulations of singular SPDEs, we will con-
sider random integral operators and study their regularity in suitable spaces.
Finally, we will apply the developed techniques to study a certain singular
SPDE called Parabolic Anderson Model or PAM for short.
This be more precise, we will

1. in the first chapter agree upon some conventions and recall basis prop-
erties regarding the Fourier transform

2. then introduce the Littlewood-Paley decomposition, Besov spaces and
Bony’s paraproduct, all concepts and tools essential to our approach

3. in the third chapter study (random) integral operators in Besov spaces
and derive regularity results in terms of control of the corresponding
integral kernels

4. finally deal with the PAM, derive a sensible concept of solution for
this equations in terms of the introduced concept of enhanced noise,
show that this formulations admits solutions in a well-posed way and
prove that the most important noise for the PAM, called white noise,
fits within this framework.

The rest of this introductory chapter is structured as follows:
First we will recall the basic ideas of the paracontrolled approach to singular
SPDEs in an intuitive fashion.
After that, we will heuristically introduce the ”mild approach” that will be
developed rigorously in this master thesis.
Finally, we agree on some notational conventions.

1.1 Paracontrolled Approach

For T > 0 we consider the (linear) Parabolic Anderson Model (PAM) which
we formally write as the Cauchy problem

∂tu = ∆u+ u · ξ on [0, T ]× T2, u(0, ·) = u0(·)
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where T2 denotes the two dimensional torus and u is function periodic in
space. Here ξ denotes space white noise which heuristically can be thought
of independent identically distributed standard Gaussian random variables
attached to each point in space and therefore intuitively space white noise
should be ”a very irregular function”. Moreover, u0 is a suitable initial con-
dition.
In view of the PAM, the first question we ask ourselves is how to interpret
the product u · ξ appearing in the formulation of the equation, i.e. we have
to understand the analytical properties of the realizations of the white noise.
One can prove that white noise can be thought of being a Schwartz distribu-
tion on the torus, i.e. ξ ∈ S ′ (Chapter 3.3). Even better, we can prove that
for each γ ∈ (0, 1) we have that ξ ∈ C γ−2 where C α denotes the Hölder-
Besov space with regularity α on the torus (Chapter 3.1).
In the latter spaces one can multiply two distributions provided suitable
regularity assumption (Chapter 3.2):

C α × C β → Cmin(α,β), (u, v) 7→ u · v

is a bounded bilinear map if α+ β > 0.
Assume now that u is a solution to the equation on the time interval [0, T ].
The product u · ξ has to be well-defined and in view of the above theorem
it is sensible to assume that u · ξ ∈ C([0, T ]; C γ−2).
Solving the equation, the Laplacian increases the regularity by two ( see the
Schauder estimate, Chapter 3.1) and we expect u ∈ C([0, T ]; C γ).
Then, however, the product is ill-defined in terms of the above theorem and
consequently the naive approach fails: We cannot give a meaning to the
PAM.
As it turns out, in order to get a proper meaning for this equation, we need
to renormalize the PAM, i.e subtract an ”infinite constant” in a suitable way.
To achieve this, the paracontrolled approach uses Bony’s paraproduct (Chapter
3.2), which provides us with a way to decompose the product of two distri-
butions u, v as follows:

u · v = u ≺ v + u ◦ v + u � v

u ≺ v and u � v are called paraproducts and u◦v is called the resonant term.
Bony’s crucial observation was that, provided u ∈ C α and v ∈ C β, paraproducts
always exist. Furthermore, we can think of u ≺ v as a frequency modulation
of v and heuristically u ≺ v behaves like v at small scales.
However, u ◦ ξ is only well-defined if α+ β > 0.
Thus, we localized the difficulty of interpreting the product in the term u◦ξ.
The paracontrolled ansatz now is as follows: We define paracontrolled dis-
tributions to be distributions u that can be decomposed in the following
way:

u = u] + uX ≺ X
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Here u] ∈ C([0, T ]; C 2γ) and uX , X ∈ C([0, T ]; C γ) where X is constructed
from the white noise and uX can be thought of an derivative.
We can heuristically think of paracontrolled distributions as distributions
that admit a first order noise approximation (since uX ≺ X behaves like X
at small scales and u] has better regularity than the first term). Since the
white noise is the only source of irregularity in the PAM it is thus sensible
to assume that a hypothetical solution of the PAM is paracontrolled.
Assuming this, we can write the troubling part of the product as

u ◦ ξ = u] ◦ ξ + (uX ≺ X) ◦ ξ

Provided that γ ∈ (2/3, 1) the first term is well-defined. The second one can
be dealt with by using a purely analytical commutator lemma [7, Chapter
5, 5.2, Lemma 14]:

(uX ≺ X) ◦ ξ = uX(X ◦ ξ) + better remainder

Since the remainder has better regularity, we only need to handle X ◦ ξ.
We make an educated guess and define

X(t) =

ˆ t

0
Ptξdr.

where Pt is the action of the heat semigroup (Chapter 3.1). Consequently,
X satisfies the equation

∂tX = ∆X, X(0) = 0.

and setting formally

X(t) ◦ ξ =

ˆ t

0
Prξdr ◦ ξ =

ˆ t

0
Prξ ◦ ξdr

one can calculate

gt :=

ˆ t

0
E [Prξ ◦ ξ] dr =∞

Hence the term X ◦ ξ admits singular behavior. However, we can prove that

X � ξ(t) =

ˆ t

0
Prξ ◦ ξ − grdr

is in fact well-defined and has right regularity. Plugging this into the above
equation, we can derive a renormalized equation which read as

∂tu = ∆u+ u � ξ, u(0, ·) = u0(·)

and using standard methods we can prove the well-posedness of this equation
in a suitable space.
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Bibliographical remarks: Paracontrolled distributions were introduced in [8].
In this paper (besides other equations) the following more general version
of the PAM is treated:

∂tu = ∆u+ F (u) · ξ on [0, T ]× T 2, u(0, ·) = u0 (1.1.1)

Here F ∈ C2+ε for a suitable ε > 0.
See [7] for a gentle introduction to the topic. Moreover see the review in [6].
A different approach to certain singular SPDEs was provided by Hairer in
[10].

1.2 Mild Formulations and Paracontrolled Calculus

In the approach put forward in this thesis we consider the mild equation of
the PAM which reads as

u(t) =

ˆ t

0
Pt−ru(r) · ξdr + Ptu

0.

Using Bony’s paraproduct and the resonant term we formally write this as

u(t) =

ˆ t

0
Pt−r(u(r) ≺ ξ)dr︸ ︷︷ ︸

=B≺(u,ξ)(t)

+

ˆ t

0
Pt−r(u(r) ◦ ξ)dr︸ ︷︷ ︸
=B◦(u,ξ)(t)

+

ˆ t

0
Pt−r(u(r) � ξ)dr︸ ︷︷ ︸

=B�(u,ξ)(t)

+Ptu
0.

Motivated by the paracontrolled ansatz we hope that

u](t) := u(t)−B≺(u, ξ)(t) ∈ C([0, T ]; C 2γ)

again has better better regularity as it resembles the first order noise ap-
proximation in terms of the integral formulation.
For u] we derive the equation

u] = B◦(B≺(u, ξ), ξ) +B�(B≺(u, ξ), ξ) +B�(u], ξ) + Ptu
0.

Using estimates for the paraproduct and the resonant term (Chapter 3.2),
we conclude that the operator u 7→ B◦(B≺(u, ξ), ξ) is the only one not well-
defined.
We formally set

B◦(B≺(u, ξ), ξ) =

ˆ t

0
Pt−r

(ˆ r

0
Pr−s(u(s) ≺ ξ)ds

)
◦ ξdr

=

ˆ t

0
Pt−r

(ˆ r

0
Pr−s(u(s) ≺ ξ) ◦ ξds

)
dr

and alike above, we can prove that this operator admits singular behavior.
Consequently, we need a renormalization to obtain something well-defined.
In order to do so, we writeˆ t

0
Pr−s(u(s) ≺ ξ) ◦ ξds =

ˆ t

0

ˆ
T2

vξ(t, x; r, z)u(r, z)dzdr,

5



i.e. in terms of an integral kernel. One now can prove that

u 7→
ˆ t

0

ˆ
T2

(
vξ(t, x; r, z)−E

[
vξ(t, x; r, z)

])
u(r, z)dzdr

is a well-defined bounded operator and thus we can give a sound meaning to
the renormalized equation of u] which we can solve via fixed point iteration
arguments in a well-posed way.
Finally, we can solve the equation

u = B≺(u, ξ) + u]

again by a fixed point argument in a well-posed way and thus obtain a notion
of solution to the renormalized PAM.

1.3 Notations

In writing a . b for positive real numbers a, b we mean that there is a con-
stant C > 0 independent of a and b such that a ≤ Cb. Similarly, we define
a & b by b . a and write a ∼= b provided a . b and b . a. If we want to
denote dependence on some variable explicitly we write a(t) .t b(t) or use
similar notation.
For a complex number z ∈ C we denote its complex conjugate by z∗.
For a multiindex µ ∈ Nd we write |µ| = µ1 + ...+ µd and ∂µ = ∂µ11 ...∂µdd .
We denote the torus by T = R/(2πZ and write Td for the d-dimensional
torus. If not stated differently, all functions spaces will have domain Td and
codomain C, e.g. we write Lp instead of Lp(Td;C).
For α ∈ R we write Cα for the space of bαc-times differentiable functions
for which the derivatives of order |bαc| are (α− bαc)-Hölder-continuous.
For a Banach space X we denote by CTX the space of continuous maps
from [0, T ] to X and write for u ∈ CTX the norm of this space as follows:
‖u‖CTX = sup0≤t≤T ‖u(t)‖X . In writing CX we mean the space of continu-
ous maps from [0,∞) to X.
Moreover, for α ∈ (0, 1) we denote by CαTX the subspace of CTX such that
the functions are α-Hölder-continuous. For u ∈ CαTX we use the following
notation

‖u‖CαTX = sup
0≤s<t≤T

‖u(t)− u(s)‖X
|t− s|α

.

and write CαX for the space of functions that are locally in time α-Hölder-
continuous in X.
Finally, for Banach spaces X,Y we denote by L (X,Y ) the space of bounded
operators from X to Y .
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2 Preliminaries

In this chapter we will briefly recall the very basic tools needed for our
analysis of singular SPDE and settle on some conventions.
We introduce Schwartz distributions and the Fourier transform both on the
torus and the euclidean space. The first provide us with a general framework
for handling ”irregular functions”. The second is an indispensable tool for
the techniques presented below.
We follow the conventions used in [7]. See [4, Chapter 3] for a general
introduction to the theory.

Definition 2.0.1. (Schwartz function on torus)The space of Schwartz func-
tions on the d-dimensional torus Td, denoted by S := S (Td) is defined as

S := C∞(Td;C)

The space of continuous linear functionals on the Schwartz space can be
characterized as follows:

Definition 2.0.2. (Schwartz distribution on torus)A linear functional f : S →
C is a Schwartz distribution if there exists a constant C > 0 and a natural
number k ∈ N such that for any ϕ ∈ S

|f(ϕ)| := |〈ϕ, f〉| ≤ C max
ν∈Nd : |ν|≤k

sup
x∈Td
|∂νf |.

We denote the space of Schwartz distributions by S ′.

Example 2.0.3. Let g ∈ L1(Td) be an integrable function. This functions
induces a Schwartz distribution Tg ∈ S ′ defined by

Tg(ϕ) := 〈ϕ, g〉 =

ˆ
Td
ϕgdx

for any ϕ ∈ S . In the following, we often will identify Tg with g

Next, we turn to the fundamental objects of Harmonic Analysis on the
torus: The Fourier coefficients and the Fourier series.
In the following we use the notation ek(·) = ei〈·,k〉/(2π)d/2 and denote its
complex conjugation by e∗k(·).

Definition 2.0.4. (Fourier transform)Let f ∈ S ′ be a Schwartz distribution
and k ∈ Zd. We define the k-th Fourier coefficient of f by

f̂(k) := 〈ek, f〉.

Remark 2.0.5. In view of the identification of Tg with g for g ∈ L1 we

write for k ∈ Zd ĝ(k) instead of T̂g(k).
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Recall that the Fourier transform of a Schwartz distribution f ∈ S ′ is
at most of polynomial growth, i.e. there is a natural number N ∈ N such
that

sup
k∈Zd
|f̂(k)|(1 + |k|)−N <∞.

Definition 2.0.6. (Fourier inversion)Let (ak)k∈Zd be a sequence of complex
numbers of at most polynomial growth. We then define the inverse Fourier
transform with respect to this sequence as

F−1(ak) :=
∑
k∈Zd

ake
∗
k.

If f : Rd → C is of at most polynomial growth we define

F−1f := F−1(f |Zd).

Moreover, for f ∈ S ′ a Schwartz distribution we use the notation

ϕ̌ := F−1f̂ (2.0.7)

We have the following basic results:

Proposition 2.0.8. ([5, Chapter 3, 3.39 and 4, Chapter 12, 12.5.3]) Let ϕ ∈
S and f ∈ S ′

1. The Fourier coefficients (ϕ̂(k))k∈Zd are of rapid decay, i.e for any N ∈
N we have

sup
k∈Zd

ϕ̂(k)(1 + |k|)N <∞

and
F−1(ϕ̂) = ϕ in S .

Moreover, for any sequence (ak)k∈Zd which is of rapid decay, F−1((ak)k∈Zd

converges to a Schwartz function ψ in S and ψ̂(k) = ak for all k ∈ Z2.

2. The sequence (f̂(k))k∈Zd is at most of polynomial growth and

F−1(f̂) = f in S ′

Moreover, for any sequence (ak)k∈Zd which is of at most polynomial
growth F−1(ak) converges to a Schwartz distribution g in S ′ and
ĝ(k) = ak for all k ∈ Zd.

The above proposition implies that the inverse Fourier transform in fact
yields a well-defined object.
We moreover need to notion of convolution.
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Definition 2.0.9. Let ϕ ∈ S be a Schwartz function and f, g ∈ S ′

Schwartz distributions. We define

1. f ∗ ϕ(z) := 〈ϕ̌(· − z), f〉

2. f ∗ g(u) := 〈 ˇg ∗ ǔ, f〉

Proposition 2.0.10. ([4, Chapter 12, 12.6.4 and 12.6.5]) Let f, g ∈ S ′ be
Schwartz distributions and ϕ ∈ S a Schwartz function.

1. f ∗ ϕ ∈ S is a Schwartz function.

2. f ∗ g ∈ S ′ is a Schwartz distribution and satisfies

f̂ ∗ g(k) = f̂(k)ĝ(k).

Moreover, the convolution of distributions is commutative and associ-
ative.

In the course of this thesis we will also need the corresponding notions
on the euclidean space:

Definition 2.0.11. (Schwartz functions on euclidean space)A smooth func-
tion ϕ ∈ C∞(Rd) is a Schwartz functions on Rd provided that for any N ∈ N,
α ∈ Nd

sup
x∈Rd

(1 + |x|)N |∂αϕ(x)| <∞.

The space of Schwartz functions on Rd will be denoted by S (Rd).

Remark 2.0.12. We say that a function g : Rd → C is of rapid decay if
the values decay faster than any polynomial at infinity, i.e. for any natural
number N ∈ N we have

sup
x∈Rd

g(x)(1 + |x|)N <∞.

Using this mode of speaking, a smooth functions ϕ ∈ C∞(Rd) is a Schwartz
function if and only if any derivative of ϕ is of rapid decay.

Definition 2.0.13. (Fourier transform on euclidean space)Let ϕ ∈ S (Rd).
The Fourier transform of ϕ is defined by

FRdϕ(z) := ϕ̂(z) =
1

(2π)d/2

ˆ
Rd
ei〈x,z〉ϕ(x)dx.

Moreover, the inverse Fourier transform is defined by

F−1Rd ϕ(x) = FRdϕ(−x)

Recall that the Fourier transform on the euclidean space of a Schwartz
function is again a Schwartz function.
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3 Littlewood-Paley Decomposition and Bony’s Paraproduct

In this chapter we recall the basics of Littlewood-Paley theory as well as
Besov spaces. Moreover, we will introduce Bony’s paraproduct and provide
fundamental statements regarding this notion.
For a general introduction to the topic see [2, Chapter 2]. Besov spaces -
as well as their natural counterparts: Triebel-Lizorkin spaces - on the torus
are extensively treated in[12, Chapter 3].
Finally we introduce Bony’s paraproduct and provide foundational results
for this notion.
In this account, we again loosely follow [7, Chapter 3 and Chapter 5, 5.1].
See also [8, Appendix A.1].

3.1 Dyadic Blocks and Besov Spaces

Generally speaking, Littlewood-Paley theory provides us with a technique to
decompose distributions into smooth functions, the so called dyadic blocks.
The main feature of this decomposition is that the obtained functions are
spectrally supported in either a ball or an annulus.
We first need to introduce a family of functions with respect to which we
want to define this decomposition:

Definition 3.1.1. (Dyadic partition of unity) Let χ, ρ ∈ C∞(Rd, [0, 1])
be two smooth, compactly supported radial functions for which the support
suppχ = B =

{
x : |x| ≤ a

}
for a suitable a > 0 is a centered ball and

suppρ = A =
{
x : b ≤ |x| ≤ c

}
for suitable c > b > 0 is a centered annulus

such that

1. for any x ∈ Rd, χ(x) +
∑

j≥0 ρ(2−ix) = 1

2. suppχ ∩ suppρ(2−j ·) = ∅ if j ≥ 1 and suppρ(2−j ·) ∩ suppρ(2−i·) = ∅
for i, j ≥ 0 whenever |i− j| > 1

Writing
ρ−1 := χ, ρi(·) := ρ(2−i·) for i ≥ 0

we call the family (ρj)j≥−1 of functions a dyadic partition of unity.

First note:

Proposition 3.1.2. ([2, Chapter 2, 2.10]) Dyadic partitions of unity exist.

In the following we fix an arbitrary dyadic partition of unity (ρj)j≥−1.

Definition 3.1.3. (Dyadic blocks)Let f ∈ S be a Schwartz distribution and
j ≥ −1. The j-th dyadic block of f is defined by

∆jf := F−1(ρj f̂) =
∑
k∈Zd

ρj(k)f̂(k)e∗k.
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We moreover set

Sif :=
i−1∑
j≥−1

∆jf

Remark 3.1.4. Setting Kj = (2π)−d/2F−1ρj a straightforward computa-
tion yields

Kj ∗ f = ∆jf

for f ∈ S .

It is an immediate consequence of the definition that for a Schwartz
distribution f ∈ S ′ and natural numbers i, j ≥ −1 both ∆jf and Sif
are Schwartz functions and the Fourier transform of both ∆jf and Sif is
compactly supported.
Furthermore, we have:

Proposition 3.1.5. 1. Let f ∈ S ′. Then Sif → f in S ′.

2. There exists a centered annulus A ′ such that for all Schwartz distri-
butions f, g ∈ S ′ and numbers i, j ∈ N such that i ≤ j − 2 we have

suppF
(

∆ig∆jf
)
⊂ 2jA ′.

Proof. The first assertion follows from the facts that

〈ϕ,∆jf〉 = 〈∆jϕ, f〉

and Siϕ→ ϕ as i→∞ in S for all ϕ ∈ S .
The second assertion can be proven by noting

F (∆ig∆jf) (k) =
∑
l∈Z2

ρi(l)ρj(k − l)ĝ(l)f̂(k − l)

and the properties of the dyadic partition of unity.

After this preparation, we are able to define Besov spaces. These spaces
consist of Schwartz distributions whose dyadic blocks enjoy certain regular-
ity properties:

Definition 3.1.6. (Besov spaces)Let α ∈ R and p, q ∈ [1,∞]. We define
the Besov space Bα

p,q by

Bα
p,q := Bα

p,q(Td) :=

{
f ∈ S ′ : ‖f‖Bαp,q :=

∑
j≥−1

(2jα ‖∆jf‖Lp)
q

 1
q

<∞
}

with the usual modification if q =∞ . Moreover, we set

C α := Bα
∞,∞, ‖·‖Cα := ‖·‖Bα∞,∞ .

The latter spaces we call Hölder-Besov spaces.
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Our definition of Besov spaces rely on the dyadic blocks and thus might
be dependent on the chosen dyadic partition of unity. This is issue is dealt
with in the following proposition:

Proposition 3.1.7. ([13, Chapter 3, 3.5.1]) For all α ∈ R and p, q ∈ [1,∞]
the space Bα

p,q is a Banach spaces. The norm ‖·‖Bαp,q is dependent on the

choice of a specific partition, but the space Bα
p,q is not and different norms

induced by different dyadic partitions of unity are equivalent.

We also may interpret the Hölder-Besov spaces in a more elementary
way as already suggested by its name:

Proposition 3.1.8. ([13, Chapter 3, 3.5.4]) Let α ∈ R\N. Then C α = Cα.

In our analysis of singular SPDE we will mostly work in the context of
Hölder-Besov spaces. The following fundamental inequalities will be of used
heavily throughout the text:

Proposition 3.1.9. ([7, Chapter 3, 3.10])We have

1. ‖·‖Cα ≤ ‖·‖C β provided α ≤ β

2. ‖·‖L∞ .α ‖·‖Cα provided α > 0

3. ‖·‖Cα . ‖·‖L∞ provided α ≤ 0

4. ‖Si·‖L∞ . 2iα ‖·‖Cα provided α < 0

We moreover need to understand how Besov spaces with different para-
meters are related. This is dealt with in the following theorem.

Theorem 3.1.10. ([12, Chapter 3, 3.5.5])(Besov embedding)Let 1 ≤ p1 ≤
p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞ as well as α ∈ R. Then Bα

p1,q1 ⊂
B
α−d(1/p1−1/p2)
p2,q2 is a continuous embedding.

Furthermore, we will need conditions under which we may conclude that
a certain function is in fact contained in a suitable Hölder-Besov space:

Lemma 3.1.11. ([7, Chapter 3, 3.10])

1. Let A ′ be a centered annulus and α ∈ R. Assume that (uj)j≥−1
is a family of Schwartz functions such that suppFuj ⊂ 2jA ′ and
‖uj‖L∞ . 2−jα. Then

u :=
∑
j≥−1

uj ∈ C α and ‖u‖Cα .
∥∥2αj ‖uj‖L∞

∥∥
`∞
.
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2. Let B′ be centered ball and α > 0. Assume that (uj)j≥−1 is a family
of Schwartz functions such that suppFuj ⊂ 2jB′ and ‖uj‖L∞ . 2−jα.
Then

u :=
∑
j≥−1

uj ∈ C α and ‖u‖Cα .
∥∥2αj ‖uj‖L∞

∥∥
`∞
.

When dealing with the Parabolic Anderson Model we will also need to
gain temporal scaling factors in order to set up fixed point iterations. This
is accomplished by working in the following parabolic spaces.

Definition 3.1.12. Let T > 0 and α ∈ (0, 2). We define the parabolic space

L α
T := CTC α ∩ C

α
2
T L
∞

and endow this space with the norm ‖·‖L α
T

:= max(‖·‖CTCα , ‖·‖C
α
2
T L∞

).

We have

Proposition 3.1.13. For T > 0 and α ∈ (0, 2) the space L α
T is a Banach

space.

Proof. Noting that by proposition 3.1.9 we have ‖·‖L∞ . ‖·‖Cα , the claim
follows.

In the parabolic spaces we can in fact gain scaling factors by passing to
a larger space:

Proposition 3.1.14. ([9, Chapter 2, 2.3, 2.11])Let T > 0 and α ∈ (0, 2),
δ ∈ (0, α) as well as u ∈ L α

T Then

‖u‖L δ
T
. T

α−δ
2 ‖u‖L α

T
+ ‖u(0)‖C δ

Next we deal with the issue of gluing functions in the parabolic spaces. In
the following we denote the time shift of a function f by τT f(t) := f(T + t).

Proposition 3.1.15. Let T > 0 and T1 ∈ (0, T ). Moreover, let α > 0 and
assume that u ∈ L α

T . Then

‖u‖L α
T
≤ ‖u‖L α

T1

+
∥∥τT1u∥∥

L α
T−T1

.

Conversely, if u ∈ CTC α such that u ∈ L α
T1

and τT1u ∈ L α
T−T1, then

u ∈ L α
T

Proof. Clearly

‖u‖CTCα ≤ ‖u‖CT1Cα +
∥∥τT1u∥∥

CT−T1Cα
. (3.1.16)
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Thus, it suffices to show

‖u‖
C
α
2
T L∞

≤ ‖u‖
C
α
2
T1
L∞

+
∥∥τT1u∥∥

C
α
2
T−T1

L∞

Let s, t ∈ [0, T ]. The only cases we need to consider is s < T1 < t and
t < T1 < s. Without loss of generality, we may assume s < T1 < t. We
calculate

‖u(t)− u(s)‖L∞ ≤ ‖u(t)− u(T1)‖L∞ + ‖u(T1)− u(s)‖L∞
≤
∥∥τT1u∥∥

L α
T−T1

(t− T1)α/2 + ‖u‖L α
T1

(T1 − s)α/2

≤
(∥∥τT1u∥∥

L α
T−T1

+ ‖u‖L α
T1

)
(t− s)α/2

which implies the first claim.
The second claim follows immediately from the last inequality.

Next we are concerned with the Schauder estimate for the heat semig-
roup.
The action of the heat semigroup on a distribution f ∈ S ′ is given by

F (Ptf)(k) = e−t|k|
2
f̂(k)

We state two lemmata first:

Lemma 3.1.17. ([8, Appendix A.1, A.7])Let T > 0 and assume t ∈ (0, T ].
Let u ∈ S ′ and δ ≥ 0.

‖Ptu‖Cα+δ .T t
−δ/2 ‖u‖Cα and ‖Ptu‖C δ .T t

−δ/2 ‖u‖L∞

If Fu is supported outside of a ball centered at 0 the estimates are uniform
in t > 0.

Lemma 3.1.18. ([8, Appendix 1, A.8]) Let α ∈ (0, 1) and β ∈ R. Assume
that u ∈ C β. Then for all t ≥ 0.

‖(Pt − Id)u‖L∞ . tα/2 ‖u‖Cα .

These two lemmata can be used the proof the Schauder estimate:

Theorem 3.1.19. ([7, Chapter 3, Lemma 11], see also [8, Appendix A.1 A.9])
(Schauder estimate) Let α ∈ (0, 2). For f ∈ CC α−2 we define If(t) :=´ t
0 Pt−rfdr. We then have

‖If‖L α
T
. (1 + T ) ‖f‖CTCα−2

for all T > 0 and for g ∈ C α

‖P·g‖L α
T
. ‖u‖Cα .
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In the course of this master thesis we also need a variation of the Schauder
estimate which deals with functions that are singular at 0.

Theorem 3.1.20. Let α ∈ (0, 2). Assume that for a sufficiently small
0 < ε < 1 we have that rεf(r) ∈ CTC α−2 . Then

‖If‖L α−2ε
T

. ‖rεf(r)‖CTCα−2

Proof. First note that there exists 0 < β < 2 such that α−2+β > 0. Using
lemma 3.1.18 we estimate

ˆ t

0
‖Pt−r(f(r))‖L∞ dr .

ˆ t

0
‖Pt−rf(r)‖Cα−2+β dr

.
ˆ t

0
r−ε(t− r)−β/2 ‖rεf(r)‖Cα−2 dr

= ‖rεf(r)‖CTCα−2

ˆ t

0
r−ε(t− r)−β/2dr

. ‖rεf(r)‖CTCα−2 .

where we used that the last integral is bounded.
Thus, using the Fubini-Tonelli theorem, we obtain

Fx

(ˆ t

0
Pt−r(f(r))dr

)
=

ˆ t

0
Fx (Pt−r(f(r))) dr

and consequently for j ≥ −1

∆j

ˆ t

0
Pt−r(u(r))dr =

ˆ t

0
∆jPt−r(u(r))dr =

ˆ t

0
Pt−r (∆ju(r)) dr.

Now let j ≥ 0 and δ ∈ (0, t/2). We consider

ˆ t

0
Pt−r (∆jf(r)) dr =

ˆ δ

0
Pr (∆jf(t− r)) dr +

ˆ t

δ
Pr (∆jf(t− r)) dr.

On the one hand, we obtain∥∥∥∥ˆ δ

0
Pr (∆jf(t− r)) dr

∥∥∥∥
L∞

.
ˆ δ

0
‖(t− r)ε∆jf(t− r)‖L∞ (t− r)−εdr

≤‖rεf(r)‖CTCα−2 2−j(α−2)
ˆ δ

0
(t− r)−εdr

≤‖rεf(r)‖CTCα−2 2−j(α−2)δ1−ε

16



where we used the inequality

1

(t− r)ε
≤ 1

(δ − r)ε
for 0 ≤ r < δ.

On the other hand, we estimate using lemma 3.1.17∥∥∥∥ˆ t

δ
Pr (∆ju(t− r)) dr

∥∥∥∥
L∞

≤
ˆ t

δ
2−j(α−2−2(1−ε))r−(1−ε) ‖f(t− r)‖Cα dr

. ‖rεf(r)‖CTCα−2 2−j(α−2+2(1−ε))
ˆ t

0

1

r1−ε(t− r)ε
dr

. ‖rεf(r)‖CTCα−2 2−j(α−2+2(1−ε))δ−1+ε
ˆ t

0

1

(t− r)ε
dr

. ‖rεf(r)‖CTCα−2 2−j(α−2+2(1−ε))δ−1+εδ1−ε

where we moreover used that

1

s1−ε
≤ 1

δ1−ε
for δ ≤ s

Now setting δ = 2−2j we obtain that

sup
j≥−1

2−j(α−2+2(1−ε) ‖∆jIf‖L∞ . ‖rεf(r)‖CTCα−2 .

and hence If ∈ CTC α−2ε.
We now apply lemma 3.1.18 to estimate

‖If(t)− If(s)‖L∞ . ‖(Pt−s − Id)If(s)‖L∞ +

ˆ t

s
‖Pt−rf(r)‖L∞ dr

.|t− s|(α−2ε)/2 ‖If‖CTCα−2ε +

ˆ t

s
‖rεf(r)‖ r−εdr

. ‖rεf(r)‖CTCα−2

(
|t− r|(α−2ε)/2 + t1−ε − s1−ε

)
.T ‖rεf(r)‖CTCα−2 |t− r|(α−2ε)/2

where we used
|t1−ε − r1−ε| ≤ |t− r|1−ε for r, t ≥ 0.

This proves the assertion.

3.2 Bony’s Paraproduct

In this section, we deal with the paraproduct and the resonant term. These
notions were introduced by Bony in [3]. For a modern introduction see [2].
We again loosely follow [7]. See also [8] for a similar, brief introduction.

17



Definition 3.2.1. (Paraproduct and resonant term)Let f, g ∈ S ′ be Schwartz
distributions. We define - whenever well-defined - the paraproduct

f ≺ g :=
∑
j≥−1

Sj−1f∆jg =
∑
j≥−1

j−2∑
i≥−1

∆if∆jg

and the resonant term

f ◦ g :=
∑

i,j≥−1: |i−j|≤1

∆if∆jg

Remark 3.2.2. The idea of the paraproduct is to split a ”product” of dis-
tributions f, g as follows:

f · g = f ≺ g + f ◦ g + f � g (3.2.3)

where f ≺ g respectively f � g can be thought of frequency modulation of g
respectively f . On the other hand, f ◦ g takes frequencies of similar ranges
into account.
The crucial point: f ≺ g and f � g do always exist as well-defined distribu-
tions.
However, f ◦ g exists only given suitable regularity assumptions on f, g and
thus, if ill-defined, may be heuristically interpreted as resonance.

The above remark is made precise in the following proposition:

Proposition 3.2.4. ([7, Chapter 5, 5.1, Theorem 4])(Paraproduct estimates)
The paraproduct and resonant term enjoy the following bounds:

1. Let β ∈ R. Assume that f ∈ L∞ and g ∈ C β. Then

‖f ≺ g‖C β .β ‖f‖L∞ ‖g‖C β .

2. Let α < 0 and β ∈ R. Assume that f ∈ C α and g ∈ C β. Then

‖f ≺ g‖Cα+β .α,β ‖f‖Cα ‖g‖C β .

3. Let α, β ∈ R such that α + β > 0. Assume that f ∈ C α and g ∈ C β.
Then

‖f ◦ g‖Cα+β .α,β ‖f‖Cα ‖g‖C β .

Proof. By proposition 3.1.5 we conclude that the Fourier transform of Sj−1f∆jg
is supported in 2jA ′ for a suitable annulus A ′. We moreover have

‖Sjf∆j−1g‖L∞ ≤ ‖Sjf‖L∞ ‖∆jg‖L∞ . 2−jβ ‖f‖L∞ ‖g‖L∞ .
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Now lemma 3.1.11 implies the first claim.
The second claim follows by noting

‖Sjf‖L∞ . 2jα ‖f‖α

provided α < 0 (proposition 3.1.9).
The last claim follows again from lemma 3.1.11 noting that for i, j ≥ −1
such that |i − j| ≤ 1 the Fourier transform of ∆if∆jg is supported in a
suitable ball B′ and

‖∆if∆jg‖L∞ ≤ ‖∆if‖L∞ ‖∆jg‖L∞ . 2−iα2−iβ ‖f‖α ‖g‖β .

These estimates immediately imply the following theorem:

Corollary 3.2.5. Let α, β ∈ R such that α+ β > 0 Then

C α × C β → Cmin(α,β)

(f, g) 7→ fg

is a bounded bilinear map.

As already mentioned in the introduction, our approach to singular SP-
DEs will based on integral operators combined with the use of the paraproduct
and resonant term in the spirit of the paracontrolled calculus.
To define integral kernels that correspond to these integral operators we
need to understand how to interpret the paraproduct and the resonant term
as multipliers in Fourier space.
This we will deal with next.

Proposition 3.2.6. Let u ∈ C α, η ∈ C β for α, β ∈ R. For k ∈ Zd we have

F (u ≺ η)(k) =
∑

k1+k2=k

û(k1)η̂(k2)m≺(k1, k2)

where the multiplier m≺ is given by

m≺(k1, k2) =
∑
j≥−2

j−1∑
i=−1

ρi(k1)ρj(k2)

Proof. Recall that by the regularity assumption we made
u ≺ η :=

∑
j≥−1

∑j−2
i=−1 ∆iu∆jη ∈ Cmin(β,β+α) is a well defined distribution

on Td.
Moreover, we recall that

suppF (∆iu∆jη) ⊂ 2jA ′ (3.2.7)
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whenever i ≤ j − 2 for a suitable centered annulus A ′.
We now calculate

F (u ≺ η)(k) = (u ≺ η)(ek)

=

 Jk∑
j≥−1

j−2∑
i=−1

∆iu∆jη

 (ek)

where Jk is a finite number such that

k /∈ suppF (∆iu∆jη) for j > Jk, i ≤ j − 2.

To find such an Jk is indeed possible due to (3.2.7).
Noting that

∆iu∆jη

=

 ∑
k1∈Z2

e∗k1 û(k1)ρi(k1)

 ∑
k2∈Z2

e∗k2 η̂(k2)ρj(k2)


=
∑
k∈Zd

e∗k
∑

k1+k2=k

û(k1)η̂(k2)ρi(k1)ρj(k2)

we conclude that the k-th Fourier coefficient is given by

F (u ≺ η)(k) = F

 Jk∑
j=−1

j−2∑
i=−1

∑
k′∈Zd

e∗k′
∑

k1+k2=k′

û(k1)η̂(k2)ρi(k1)ρj(k2)

 (k)

=

Jk∑
j=−1

j−2∑
i=−1

∑
k1+k2=k

û(k1)η̂(k2)ρi(k1)ρj(k2)

=
∑

k1+k2=k

û(k1)η̂(k2)

Jk∑
j=−1

j−2∑
i=−1

ρi(k1)ρj(k2)


=

∑
k1+k2=k

û(k1)η̂(k2)
∑
j≥−1

j−2∑
i=−1

ρi(k1)ρj(k2)


=

∑
k1+k2=k

û(k1)η̂(k2)m≺(k1, k2)

where the interchange is justified due to all sums being finite sums.

Proposition 3.2.8. Assume that u ∈ C α, η ∈ C β where α + β > 0. Then
for k ∈ Zd we have

F (u ◦ η)(k) =
∑

k1+k2=k

û(k1)η̂(k2)m◦(k1, k2)
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where the multiplier m◦ is given by

m◦(k1, k2) =
∑
|i−j|≤1

ρi(k1)ρj(k2).

Proof. By the assumptions, we have that u ◦ η ∈ C α+β is a well defined
distribution.
Note first that for arbitrary i, j ≥ −1 we have

F (∆iu∆jη)(k) =
∑

k1+k2=k

ρi(k1)ρj(k2)û(k1)η̂(k2)

and that the sum is finite.
Now let J ′k ≥ −1 such that for all j ≥ J ′k + 1 we have k /∈ suppρj .
Thus we conclude

F (u ◦ η)(k)

= lim
n→∞

 n∑
j≥−1

∑
i : |i−j|≤−1

∆iu∆jη

 (ek)

=

J ′k∑
j≥−1

∑
i : |i−j|≤−1

(∆iu∆jη)(ek)

=

J ′k∑
j≥−1

∑
i : |i−j|≤−1

∑
k1+k2=k

ρi(k1)ρj(k2)û(k1)η̂(k2)

=
∑

k1+k2=k

û(k1)η̂(k2)m◦(k1, k2).

In using these multipliers effectively the following bounds will turn out
to be crucial:

Proposition 3.2.9. (Multiplier estimates)

1. There are constants c1, C1 > 0 such that for all k1, k2 ∈ Zd the follow-
ing estimate holds true:

m≺(k1, k2) ≤ 1|k1|<|k2|1c1|k2|≤|k1+k2|≤C1|k2|

2. Moreover, there are constants c2, C2 > 0 such that for all k1, k2 ∈ Zd
satisfying |k1| ≥ 2c or |k2| ≥ 2c the following estimate holds true:

m◦(k1, k2) ≤ 1c2|k1|≤|k2|≤C2|k1|

if k1, k2 6= 0. If moreover for numbers k, k1, k2 ∈ Zd one has m◦(k1, k2) 6=
0 and k1 + k2 = k we may conclude |k| . |k1|, |k2|.
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Remark 3.2.10. In the following we will omit the constants c1, C1, c2, C2

and just write
m≺(k1, k2) ≤ 1|k1|<|k2|1|k2|.|k1+k2|.|k2|

and
m◦(k1, k2) ≤ 1|k1|.|k2|.|k1|

Proof. Let k1, k2 ∈ Zd such that m≺(k1, k2) 6= 0. Then by definition |k1| <
|k2|. The second claim follows from the fact that

suppρi + suppρj ⊂ 2jA ′′

provided j − 2 ≥ i.
Let now k1, k2 ∈ Zd such that m◦(k1, k2) 6= 0. The assertions now follows
from the fact that if k1 ∈ suppρi and k2 ∈ suppρj then |i − j| ≤ 1 and
consequently c2i ≤ |k1|, |k2| ≤ C2i if i ≥ 1. The second claim follows from
this fact as well.

3.3 White Noise

To close this chapter, we briefly introduce the space white noise. Here we
choose to use a rather easy definition of white noise lacking the sophistication
of more detailed expositions (see for example [11, Chapter 1, Example 1.16]).
We will, however, prove some analytical control for white noise which enables
us to use the analytical tools developed below.

Definition 3.3.1. (Space white noise)Spatial white noise on Td, denoted by
ξ, is a centered Gaussian process on a suitable probability space (Ω,A ,P)
indexed by L2 with covariance

E [ξ(f)ξ(g)] =

ˆ
Td
f(z)g(z)dz

for f, g ∈ L2.

Remark 3.3.2. One can show that white noise is linear in its index-arguments
almost surely.

Proposition 3.3.3. ([7, Chapter 2, 2.1])There exists a random variable ξ̃
on (Ω,A ,P) such that for all ω ∈ Ω ξ̃(ω) ∈ S ′ is a Schwartz distribution

and P
[
ξ(f) = ξ̃(f)

]
= 1 for all f ∈ L2.

In the following we will often write ξ̂(k) = ξ(ek) where k ∈ Zd.
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Proof. For 0 < λ < 1 consider

E

∑
k∈Zd

exp(λ|ξ̂(l)|2)
1 + |k|d+1


=
∑
k∈Zd

(1 + |k|d+1)−1E
[
exp(λ|ξ̂(k)|2)

]
=
∑
k∈Zd

(1 + |k|d+1)−1
ˆ
Rd

exp(λ|x|2)(2π)−d/2exp(−|x|2)dx <∞.

where we used that ξ̂(k) is a centered Gaussian random variable with vari-
ance 1. Hence ∑

k∈Zd

exp(λ|ξ̂(k)|2)
1 + |k|d+1

<∞ almost surely

and thus
exp(λ|ξ(k)|2)

1 + |k|d+1
→ 0 as |k| → ∞ almost surely.

Consequently |ξ̂(k)| . ln(|k|) almost surely. This implies the claim.

Proposition 3.3.4. ([7, Chaper 3]) Let ε > 0 arbitrary. Then ξ̃ ∈ C−d/2−ε

almost surely.

Proof. Consider for arbitrary α ∈ R and p > 1

E

[∥∥∥ξ̃∥∥∥2p
Bα2p,2p

]
=E

∑
j≥−1

2jα2p
∥∥∥∆j ξ̃

∥∥∥2p
L2p


=
∑
j≥−1

2jα2pE

[∥∥∥∆j ξ̃
∥∥∥2p
L2p

]
=
∑
j≥−1

2jα2p
ˆ
Td
E

[
|∆j ξ̃|2p

]
.
∑
j≥−1

2jα2p
ˆ
Td
E

[
|∆j ξ̃|2

]p
where the inequality is due to Gaussian hypercontractivity [11, Chapter 3,
Theorem 3.50].
We calculate

|E
[
|∆j ξ̃|2

]
| ≤

∑
k1,k2Zd

ρj(k1)ρj(k2)E
[

ˆ̃
ξ(k1)

ˆ̃
ξ(k2)

]
=

∑
k1,k2∈Zd

ρj(k1)ρj(k2)1k1+k2=0

≤ 2jd.
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Using this we obtain

E

[∥∥∥ξ̃∥∥∥2p
Bα2p,2p

]
.
∑
j≥−1

2jα2p2jpd <∞

provided that 2α+ d < 0, i.e. α < −d/2, and hence ξ ∈ Bα
2p,2p.

Thus, using the Besov embedding theorem, we obtain ξ̃ ∈ C α−d/2p for any
p > 1.
Since p > 1 can be chosen arbitrarily large, this implies the claim.

In the following we will identify ξ with ξ̃.

4 Regularity Results for Random Integral Oper-
ator

In this chapter we devote ourselves to the study of (random) operators given
by (random) integral kernels. The goal is to prove regularity results in
Hölder-Besov spaces for this kind of operators provided the integral kernels
satisfies suitable regularity assumptions. As already mentioned, these kind
of operators emerge in a natural way in the mild approach to certain SPDEs
studied below.
The general set-up we will work in is as follows: For a positive time T > 0
and a measurable function u : [0, T ]×Td → C, we consider integral operators
of the form

V u(t, x) := Vtu(x) :=

ˆ t

0

ˆ
Td
v(t, x; r, z)u(r, z)dzdr for 0 ≤ t ≤ T.

where v is a (random) measurable function such that for any 0 < t ≤ T

v(t, ·, ·, ·) : Td × [0, t)× Td → C.

We say that the kernel v induces or gives rise to the operator V .
Moreover, we will impose impose the following conditions on the kernel:

1. ‖v(t, x; r, z)‖L∞x L∞z <∞ for all 0 ≤ r < t

2. the kernel is time-homogeneous, i.e. for any s > 0 and 0 ≤ r < t we
have

v(t+ s, x; r + s, z) = v(t, x; r, z)

We call a kernel satisfying these assumptions admissible.
As we will see, the class of admissible kernels provides a convenient frame-
work for discussing the regularity of integral operators of the above form.
The rest of this chapter is structured as follows:
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First, in a purely analytical step, we will establish the aforementioned reg-
ularity results given suitable control of the kernel. Here, probability is not
taken into account.
Then we will show how to extend these results to a probabilistic setting and
thus break the soil for applications in the study of singular SDPEs. We will
especially be concerned with deriving assumptions that not only yield the
regularity results but also allow feasible verification.

4.1 Integral Operators in Besov Spaces

An immediate consequence of admissibility is the following:

Lemma 4.1.1. Let v be an admissible integral kernel and u ∈ L∞. If
0 ≤ r < t and k ∈ Zd then

Fx

(ˆ
Td
v(t, x; r, z)u(z)dz

)
(k) =

ˆ
Td

Fx (v(t, x; r, z)) (k)u(z)dz

Proof. Since

ˆ
Td

ˆ
Td
|v(t, x; r, z)||u(z)|dzdx ≤ vol(Td)2 ‖v(t, x, r, z)‖L∞x L∞z ‖u‖L∞ <∞

we conclude that

Fx

(ˆ
Td
v(t, x, r, z)u(z)dz

)
(k) =

ˆ
Td

Fx(v(t, x; r, z))(k)u(z)dz

by the Fubini-Tonelli theorem.

Proposition 4.1.2. Let v be an admissible integral kernel and u ∈ L∞.
Then if 0 ≤ r < t for any j ≥ −1 we have

∆j

(ˆ
Td
v(t, x; r, z)u(r, z)dz

)
=

ˆ
Td

∆jv(t, x; r, z)u(r, z)dz.

Proof. The proposition follows immediately from an elementary computa-
tion using the last lemma and the fact that the sum appearing in the defin-
ition of the dyadic bloc is finite.

The last proposition essentially provides us with a way to compute dyadic
blocks of integral operators given rise to by admissible integral kernels. Thus
we can calculate the Besov-norm of functions being defined in terms of these
operators.
In order to prove the desired regularity results for integral operators, we also
need to understand what role the domain of the operator plays in estimating
Besov norms.
First note:
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Lemma 4.1.3. Let f, g ∈ L2. Then

ˆ
Td
fgdz =

∑
j≥−1

ˆ
Td

∆jfgdz.

Proof. We first establish Sif → f in L2 as i→∞:
Note that

Ŝif(k) =

i−1∑
j=−1

∆̂jf(k) =

i−1∑
j=−1

ρj(k)f̂(k)

from which we conclude

|Ŝif(k)| ≤
i−1∑
j≥−1

ρj(k)|f̂(k)| ≤ |f̂(k)| and lim
i→∞

Ŝif(k) = f̂(k).

Hence for all i ∈ N we obtain using Plancheral’s theorem∥∥∥(Ŝif(k))Zd
∥∥∥
`2(Zd)

≤
∥∥∥(f̂(k))k∈Zd

∥∥∥
`2(Zd)

= ‖f‖L2 <∞

and applying the dominated convergence theorem we conclude

(Ŝif(k))k∈Zd → (f̂(k))Zd in `2(Zd) as i→∞.

Using Plancheral’s theorem again, we obtain

lim
i→∞
‖Sif − f‖L2 = lim

i→∞

∥∥∥(Ŝif(k)− f̂(k))kZd
∥∥∥
`2(Zd)

= 0

and finally

lim
i→∞
‖(Sif − f)g‖L1 ≤ lim

i→∞
‖Sif − f‖L2 ‖g‖L2 = 0.

This implies ∑
j≥−1

ˆ
Td

∆jfgdz = lim
i→∞

ˆ
Td
Sifgdz =

ˆ
Td
fgdz.

Using this, we can indeed provide a way of taking the regularity of the
domain of the integral operator into account:

Lemma 4.1.4. Assume that u ∈ C α where α > 0 is an arbitrary positive
number and let f ∈ S ′ be a distribution. Then∣∣∣∣ˆ

Td
∆jfudx

∣∣∣∣ .α 2−jα ‖u‖α ‖∆jf‖L1
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Proof. First recall that ∆if ∈ S .
Lemma 4.1.3 implies that

ˆ
Td

∆jfudx = lim
n→∞

n∑
i≥−1

ˆ
Td

∆jf∆iudx.

From

û(k)∗ =

(ˆ
Td
u(z)ek(z)dz

)∗
=

ˆ
Td
u(z)∗e∗k(z)dz = û∗(−k)

we conclude
(∆ju)∗ =

∑
k∈Zd

ek(x)ρj(k)û∗(k) = ∆ju
∗

where we used that ρj is real and radially symmetric. Hence

(F ((∆ju)∗)(k))∗ = (ρj(k)û∗(k))∗ = F (∆ju)(−k)

and therefore, Parseval’s Theorem reads as
ˆ
Td

∆jf∆iudx

=

ˆ
Td

∆jf ((∆iu)∗)∗ dx

=
∑
k

F (∆jf)(k)F ((∆iu)∗)(k)∗

=
∑
k

F (∆jf)(k)F (∆iu)(−k)

Furthermore, the dyadic blocks satisfy

supp(F∆jf) ∩ supp(F∆iu) = ∅ (4.1.5)

whenever |i− j| > 1. We conclude

|
ˆ
Td

∆jfudx| =| lim
n→∞

n∑
i=−1

ˆ
Td

∆jf∆iudx|

=| lim
n→∞

n∑
i=−1

∑
k∈Zd

F (∆jf)(k)F (∆iu)(−k)|

=|
∑
k∈Zd

F (∆jf)(k) (F (∆j−1u)(−k) + F (∆ju)(−k) + F (∆j+1u)(−k))|

=|
ˆ
Td

∆jf∆j−1udx+

ˆ
Td

∆jf∆judx+

ˆ
Td

∆jf∆j+1udx|

.
(
‖∆j−1u‖L∞ + ‖∆ju‖L∞ + ‖∆j+1u‖L∞

)
‖∆jf‖L1
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where we used Parseval’s theorem and (4.1.5) to cancel almost all summands
with respect to i.
Using the estimate

‖∆ju‖L∞ ≤ 2−αj ‖u‖Cα

we obtain

|
ˆ
Td
u∆jfdx|

≤(2−α(j−1) ‖u‖Cα + 2−αj ‖u‖Cα + 2−α(j+1) ‖u‖Cα) ‖∆if‖L1

≤(2α + 1 + 2−α)2−jα ‖u‖Cα ‖∆jf‖L1 .

In order to apply this in our study of regularity of integral operators we
introduce double dyadic blocks.
In writing

∆iv∆j(t, x; r.z).

we mean the i-th resp j-th dyadic block with respect to (ρj)j≥−1 in the x
resp. z-variable of v.
We have:

Lemma 4.1.6. Let T > 0 and α > 0, β ∈ R as well as u ∈ CTC α and
assume that v is an admissible integral kernel. Then for any p ≥ 1 and
t ∈ [0, T ] we have

‖Vtu‖Bβp,p .
ˆ t

0

∑
i,j≥−1

2−jα2iβ ‖u‖CTCα ‖∆iv∆j(t, x; r, z)‖LpxL1
z

dr.

Proof. Noting that∑
j≥−1

ˆ
Td

∆iv∆j(t, x; r, z)u(r, z)dz =

ˆ
Td

∆iv(t, x; r, z)u(r, z)dz
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by lemma 4.1.3, we estimate using lemma 4.1.4

‖Vtu‖Bβp,p

=

∥∥∥∥ˆ t

0

ˆ
Td
v(t, x; r, z)u(r, z)dzdr

∥∥∥∥
Bβp,p

≤
ˆ t

0

∥∥∥∥ˆ
Td
v(t, x; r, z)u(r, z)dz

∥∥∥∥
Bβp,p

dr

=

ˆ t

0

∑
i≥−1

2ipβ
∥∥∥∥ˆ

Td
∆iv(t, x, r, z)u(r, z)dz

∥∥∥∥p
Lpx

 1
p

dr

≤
ˆ t

0

∑
i≥−1

2iβ

∥∥∥∥∥∥
∑
j≥−1

ˆ
Td

∆iv∆j(t, x; r, z)u(r, z)dz

∥∥∥∥∥∥
Lpx

dr

.
ˆ t

0

∑
i≥−1

2iβ

∑
j≥−1

2−jα ‖u‖CTCα

∥∥∥∥ˆ
Td
|∆iv∆j(t, x; r, z)|dz

∥∥∥∥
Lpx

dr

≤ ‖u‖CTCα

ˆ t

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)‖LpxL1
z

dr.

where to obtain the second inequality we used that ‖·‖`p ≤ ‖·‖`1 for any
p ≥ 1.

Remark 4.1.7. We could have deduced a slightly stronger result if we would
not had used the inequality ‖·‖`p ≤ ‖·‖`1 in order to get rid of the exponent
p. It seems, however, that this generalization is only of little use in practice.

Thus we in fact reduced the question of regularity of V to a question
about the regularity of the doubly dyadic blocks ∆iv∆j of the kernel.
The last lemma motivates the following definitions:

Definition 4.1.8. Let α > 0 and β ∈ R, as well as 1 ≤ p ≤ ∞ and T > 0.
Let v be an admissible kernel.

1. For 0 < t ≤ T we write

‖v‖Xα,β;p((0,t)) :=

ˆ t

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)‖LpxL1
z

dr (4.1.9)

and denote by Xα,β;p((0, t)) the space of all admissible kernels v such
that ‖v‖Xα,β;p((0,t)) is finite.

2. We write
‖v‖Xα,β;p(T ) := sup

0≤t≤T
‖v‖Xα,β;p((0,t))
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and denote by Xα,β;p(T ) the space of all admissible kernels v such that
‖v‖Xα,β;p(T ) is finite and such that for any 0 ≤ t ≤ T

lim
s↗t

ˆ s

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)−∆iv∆j(s, x; r, z)‖LpxL1
z

dr = 0

and

lim
t↘s

ˆ s

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x, r, z)−∆iv∆j(s, x; r, z)‖ dr = 0

as well as

lim
t↘s

ˆ t

s

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)‖dr = 0

3. Finally, we write

Xα,β;p :=
⋂
T>0

Xα,β;p(T ).

Remark 4.1.10. The conditions in 2. connected to a one-sided limit will be
used to obtain continuity in time.

These spaces enjoy the following basic properties:

Proposition 4.1.11. Let α > 0 and β ∈ R as well as 1 ≤ q ≤ p ≤ ∞ and
T > 0.

1.
(
Xα,β;p(T ), ‖·‖Xα,β;p(T )

)
is a normed vector space

2. For v ∈ Xα,β;p(T ) we have

‖v‖Xα,β;p(T ) =

ˆ T

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T, x; r, z)‖LpxL1
z

dr.

3. The inclusion Xα,β;p(T ) ⊂ Xα,β;q(T ) holds true, to be more precise

‖·‖Xα,β;q(T ) .d ‖·‖Xα,β;p(T ) .

Proof. The first assertion is evident.
By definition we have

ˆ T

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T, x; r, z)‖LpxL1
z

dr ≤ ‖v‖Xα,β;p(T ) .
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We calculate, using the time homogeneity of the kernel and the transform-
ation r 7→ T − t+ r,

ˆ t

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)‖LpxL1
z

dr

=

ˆ t

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T − t+ t, x;T − t+ r, z)‖LpxL1
z

dr

=

ˆ T

T−t

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T, x; r, z)‖LpxL1
z

dr

≤
ˆ T

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T, x, r, z)‖LpxL1
z

dr

This proves the second claim.
Finally, noting that the inequality

‖∆iv∆j(t, x; r, z)‖LqxL1
z
.d ‖∆iv∆j(t, x; r, z)‖LpxL1

z

holds true, we may conclude the last assertion.

In the upcoming sections, the following subspaces of Xα,β;p(T ) will be
of great importance:

Definition 4.1.12. Let α > 0 and β ∈ R as well as κ ∈ [0, 1), δ > 0,
1 ≤ p ≤ ∞ and T > 0.

1. We write Xα,β;p
κ (T ) for the space of admissible integral kernels v such

that ∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T, x; r, z)‖LpxL1
z
. (T − r)−γ

where the constant is independent of r.

2. We write Xα,β;p
κ,δ for the space of integral kernels v ∈ Xα,β;p

κ (T ) such
that in addition to the requirements in 1. for all 0 ≤ r < s ≤ t ≤ T
we have∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)−∆iv∆j(s, x; r, z)‖LpxL1
z
. (t− s)δ(s− r)−κ

where the constant is independent of t, s and r.

3. We define

Xα,β;p
κ,δ :=

⋂
T>0

Xα,β;p
κ,δ (T ).

These spaces enjoy the following basic properties:
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Proposition 4.1.13. Let α > 0, β ∈ R as well as κ, κ′ ∈ [0, 1), p ≥ 0 and
T > 0.

1. Both Xα,β;p
κ (T ) and Xα,β;p

κ,δ (T ) are vector spaces

2. Let v ∈ Xα,β;p
δ (T ). Then for all 0 ≤ r < t ≤ T we have∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)‖LpxL1
z
. (t− r)−δ.

3. The inclusion Xα,β;p
κ,δ (T ) ⊂ Xα,β;p(T ) holds true, to be more precise,

we have
‖v‖Xα,β;p(T ) . T 1−κ.

4. If κ′ ≤ κ the inclusion Xα,β;p
κ (T ) ⊂ Xα,β;p

κ′ (T ) holds true.

Proof. The first assertion follows from straightforward calculations.
Let v ∈ Xα,β;p

δ (T ). Using the time-homogeneity of the kernel we conclude
for 0 ≤ r < t

∆iv∆j(t, x; r, z) = ∆iv∆j(T, x;T − t+ r; z).

Consequently, we may estimate∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)‖LpxL1
z

=
∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T, x;T − t+ r, z)‖LpxL1
z

.(T − T + t− r)−δ

=(t− r)−δ.

This proves the second statement.
Now let v ∈ Xα,β;p

κ,δ (T ). By definition v ∈ Xα,β;p
κ (T ). Consequently

‖v‖Xα,β;p(T )

=

ˆ T

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T, x; r, z)‖LpxL1
z

dr

.
ˆ T

0
(T − r)−κdr

.T 1−κ.

32



Moreover for 0 < t ≤ T we haveˆ s

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)−∆iv∆j(s, x; r, z)‖LpxL1
z

dr

.
ˆ s

0
(t− s)δ(s− r)−κdr

=(t− s)δs1−κ = 0.

and ˆ t

s

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x; r, z)‖LpxL1
z

dr

.
ˆ t

s
(t− r)−κ

=(t− s)1−κ

Now taking limits s ↗ t as well as t ↘ s for the first term and the limit
t↘ s for the second term we conclude v ∈ Xα,β;p(T ).

The final claim follows from the elementary inequality

(t− r)κ−κ′ ≤ T κ−κ′

provided 0 ≤ r < t ≤ T which implies

(t− r)−κ′ ≤ T κ−κ′(t− r)−κ.

The above introduced spaces of kernels provided a natural framework
for the desired regularity results:

Theorem 4.1.14. Let α > 0, β ∈ R, as well as p ≥ 1 and T > 0. Assume
that for 0 < t ≤ T we have v ∈ Xα,β+d/p;p((0, t)).

1. We have
‖Vt‖CTCα→C β . ‖v‖Xα,β;p((0,t)) .

2. If instead v ∈ Xα,β+d/p;p(T ), we have

‖V ‖CTCα→CTC β . ‖v‖Xα,β;p(T ) .

Proof. Using proposition 4.1.6we estimate

‖Vt‖
CTCα→B

β+ dp
p,p

.
ˆ t

0

∑
i,j≥−1

2−jα2
i(β+ d

p
) ‖∆iv∆j(t, x; r, z)‖LpxL1

z
dr

≤‖v‖Xα,β+d/p;p((0,t))
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Now the Besov embedding (theorem 3.1.10 )yields the first statement.
Next we turn to the second statement of the theorem.
We calculate

Vtu(x)− Vsu(x) =ˆ t

s

ˆ
Td
v(t, x; r, z)u(r, z)dzdr +

ˆ s

0

ˆ
Td

(v(t, x; r, z)− v(s, x; r, z))u(r, z)dzdr.

Similar arguments to the ones made in the proof of proposition 4.1.6 yield

‖Vtu− Vsu‖Bβ+p/dp,p

. ‖u‖CTCα

ˆ s

0

∑
i,j≥−1

2−jα2i(β+d/p) ‖∆iv∆j(t, x; r, z)−∆iv∆j(s, x; t, z)‖LpxL1
z

dr+

‖u‖CTCα

ˆ t

s

∑
i,j≥−1

2−jα2i(β+d/p) ‖∆iv∆j(t, x; r, z)‖LpxL1
z

dr.

The first summand vanishes for each one-sided limit s ↗ t and t ↘ s by
assumption. Using the dominated convergence theorem one concludes that
also the second summand vanishes for the limit s ↗ t. For the limit t ↘ s
the term vanishes by assumption. Hence

lim
s→t
‖Vt − Vs‖

CTCα→B
β+ dp
p,p

= 0

and, invoking the Besov embedding again, we conclude that

‖V u‖CTC β . ‖v‖Xα,β;p(T ) ‖u‖CTCα .

Corollary 4.1.15. Let α > 0 and β ∈ R as well as κ ∈ [0, 1), δ > 0, p ≥ 0
and T > 0.

1. If v ∈ Xα,β;p
κ (T ), then for any 0 < t ≤ T

‖Vt‖CTCα→C β . T 1−γ .

2. If v ∈ Xα,β;p
κ,δ (T ) then

‖V ‖CTCα→CTC β . T 1−γ .

Proof. The result follows from the last theorem and proposition 4.1.13.

Later on, we will also need to understand in how far convergence of these
kind of integral operators in operator norm can be reduced to convergence
of their integral kernels. The basic statement in this context is the following:
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Theorem 4.1.16. Let α > 0 and β ∈ R as well as 1 ≤ p ≤ ∞ and T > 0.
Assume the for n ∈ N vn, v ∈ Xα,β+d/p;p(T ) such that

vn → v in Xα,β+d/p;p(T ) as n→∞.

Then
V n → V in L

(
CTC α, CTC β

)
as n→∞

Proof. Using the above theorem we obtain the bound

‖V n − V ‖CTCα→CTC β . ‖vn − v‖Xα,β;p(T )

which implies the theorem.

4.2 Random Integral Operators in Besov Spaces

In this section we will extend the above developed results to a probabilistic
setting. To be more precise, in the following we will assume the integral
kernels under consideration to be random with respect to a probability space
(Ω,A ,P), such that for a random integral kernel v we have that P-almost
surely it is admissible. In the rest of this chapter all integral kernels will be
assumed to be random and P-almosut surely admissible. For simplicity, we
will call these random integral kernels admissible as well.
Most of the results presented here have natural counterparts in the last
section. After having proved the basic estimate and having adjusted the
definitions, the statements can be proven mutatis mutandis. Therefore we
refrain from giving these very apparent proofs.
The investigation starts with a rather technical observation:

Lemma 4.2.1. Let 1 ≤ q ≤ p and f : Td×Td → C be a random, measurable
function. We then have

E
[
‖f(x, z)‖LpxLqz

]
≤
∥∥∥E [|f(x, z)|p]

1
p

∥∥∥
LpxL

q
z

.
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Proof. We have

E
[
‖f(x, z)‖LpxLqz

]
=E

(ˆ
Td

(ˆ
Td
|f(x, z)|qdz

) p
q

dx

) 1
p


≤E

[ˆ
Td

(ˆ
Td
|f(x, z)|qdz

) p
q

dx

] 1
p

=

ˆ
Td

(
E

[(ˆ
Td
|f(x, z)|qdz

) p
q

]) q
p
p
q

dx

 1
p

≤

(ˆ
Td

(ˆ
Td

E
[
|f(x, z)|q

p
q

] q
p

dz

) p
q

dx

) 1
p

=
∥∥∥E [|f(x, z)|p]

1
p

∥∥∥
LpxL

q
z

where in the first inequality, we used the Jensen inequality for concave func-
tions and the second inequality is a Minkowski-type inequality for multiple
integrals which is applicable since p/q ≥ 1 (see [1, Chapter X, Theorem
6.21]).

This leads to the following proposition:

Proposition 4.2.2. Let α > 0 and β ∈ R as well as p ≥ 1 and T > 0.
Assume that v is an admissible integral kernel.

1. Let 0 < t ≤ T . Then

E
[
‖v‖Xα,β;p((0,t))

]
≤
ˆ t

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(t, x, r, z)|p]

1
p

∥∥∥
LpxL1

z

dr

2. We moreover have

E

[
‖v‖Xα,β;p(T )

]
≤ sup

0≤t≤T

ˆ t

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(t, x; r, z)|p]

1
p

∥∥∥dr

=

ˆ T

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(T, x; r, z)|p]

1
p

∥∥∥
LpxL1

z

dr
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Proof. We have that

E
[
‖v‖Xα,β;p((0,t))

]
=E

ˆ t

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(t, x, r, z)‖LpxL1
z

dr


=

ˆ t

0

∑
i,j≥−1

2−jα2iβE
[
‖∆iv∆j(t, x; r, z)‖LpxL1

z

]
dr

≤
ˆ t

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(t, x; r, z)|p]

1
p

∥∥∥
LpxL1

z

dr

where we used Fubini’s theorem and lemma 4.2.1 for the inequality.
Recalling that

‖v‖Xα,β;p(T ) =

ˆ T

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T, x; r, z)‖LpxL1
z

dr.

we deduce, following the first part of the proposition,

E

ˆ T

0

∑
i,j≥−1

2−jα2iβ ‖∆iv∆j(T, x; r, z)‖LpxL1
z

dr


≤
ˆ T

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(T, x; r, z)|p]

1
p

∥∥∥
LpxL1

z

dr.

Noting that for any 0 < t ≤ T we haveˆ t

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(t, x; r, z)|p]

1
p

∥∥∥
LpxL1

z

dr

≤
ˆ T

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(T, x; r, z)|p]

1
p

∥∥∥
LpxL1

z

dr

we conclude.

These basic results motivate the following definitions:

Definition 4.2.3. Let α > 0, β ∈ R, as well as p ≥ 1. Let v be an admissible
integral kernel.

1. For 0 < t ≤ T we write

‖v‖
Xα,β;p((0,t)) :=

ˆ t

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(t, x; r, z)|p]

1
p

∥∥∥dr

(4.2.4)
and we denote by Xα,β;p((0, t)) the space of all admissible kernels v
such that ‖v‖

Xα,β;p((0,t)) is finite.
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2. We write
‖v‖

Xα,β;p(T ) := sup
0≤t≤T

‖v‖
Xα,β;p((0,t))

and denote by Xα,β;p(T ) the space of all admissible kernels v such that
‖v‖

Xα,β;p(T ) is finite and such that for any 0 ≤ t ≤ T

lim
s↗t

ˆ s

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(t, x; r, z)−∆iv∆j(s, x; r, z)|p]

1
p

∥∥∥
LpxL1

z

dr = 0

and

lim
t↘s

ˆ s

0

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(t, x, r, z)−∆iv∆j(s, x; r, z)|p]

1
p

∥∥∥
LpxL1

z

dr = 0

as well as

lim
t↘s

ˆ t

s

∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(t, x; r, z)|p]

1
p

∥∥∥dr = 0

We have the following basic properties:

Proposition 4.2.5. Let α > 0 and β ∈ R as well as p ≥ 1 and T > 0.

1. (Xα,β;p(T ), ‖·‖Xα,β;p(T )) is a normed vector space

2. If v ∈ Xα,β;p(T ), then almost surely v ∈ Xαβ;p(T ).

Proof. The first assertion is evident.
The second claim follows from immediately from proposition 4.2.2.

Analogously to the non-random case, we introduce the following sub-
spaces of Xα,β;p(T ):

Definition 4.2.6. Let α > 0 and β ∈ R as well as κ ∈ [0, 1), p ≥ 1 and
T > 0.

1. We write Xα,β;p
κ (T ) for the space of admissible kernels such that for

0 ≤ t ≤ T∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(T, x; r, z)|p]

1
p

∥∥∥
LpxL1

z

. (T − r)−γ

where the constant is independent of r.

2. We write Xα,β;p
κ,δ for the space of integral kernels v ∈ Xα,β;p

κ (T ) such
that in addition to the requirements in 0 ≤ r < s ≤ t ≤ T we have∑
i,j≥−1

2−jα2iβ
∥∥∥E [|∆iv∆j(t, x; r, z)−∆iv∆j(s, x; r, z)|p]

1
p

∥∥∥
LpxL1

z

. (t− s)δ(s− r)−κ

where the constant is independent of t, s and r.
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3. Finally, we define

X
α,β;p
κ,δ :=

⋂
T>0

X
α,β;p
κ,δ (T ).

For these spaces we have analogous statements to the non-random case
studied above:

Proposition 4.2.7. Let α > 0, β ∈ R as well as κ, κ′ ∈ [0, 1), δ ≥, p ≥ 1
and T > 0.

1. We have
X
α,β;p
κ,δ (T ) ⊂ Xα,β;p(T )

and moreover
E
[
‖v‖Xα,β;p(T )

]
. T 1−κ.

2. If κ′ ≤ κ, then
X
α,β;p
κ (T ) ⊂ Xα,β;p

κ′ (T )

Proof. Using proposition 4.2.2 the proof follows from proposition 4.1.13

The spaces Xα,β;p(T ) provided a natural framework for regularity results
for random integral operators given by random integral kernels in Besov
spaces

Theorem 4.2.8. Let α > 0, β ∈ R, as well as p ≥ 1 and T > 0. Assume
that for 0 < t ≤ T we have v ∈ Xα,β+d/p;p((0, t)).

1. We have
E
[
‖Vt‖CTCα→C β

]
. ‖v‖

Xα,β;p((0,t)) .

2. If instead v ∈ Xα,β+d/p;p(T ), we have

E
[
‖V ‖CTCα→CTC β

]
. ‖v‖

Xα,β;p(T ) .

Proof. Recalling theorem 4.1.14 and proposition 4.2.2, the claim immedi-
ately follows.

Corollary 4.2.9. Let α > 0 and β ∈ R as well as κ ∈ [0, 1) ,δ > 0, p ≥ 0
and T > 0.

1. If v ∈ Xα,β;p
κ (T ), then for any 0 < t ≤ T

E
[
‖Vt‖CTCα→C β

]
. T 1−γ .

2. If v ∈ Xα,β;p
κ,δ (T ) then

E

[
‖V ‖CTCα→CTC β

]
. T 1−γ .
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Proof. This follows from the last theorem and proposition 4.2.7

Theorem 4.2.10. Let α > 0 and β ∈ R as well as p ≥ 1 and T > 0.
Assume the for n ∈ N vn, v ∈ Xα,β;p(T ) such that

vn → v in Xα,β;p(T ) as n→∞.

Then
V n → V in L

(
CTC α, CTC β

)
in probability as n→∞

Proof. This follows from theorem 4.1.16.

5 The Parabolic Anderson Model

In this section we treat the (linear) parabolic Anderson model (PAM) in two
dimension. We formally write this as the Cauchy problem

∂tu−∆u = u · ξ on [0, T ]× T2, u(0, ·) = u0. (5.0.1)

where T > 0, u0 is an initial datum and ξ is the space white noise on T2.
In the introduction we already discussed the difficulty of giving a proper
meaning to this equation.
A natural approach to the PAM is to understand its solution as the limiting
object of solutions to equations with smoothly approximated noise. Due
to the heuristic analysis, we expect that in order to obtain a well-defined
limit, we in fact need to renormalize the appearing equations in a suitable
way, that is subtract large appropriate terms that drift to infinity as the
approximations of the driving noise tends to the white noise.
The goal of this chapter is to rigorously derive an intrinsic formulation and
show that the in this way obtained renormalized equation is globally well-
posed. Moreover, we want to show that these solutions are indeed sensible:
We will prove that the approximate solutions converge to the ”intrinsic
solutions” after a suitable renormalization.
This, however, is not only possible for the white noise but for a wider class
of noises satisfying certain properties introduced below.
Our ansatz will be based on the mild formulation of this equation combined
with a slight variation of the paracontrolled ansatz. In order to deal with
the troubling product, we will - like already explained in the introduction -
employ Bony’s paraproduct.
First, we will be concerned with the simpler case of smooth driving noise.

5.1 Mild Formulation and Random Operators

For T > 0 we consider the Cauchy problem

∂tu−∆u = uη on [0, T ]× T2, u(0, ·) = u0
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where u0 is an initial datum and η denotes a smooth driving noise not
depending on time.
The mild formulation of this equations reads as

u(t) =

ˆ t

0
Pt−r(u(r)η)dr + Ptu

0. (5.1.1)

The approach we will develop settles around this equation.
Using Bony’s paraproduct and the resonant term, we may rewrite (5.1.1) as

u(t) =

ˆ t

0
Pt−r(u(r) ≺ η)dr +

ˆ t

0
Pt−r(u(r) � η)dr + Ptu

0.

This decomposition naturally leads to the following operators:

B≺(u, η)(t) :=

ˆ t

0
Pt−r(u(r) ≺ η)dr

as well as

B◦(u, η)(t) :=

ˆ t

0
Pt−r(u(r) ◦ η)dr

and

B�(u, η)(t) :=

ˆ t

0
Pt−r(u(r) � η)dr.

We moreover set B� := B◦ +B� and

B≺�(u, η, η)(t) := B�(B≺(u, η), η)(t).

We analogously define the operators B≺◦ and B≺�.

Remark 5.1.2. For notational convenience , we will in the following often
omit the explicit time argument t when writing above the operators bi- and
trilinear operators.

These operators enjoy the following properties:

Proposition 5.1.3. 1. Let β ∈ (0, 2). Then

B≺ :CTL
∞ × CTC β−2 → L β

T

(u, η) 7→
ˆ t

0
Pt−r(u(r) ≺ η(r))dr

is a well-defined and bounded operator.

2. Let α, β ∈ R with α+ β > 0. Then

B◦ :CTC α × CTC β → L α+β+2
T

(u, η) 7→
ˆ t

0
Pt−r(u(r) ◦ η(r))dr

is a well-defined and bounded operator.

41



3. Let α ∈ R, β < 0. Then

B� :CTC α × CTC β → L α+β+2
T

(u, η) 7→
ˆ t

0
Pt−r(u(r) � η(r))dr

is a well-defined and bounded operator.

Proof. The proof is an application of the Schauder estimate (theorem 3.1.19)
combined with the estimates for the paraproduct and the resonant term
(proposition 3.2.4).

Using this operator, we rewrite the considered equation as

u = B≺(u, η) +B�(u, η) + Ptu
0

and motivated by the paracontrolled ansatz, we define

u] := u−B≺(u, η).

Combining these two equation, we obtain

u] = B≺�(u, η, η) +B�(u], η) + Ptu
0. (5.1.4)

The following observation is a crucial motivation for our approach:

Proposition 5.1.5. Let T > 0 as well as α > 0 and assume that u0 ∈ C α.
Then a function u ∈ CTC α is a solution to the equation (5.1.1) if and only
if u] satisfies equation (5.1.4)

Proof. Since η is smooth, all appearing paraproducts and resonat terms are
well-defined.
Thus, if u is a solution to equation (5.1.1), then u] clearly satisfies equation
(5.1.4).
For the second implication, we consider

u−B≺(u, η) =u]

=B≺�(u, η, η) +B�(u], η) + Ptu
0

=B≺�(u, η, η) +B�(u, η)−B�(B≺(u, η), η) + Ptu
0

=B�(u, η) + Ptu
0

from which may conclude

u(t) = B≺(u, η)(t) +B�(u, η)(t) + Ptu
0 =

ˆ t

0
Pt−r(u(r)η)dr + Ptu

0.
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Before we start paying attention to the aforementioned renormalization
in the next section, we more carefully investigate the operator B≺◦: We want
to derive a representation of this operator as an integral operator. This will
turn out to be useful later and will serve as an easy benchmark for our kernel
based approach.
We start with the following observation:

Lemma 5.1.6. Let T > 0. Assume that u ∈ CTL∞. Then for any 0 ≤ t ≤
T and k ∈ Z2 we have

F

(ˆ t

0
Pt−r(u(r) ≺ η)dr

)
(k) =

ˆ t

0
F (Pt−r(u(r) ≺ η)(k)dr

Proof. Since η is smooth, the paraproduct estimates (proposition 3.2.4) im-
ply that u ≺ η ∈ CTL∞. Nowˆ

T2

ˆ t

0
|Pt−r(u(r) ≺ η)(x)|drdx ≤ vol(T2)T ‖u ≺ η‖CTL∞ <∞

and the claim follows from the Fubini-Tonelli theorem.

Proposition 5.1.7. Let T > 0 and assume u ∈ CTL
∞. Then for any

0 ≤ t ≤ T we haveˆ t

0
Pt−r(u(r) ≺ η)dr ◦ η =

ˆ t

0
Pt−r(u(r) ≺ η) ◦ ηdr.

Proof. Lemma 5.1.6 implies that for any i ≥ −1

∆i

(ˆ t

0
Pt−r(u(r) ≺ η)dr

)
=

ˆ t

0
∆iPt−r(u(r) ≺ η)dr.

Since for any 0 ≤ r ≤ t ≤ T we have that Pt−r(u(r) ≺ η)◦η is smooth (note
that η is smooth) and

n∑
i,j≥−1: |i−j|≤1

∆iPt−r(u(r) ≺ η)∆jη → Pt−r(u(r) ≺ η) ◦ η in S as n→∞

we concludeˆ t

0
Pt−r(u(r) ≺ η) ◦ ηdr =

ˆ t

0
lim
n→∞

n∑
|i−j|≤1

∆iPt−r(u(r) ≺ η)∆jηdr

= lim
n→∞

ˆ t

0

n∑
|i−j|≤1

∆iPt−r(u(r) ≺ η)∆jηdr

= lim
n→∞

n∑
|i−j|≤1

∆i

ˆ t

0
Pt−r(u(r) ≺ ξ)dr∆jη

=

ˆ t

0
Pt−r(u(r) ≺ η)dr ◦ η
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where the interchange of the limit and the integral is justified by dominated
convergence.

To represent the considered operator as an integral operator we define

vη(t, x; r, z) :=∑
k1,k2,k3∈Z2

e∗k(x)ek3(z)m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)η̂(k1)η̂(k2).

Before proving that this integral kernel indeed gives rise to the considered
operator, we need to prove a result concerning the summability of this kernel:

Lemma 5.1.8. For any 0 ≤ r ≤ t we have∑
k1,k2,k3∈Z2

m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)|η̂(k1)||η̂(k2)| <∞.

Proof. Let k′ ∈ Z2. Set k1+k2+k3 = k. Using proposition 3.2.9 we calculate∑
k1,k2,k3∈Z2

1k=k′m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)η̂(k1)η̂k2

≤
∑

k1,k2,k3∈Z2

1k=k′1|k3|≤|k2|1|k2|.|k2+k3|.|k2|1|k1|.|k2+k3|.|k1|Pt−r(k2 + k3)η̂(k1)η̂(k2).

Since η is smooth, its Fourier coefficients decay faster than any polynomial.
For an arbitrary number N ∈ N we may estimate the last sum - up to some
constant - by∑
k1,k2,k3∈Z2

1k=k′1|k3|<|k2|1|k1|.|k2+k3|.|k1|(1 + |k1|)−N (1 + |k2|)−2N

≤
∑

k1,k2,k3∈Z2

1k=k′1|k3|<|k2|1|k1|.|k2+k3|.|k1|(1 + |k1|)−N (1 + |k2|)−N (1 + |k3|)−N

≤
∑

k1∈Z2|k1|&|k′|

(1 + |k1|)−N
∑

k2,k3∈Z2

(1 + |k2|)−N (1 + |k3|)−N

.(1 + |k′|)−N+3

where we used that for a constant c > 0 chosen suitably∑
k1∈Z2 : |k1|&|k′|

(1 + |k1|)−N .
ˆ ∞
c|k′|

x(1 + x)−Ndx

.(1 + c|k′|)−N+3

.(1 + |k′|)−N+3
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provided N ∈ N is large enough. We then have for any K1,K2,K3 ∈ N the
uniform bounds∑
k1,k2,k3∈Z2 : |ki|≤Ki

m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k)|η̂(k1)||η̂(k2)|

≤
∑
k′∈Z2

∑
k1,k2,k3∈Z2 : |ki|≤Ki

1k=k′m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)|η̂(k1)||η̂(k2)|

.
∑
k′∈Z2

(1 + |k′|)−N+3 <∞.

again, if N is large enough.
From this we conclude the summability claim letting theKi’s tend to infinity.

The last lemma implies that vη is an admissible integral kernel (note
that the time-homogenity trivially holds).
Now we are finally able to prove:

Theorem 5.1.9. Let T > 0 and assume that u ∈ CTL
∞. Then for any

0 ≤ t ≤ T we haveˆ t

0
Pt−r(u(r) ≺ η)dr ◦ η =

ˆ t

0

ˆ
T2

vη(t, x; r, z)u(r, z)dzdr.

Proof. From proposition 5.1.7 we know thatˆ t

0
Pt−r(u(r) ≺ η)dr ◦ η =

ˆ t

0
Pt−r(u(r) ≺ η) ◦ ηdr.

For arbitrary k′ ∈ Z2 we calculate

F (Pt−r(u(r) ≺ η) ◦ η) (k′)

=
∑

k1,k2,k3∈Z2

m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)η̂(k1)η̂(k2)û(r, k3)

=Fx

(ˆ
T2

vη(t, x; r, z)u(r, z)dr

)
Since the above Fourier-coefficients are of rapid decay ( proposition 2.0.8)
we conclude

Pt−r(u(r) ≺ η) ◦ η =

ˆ
T2

vη(t, x, r, z)u(r, z)dz

which yields the assertion.

Setting

V ηu(t, x) :=

ˆ t

0

ˆ
T2

vη(t, x; r, z)u(r, z)dzdr

we are now able to write

B≺◦(u, η, η) = IV η(u).
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5.2 The Renormalized PAM

In this section, we want to provide the announced notion of solution to the
linear PAM with suitable driving noise, prove that such solutions exist and
that solutions to the renormalized approximate equations converge to this
solutions.
The formulation of the main result of this section is orientated towards the
respective result in [7, Chapter 5, 5.5]. See also [8, Chapter 5].
In a first step, we will introduce a framework of general noises for which we
can solve the PAM.
Then, in the next section, we will show that space white noise on the two-
dimensional torus T2 indeed fits within this framework.
Motivated by the heuristic analysis made in the introduction, we assume in
the following considerations - in order to be able to later set up a fixed point
iteration - that u ∈ CTC γ for some positive time T > 0.
In view of proposition 5.1.4 we consider the equation

u] = B≺�(u, η, η) +B�(u], η) + Ptu0.

Assuming a priori that u] ∈ CTC 2γ for some γ ∈ (2/3, 1), one easily sees
using the estimates for these operator (proposition 5.1.3) that the second
term is well-defined. Splitting the first operator into its two summands, we
note:

1. B≺�(u, η, η) ∈ L 3γ
T using the above regularity results for the appear-

ing operators

2. B≺◦(u, η, η) is not well-defined since B≺(u, η) ∈ CTC γ and 2γ− 2 6> 0

Thus we localized the singular behaviour of the SPDE in the termB≺◦(u, η, η).
We hope that after a suitable renormalization the troubling term yields a
well-defined operator.
As we will need to renormalize the singular operator with a sequence of
constants cn, we introduce the operator

Mtu := f ∗ u(t)

where f =
∑

k∈Z2 e∗k ∈ S ′ is a Schwartz distribution.
Provided that u is smooth in its spatial variables and c ∈ C we have

cMtu(x) = cu(t, x).

since M̂tu(k) = ĥ ∗ u(k) = ˆu(t)(k) for any k ∈ Z2 and we can apply propos-
ition 2.0.8.
Moreover note that if α ∈ R and u ∈ CTC α then Mtu(t) ∈ C α due to the
above Fourier computation, to be more precise, we have

‖Mtu‖Cα = ‖u(t)‖Cα .
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In the following we make a virtue out of the necessity of renormalization
and will start by defining a notion of enhanced noise for which we can solve
the PAM.

Definition 5.2.1. (Mild PAM-enhancement) Let γ ∈ (2/3, 1).
Let T > 0. We write (η, V ) ∈X γ(T ) if

1. η ∈ C γ−2 and (Vt)0<t≤T is a collection of bounded operators in L(L γ
t ; C 2γ−2)

such that s 7→ Vs is continuous in time on the interval (0, T ] in
L
(
L γ
T ,C

2γ
)

and IV ∈ L(L γ
T ,L

2γ−
T )

2. there are sequences (ηn)n≥0 in C∞ and (cn)n≥0 in C such that

ηn → η in C γ−2 as n→∞

and for all 0 < t ≤ T

I(V ηn − cnM)→ IV in L(L γ
T ,L

2γ−
T ) as n→∞.

We moreover endow the space X γ(T ) with the norm

‖(η, V )‖X γ(T ) := ‖η‖C γ−2 + ‖IV ‖L γ
T→L 2γ−

T

The distance induced by this will be denoted by dX γ(T ).
Finally, we write

X γ =
⋂
T>0

X γ(T )

Remark 5.2.2. Note that by assumption
(
ηn, V

η
n − cnI

)
n≥0 converges to

(η, V ) with respect to the distance dX γ(T ).

If (η, V ) ∈ X γ(T ) for T > 0 we will in the following often use the
notation

B≺�(u, η, η) := IV u

for u ∈ L γ
T .

The above notation is chosen to be reminiscent of the renormalized PAM
derived in [8, Chapter 5] written as

∂tu = ∆u+ u � ξ.

Here the term u � ξ is the renormalized product around which the approach
to the PAM in [8] settles.

Remark 5.2.3. In order to avoid awkward notation we will in the rest of
this section without loss of generality assume that IV ∈ L(L γ

T ,L
2γ
T ), i.e.

the codomain of IV is L 2γ
T instead of L 2γ−

T .
The crucial point of the regularity issues dealt with in the enhanced noise
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is that the regularity of the codomain of IV determines the regularity of u]

and if γ ∈ (2/3, 1)
B�(u], ξ), u ∈ L 2γ

T

is well defined since 2γ + γ − 2 > 0.
However, if u] ∈ L 2γ−

T the operator is still well-defined because there exists

ε > 0 such that 2γ − ε+ γ − 2 > 0 and u ∈ L 2γ−ε
T .

As we do not want to deal with this nuisance, we choose this convenient
simplification.

Proposition 5.2.4. Let T > 0 and assume that (η, V ) ∈X γ(T ).
Then for all 0 < T ′ ≤ T we have that (η, V |(0,T ′]) ∈X γ(T ′) and∥∥(η, V |(0,T ′])

∥∥
X γ(T ′)

≤ ‖(η, V )‖X γ(T ) .

Remark 5.2.5. Abusing the notation we write (η, V ) ∈X γ(T ′)

Proof. We first need to check that IV ∈ L(L 2γ
T ′ ,L

2γ
T ′ ). This, however,

follows immediately from the definition of the operator I.
Now let u ∈ L γ

T ′ . We define a function ū by

ū(t, x) = u(t, x) if t ∈ [0, T ′] and u(t, x) = u(T ′, x) else. (5.2.6)

where x ∈ T2 arbitrary.
One now readily checks that ū ∈ L 2γ

T and ‖ū‖L γ
T

= ‖u‖L γ

T ′
. This shows

‖IV ‖L γ

T ′→L 2γ

T ′
≤ ‖IV ‖L γ

T→L 2γ
T

which allows us to conclude.

The above framework now enables us to formulate a notion of solution
for the PAM. Motivated by proposition 5.1.5 we define:

Definition 5.2.7. Let T > 0 as well as γ ∈ (2/3, 1). Assume that (η, V ) ∈
X γ(T ). We say that u ∈ L γ

T is a (local) mild solution to the renormalized
PAM with noise (η, V ) and initial datum u0 ∈ C 2γ provided that u] =
u−B≺(u, η) satisfies

u] = B≺�(u, η, η) +B≺�(u, η, η) +B�(u], η) + Ptu0

If moreover (η, V ) ∈ X γ we call u ∈ L γ a (global) mild solution to the
renormalized PAM with noise (η, V ) provided that for any T > 0 u|[0,T ] is a
(local) mild solution to the renormalized PAM with noise (η, V ) ∈X γ(T ).
Finally, we call un a (local) approximate solution to the renormalized PAM

with noise (η, V ) ∈ X γ(T ) and initial data (u0n)n≥0 in C 2γ if u]n = un −
B≺(un, ηn) satisfies

u]n = B≺◦(un, ηn, ηn) +B≺�(un, ηn, ηn) +B�(u]n, ηn) + Ptu
0
n − cnIMun.

Similarly, we define global approximate solutions to the renormalized PAM.
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Assume that (η, V ) ∈ X γ(T ) and that un is a smooth approximate
solution to the renormalized PAM. Then by definition

u]n = B≺◦(un, ηn, ηn) +B≺�(un, ηn, ηn) +B�(u]n, ηn) + Ptu
0
n − cnIun

Noting that u]n = un −B≺(u, ηn) we obtain the equation

un = B≺(un, ηn) +B�(un, ηn) + Ptu
0
n − cnIun.

Since ηn is smooth we have by definition of B≺, B�

un(t) =

ˆ t

0
Pt−r(un(r)ηn − cnun(r))dr + Ptu

0
n

which is the mild formulation of the Cauchy problem

∂tun = ∆un + unηn − cnun on [0, T ]× T2 un(0, ·) = u0n(·).

We now are able to formulate the main result of this section:

Theorem 5.2.8. Let γ ∈ (2/3, 1) and assume that (η, V ) ∈ X γ. Let
moreover u0 ∈ C 2γ. Then the renormalized PAM with noise η has a unique
mild global solution u ∈ L γ

Moreover, the mild solutions depends Lipschitz-continuously on the initial
datum as well as the driving noise in the following sense:
Let T > 0 s well as M > 0 be a constant. Let u01, u

0
2 ∈ C 2γ two initial

conditions and (η1, V1), (η2, V2) ∈X γ two driving noises. Assume that∥∥u0i ∥∥C γ−2 + ‖(ηi, Vi)‖X γ(T ) ≤M

for i ∈ {1, 2}. Then, for the respective mild solution of the renormalized
PAM u1, u2, the following holds true:

‖u1 − u2‖L γ
T
.T,M

∥∥u10 − u20∥∥C γ−2 + dX γ(T )

(
(η1, V1), (η2, V2)

)
. (5.2.9)

From this we can derive an immediate corollary:

Corollary 5.2.10. Let γ ∈ (2/3, 1) and assume that (η, V ) ∈ X γ. Let
u0 ∈ C 2γ and assume that a sequence (u0n)n≥0 in C 2γ converges to u0 in
C 2γ as n tends to infinity.
Let (un)n≥0 a sequence of approximate solutions with initial conditions (u0n)n≥0.
Then

un → u ∈ L γ as n→∞.

Proof. The proof is a consequence of the Lipschitz-continuity on the initial
data of mild solutions to the renormalized PAM on the initial data as well
as the assumption on (u0n)n≥0 and on the approximate solutions.
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We break down the proof of theorem 5.2.8 in several steps:

Lemma 5.2.11. Let T > 0 as well as γ ∈ (2/3, 1). Assume that we have
(η1, V1), (η2, V2) ∈X γ(T ) and ‖(ηi, Vi)‖X γ(T ) ≤M for i ∈ {1, 2}. Moreover

assume that u1, u2 ∈ L γ
T such that ‖u1‖CTC γ , ‖u2‖CTC γ ≤ C. Then

‖B≺�(u1, η1, η1)−B≺�(u2, η2, η2)‖L γ
T

+ ‖B≺�(u1, η1, η1)−B≺�(u2, η2, η2)‖L 2γ
T

.C,M (1 + T )2 ‖u1 − u2‖CTC γ + (1 + T )2dX γ(T )

(
(η1, V1), (η2, V2)

)
.

Proof. We estimate

‖B≺�(u1, η1, η1)−B≺�(u2, η2, η2)‖L 2γ
T

= ‖IV1u1 − IV2u2‖L 2γ
T

≤‖IV1(u1 − u2)‖L 2γ
T

+ ‖(IV1 − IV2)u2‖L 2γ
T

≤‖IV1‖L γ
T→L 2γ

T
‖u1 − u2‖L γ

T
+ ‖IV1 − IV2‖L γ

T→L 2γ
T
‖u2‖L γ

T

≤M ‖u1 − u2‖L γ
T

+ CdX γ(T ) ((η1, V1), (η2, V2))

.M,C ‖u1 − u2‖L γ
T

+ dX γ(T ) ((η1, V1), (η2, V2))

Moreover

‖B≺�(u1, η1, η1)−B≺�(u2, η2, η2)‖L 2γ
T

≤ ‖B≺�(u1 − u2, η1, η1)‖L 2γ
T

+ ‖B≺�(u2, η1 − η2, η1)‖L 2γ
T

+ ‖B≺�(u2, η2, η1 − η2)‖L 2γ
T

. (1 + T )2
(
‖u1 − u2‖CTC γ ‖η1‖

2
C γ−2 + ‖u2‖CTC γ ‖η1 − η2‖C γ−2 ‖η1‖C γ−2 +

‖u2‖CTC γ ‖η2‖C γ−2 ‖η1 − η2‖C γ−2

)
.M,C (1 + T )2 ‖u1 − u2‖L γ

T
+ (1 + T )2dX γ(T ) ((η1, V1), (η2, V2))

This implies the claim.

Lemma 5.2.12. Let T > 0 and γ ∈ (2/3, 1) as well as (η, V ) ∈ X γ(T ),
u ∈ L γ

T and u0 ∈ C 2γ. Assume that u] ∈ L 2γ
T solves

u] = B≺�(u, η, η) +B≺�(u, η, η) +B�(u], η) + Ptu
0

Then ∥∥∥u]∥∥∥
L 2γ
T

.T ‖u‖L γ
T

+
∥∥u0∥∥

C 2γ + ‖(η, V )‖X γ(T ) .
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Proof. Let T ′ ≤ T . By assumption∥∥∥u]∥∥∥
L 2γ

T ′

≤‖B≺�(u, η, η)‖L 2γ

T ′
+ ‖B≺�(u, η, η)‖L 2γ

T ′
+
∥∥∥B�(u], η)

∥∥∥
L 2γ

T ′
+
∥∥Ptu0∥∥L 2γ

T ′

. ‖IV ‖L γ

T ′→L 2γ

T ′
‖u‖L γ

T ′
+ (1 + T ′)2 ‖η‖2C γ−2 ‖u‖CTC γ

+ (1 + T ′)
∥∥∥u] � η∥∥∥

CT ′C
2γ−2

+ T ′
∥∥u0∥∥

C 2γ

Now let 2ε > 0 such that 3γ − 2− 2ε > 0. We estimate∥∥∥u] � η∥∥∥
CT ′C

2γ−2
≤
∥∥∥u] � η∥∥∥

CT ′C
3γ−2−2ε

.
∥∥∥u]∥∥∥

CT ′C
2γ−2ε

‖η‖C γ−2

.
∥∥∥u]∥∥∥

L 2γ−2ε

T ′
‖η‖C γ−2

.T ′ε
∥∥∥u]∥∥∥

L 2γ

T ′
‖η‖C γ−2 .

We conclude∥∥∥u]∥∥∥
L 2γ

T ′

.
(
‖(η, V )‖X γ(T ) + (1 + T )2 ‖η‖C γ−2

)
‖u‖L γ

T
+ T

∥∥u0∥∥
C 2γ−2 + (1 + T )T ′ε

∥∥∥u]∥∥∥
L 2γ

T ′

Now for sufficiently small but fixed T ′, which we may depending only on
uniform constants and T , we derive∥∥∥u]∥∥∥

L 2γ

T ′
.T C

(
‖(η, V )‖X γ(T ) , ‖u‖L γ

T
,
∥∥u0∥∥

C 2γ

)
.

Recall that by τS we denote the time-shift of a function.
Considering τT

′
u] and using u](T ′) as initial datum instead of u0 we first

note that on the time interval [0, T − T ′] τT ′u] solves the equation

τT
′
u] = B≺�(τ

T ′u, η, η) +B≺�(τT
′
u, η, η) +B�(τT

′
u], η) + Ptu

](T ′).

We then obtain a similar estimates for
∥∥∥τT ′u]∥∥∥

L γ

T ′′
where 0 < T ′′ ≤ T ′ . In

view of proposition 3.1.15 we can now estimate∥∥∥u]∥∥∥
L 2γ

T ′+T ′′
.
∥∥∥u]∥∥∥

L 2γ

T ′
+
∥∥∥τT ′u]∥∥∥

L 2γ

T ′′

.TC
′
(
‖(η, V )‖X γ

T
, ‖u‖L γ

T
,
∥∥u0∥∥

C 2γ

)
.

Iterating this argument up to time T and again using proposition 3.1.15 -
note that the iteration terminates since T ′′ only needs to be smaller than T ′

if T ′ + T ′′ > T - the claim follows.
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Remark 5.2.13. Many of the subsequent results will be established by em-
ploying similar iterative arguments. To avoid cumbersome and rather lengthy
proofs, we will often refer to this technique by using the keywords ”by itera-
tion” and indicate how to establish the results on the ”macroscopic” interval
from the ”microscopic” intervals.

Next we will be concerned with the well-posedness of the equation of u]:

Lemma 5.2.14. Let γ ∈ (2/3, 1) and T > 0. Assume that (η, V ) ∈X γ(T ).
Then for initial data u ∈ CTC γ and u0 ∈ C γ the equation

u] = B≺�(u, η, η) +B≺�(u, η, η) +B�(u], η) + Ptu0

has a unique solution in L 2γ
T . Moreover, the solution depends Lipschitz-

continuously on the initial data in the following sense: Given M > 0 as well
as u10, u

2
0 ∈ C 2γ, u1, u2 ∈ L γ

T and (η1, V1), (η2, V2) ∈X γ(T ) such that

‖ui‖L γ
T

+ ‖(ηi, Vi)‖X γ(T ) +
∥∥u0i ∥∥C 2γ ≤M

for i ∈ {1, 2}, then∥∥∥u]1 − u]2∥∥∥
L 2γ
T

.T,M ‖u1 − u2‖L γ
T

+
∥∥u01 − u02∥∥C 2γ+dX γ(T )

(
(η1, V1), (η2, V2)

)
Proof. Let 0 < T ′ ≤ T . Define the space L 2γ

T ′ (u
0) := {v ∈ L 2γ

T ′ : v(0) = u0}.
Since L 2γ

T ′ (u
0) ⊂ L 2γ

T ′ is closed we conclude that - with the induced norm -

L 2γ
T ′ (u

0) is a Banach space. Next consider the map

Φ: L 2γ
T ′ (u

0)→ L 2γ
T ′ (u

0),

v 7→ B≺�(v, η, η) +B≺�(v, η, η) +B�(v, η) + Ptu
0.

Since by assumption 3γ − 2 > 0 for v ∈ L 2γ
T we conclude that B�(v, η) ∈

L 3γ
T is well defined and hence so is Φ.

We estimate

‖Φ(v1)− Φ(v2)‖L 2γ

T ′

= ‖B�(v1 − v2, η)‖L 2γ

T ′

.(1 + T ′) ‖(v1 − v2) � η‖CT ′C 2γ−2

using the Schauder estimate.
Let ε > 0 such that 3γ − 2− 2ε > 0. Then

‖Φ(v1)− Φ(v2)‖L 2γ

T ′

.(1 + T ′) ‖(v1 − v2) � η‖CT ′C 2γ−2

≤(1 + T ′) ‖(v1 − v2) � η‖CT ′C 3γ−2−2ε

.(1 + T ′) ‖v1 − v2‖L 2γ−2ε

T ′
‖η‖C γ−2

.(1 + T ′)T ′ε ‖η‖C γ−2 ‖v1 − v2‖L 2γ

T ′
.
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For small enough T ′ > 0, this map becomes a contraction and we obtain a
unique solution to the equation on the time interval [0, T ′] by Banach’s fixed
point theorem.
Iterating the process after adjusting the initial data -choosing τT

′
u] instead

of u0 as well as τT
′
u instead of u in a first step, then accordingly- and thus

also the space we obtain a function u] ∈ L 2γ
T after gluing the piecewise

solutions according to proposition 3.1.15.
By construction, this function is a solution to the considered equation.
Assume now that u]1, u

]
2 ∈ L 2γ

T are two solutions corresponding to the initial
data u1, u

0
1 and u2, u

0
2 as well as driving terms (η1, V1), (η2, V2) which satisfy

the above stated bound.
By Lemma we know that

∥∥∥u]2∥∥∥
L 2γ
T

≤ C(T,M) for a constant C(T,M) > 0.

We have∥∥∥u]1 − u]2∥∥∥
L 2γ

T ′

≤‖B≺�(u1, η1, η1)−B≺�(u2, η2, η2)‖L 2γ
T ′

+ ‖B≺�(u1, η1, η2)−B≺�(u2, η2, η2)‖L 2γ

T ′

+
∥∥∥B�(u]1, η1)−B�(u]2, η2)

∥∥∥
L 2γ

T ′
+
∥∥Ptu01 − Ptu02∥∥L 2γ

T ′

.T ‖B≺�(u1, η1, η1)−B≺�(u2, η2, η2)‖L 2γ
T

+ ‖B≺�(u1, η1, η2)−B≺�(u2, η2, η2)‖L 2γ
T

+
∥∥∥B�(u]1, η1)−B�(u]2, η2)

∥∥∥
L 2γ

T ′
+
∥∥Ptu01 − Ptu02∥∥L 2γ

T
.

The first two term may estimate according to the last lemma, the last term
can be estimated using the Schauder estimate. Moreover, we may estimate
for a suitable ε > 0∥∥∥B�(u]1, η1)−B�(u]2, η2)

∥∥∥
L 2γ

T ′

≤
∥∥∥B�(u]1 − u

]
2, η1)

∥∥∥
L 2γ

T ′
+
∥∥∥B�(u]2, η2 − η1)

∥∥∥
L 2γ

T ′

.(1 + T ′)T ′ε
∥∥∥u]1 − u]2∥∥∥

L γ

T ′
‖η1‖C γ−2 +

∥∥∥u]2∥∥∥
L 2γ

T ′
‖η1 − η2‖C γ−2

.(1 + T )T ′εM
∥∥∥u]1 − u]2∥∥∥

L 2γ

T ′
+ C(T,M) ‖η1 − η2‖C γ−2 .

For small enough T ′ ≤ T we obtain∥∥∥u]1 − u]2∥∥∥
L 2γ

T ′
.T,M ‖u1 − u2‖L γ

T
+
∥∥u01 − u02∥∥C 2γ+dX γ(T )

(
(η1, V1), (η2, V2)

)
.

Using proposition 3.1.15, which allows us to estimate ‖·‖L 2γ
T

in terms of

‖·‖L 2γ
S

and
∥∥τS ·∥∥

L 2γ
T−S

for 0 < S ≤ T , we obtain the desired result by an

iteration argument.
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Having gathered these results we are now finally able to prove the the-
orem:

Proof. (of Theorem) Let T > 0 arbitrary. By the above Lemma for any
u ∈ L γ

T , u0 ∈ C 2γ there exists a function Γ(u, u0, η) ∈ L 2γ
T for which we

have

Γ(u, u0) = B≺�(u, η, η) +B≺�(u, η, η) +B�(Γ(u, u0), η) + Ptu
0. (5.2.15)

Let 0 < T ′ ≤ T . Consider the linear map

Ψ :L γ
T ′ → L γ

T ′

v 7→ B≺(v, ξ) + Γ(v, u0).

This is a well-defined, bounded operator since B≺(v, ξ) ∈ L γ
T by prop and

L 2γ
T ⊂ L 2γ

T ′ ⊂ L γ
T ′ are continuous embeddings. We estimate for a suitable

ε > 0

‖Ψ(v1)−Ψ(v2)‖L γ

T ′

≤‖B≺(v1 − v2, η)‖L γ

T ′
+
∥∥Γ(v1, u

0)− Γ(v2, u
0)
∥∥

L γ

T ′

.(1 + T ′) ‖(v1 − v2) ≺ η)‖CT ′C γ−2 + T ′γ/2
∥∥ΓT ′(v1, u

0)− ΓT ′(v2, u
0)
∥∥

L 2γ

T ′

.(1 + T ′) ‖v1 − v2‖CT ′L∞ ‖η‖C γ−2 + T ′γ/2 ‖v1 − v2‖L γ

T ′

.(1 + T ′) ‖η‖C γ−2 T
′ε ‖v1 − v2‖L γ

T ′
+ T ′γ/2 ‖v1 − v2‖L γ

T ′
.

For small enough T ′ we have that Ψ is a contraction and hence Banach’s
fixed point theorem yields a unique fixed point.
An iteration argument yields existence up to time T and hence there is a
function u ∈ L γ

T such that u] := u−B≺(u, η) = Γ(u, u0), i.e.

u] = B≺�(u, η, η) +B≺�(u, η, η) +B�(u], η) + Ptu
0.

Consequently, u is a mild solution of the renormalized PAM with noise (η, V )
and since T was arbitrary (and hence can be chosen arbitrarily throughout
the above calculation) we conclude that there exists a mild solution u ∈ L γ

to the PAM with noise (η, V ).
Next, let T > 0 and u01, u

0
2 ∈ C 2γ and (η1, V1), (η2, V2) ∈X γ such that∥∥u0i ∥∥C 2γ + ‖(ηi, Vi)‖X γ(T ) ≤M. (5.2.16)

for i ∈ {1, 2}.Let u1, u2 ∈ L γ
T the solutions according to these initial data

and driving noises.
Setting u]i = ui −B≺(ui, ηi) for i ∈ {1, 2} we know by Lemma that∥∥∥u]1 − u]2∥∥∥

L 2γ
T

.T,M ‖u1 − u2‖L γ
T

+
∥∥u01 − u02∥∥C 2γ + dX γ(T ) ((η1, V1), (η2, V2)) .
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Moreover, we can estimate

‖B≺(u1, η1)−B≺(u2, η2)‖L γ
T

≤‖B≺(u1 − u2, η1)‖L γ
T

+ ‖B≺(u2, η1 − η2‖L 2γ
T

.(1 + T ) ‖u1 − u2‖L∞ ‖η1‖C γ−2 + (1 + T ) ‖u2‖L γ
T
‖η1 − η2‖C γ−2

.M (1 + T )T ε ‖u1 − u2‖L γ
T

+ dX γ(T ) ((η1, V1), (η2, V2)) .

Putting both estimates together we obtain

‖u1 − u2‖L γ
T
≤ ‖B≺(u1, η1)−B≺(u2, η2)‖+

∥∥∥u]1 − u]2∥∥∥
L 2γ
T

.T,M (T ε + T γ/2) ‖u1 − u2‖L γ
T

+
∥∥u01 − u02∥∥C 2γ + dX η(T ) ((η1, V1), (η2, V2))

from which the desired result follows again from an iteration argument.

5.3 Enhanced White Noise

Finally, in order to be able to solve the renormalized PAM with white noise
as driving term, we need to show that indeed white noise fits within the
framework of enhanced noise defined above.
Motivated by the results of the penultimate section, for r > 0 we want study
the operator

V ξ
r u :=

ˆ r

0
Pr−s(u(s) ≺ ξ) ◦ ξdr.

We hope that an anlysis of this operator provides us with a way to construct
operators (Vt)t>0 such that Vt ∈ L

(
L γ
t ,C

2γ−2) such that (η, V ) ∈ X γ(T )
almost surely for any T > 0.
First, we want to find a representation of V ξ using an integral kernel. Since
in this case the noise is not smooth, we cannot directly apply theorem 5.1.9
but rather have to slightly alter the above made arguments in the following.
Like above, setting k = k1 + k2 + k3 we define

vξ(t, x; r, z)

:=
∑

k1,k2,k3∈Z2

e∗k(x)ek3(z)m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)ξ̂(k1)ξ̂(k2).

Lemma 5.3.1. For any 0 ≤ r < t we have∑
k1,k2,k3∈Z2

m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)|ξ̂(k1)||ξ̂(k2)| <∞.

Especially, vξ is an admissible integral kernel.
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Proof. Recall that the Fourier transform of ξ is of at most polynomial
growth, hence there is a natural number N ∈ N such that for any k ∈ Z2

we have |ξ̂(k)| . (1 + |k|)N . Furthermore note that Pt−r is of rapid decay
provided that 0 ≤ r < t.
Set k1 + k2 + k3 = k and let k′ ∈ Z2. For an arbitrary M ∈ N we obtain∑
k1,k2,k3∈Z2

1k=k′m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)|ξ̂(k1)||ξ̂(k2)|

.
∑

k1,k2,k3∈Z2

1k=k′1|k3|<|k2|1|k2|.|k2+k3|.|k2|1|k1|.|k2+k3|.|k1|×

(1 + |k2 + k3|)−3M (1 + |k1|)N (1 + |k2|)N

.
∑

k1 : |k′|.|k1|

∑
k2,k3∈Z2

(1 + |k1|)−M (1 + |k2|)−M (1 + |k3|)−M (1 + |k1|)N (1 + |k2|)N

.(1 + |k′|)N+2−M

for sufficiently large M where we used that

(1 + |k2 + k3|)−M ≤ (1 + c|k2|)−M . (1 + |k2|)−M ≤ (1 + |k3|)−M

and analogous estimates for the other terms. Now for large enough M ∈ N
we have for any K1,K2,K3 ∈ N a uniform bound∑
k1,k2,k3∈Z2 : |ki|≤Ki

m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k)|ξ̂(k1)||ξ̂(k2)|

≤
∑
k′∈Z2

∑
k1,k2,k3∈Z2 : |ki|≤Ki

1k=k′m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)|ξ̂(k1)||ξ̂(k2)|

.
∑
k′∈Z2

(1 + |k′|)−M <∞.

This allows us to conclude.
Since vξ clearly is homogeneous in time the admissibility follows immedi-
ately.

We now can prove:

Proposition 5.3.2. Let 0 < γ < 1 as well as T > 0 and u ∈ CTC γ. Let
0 ≤ r < t ≤ T we have

Pt−r(u(r) ≺ ξ) ◦ ξ =

ˆ
T2

vξ(t, x; r, z)u(r, z)dz.

Proof. For any 0 ≤ r < t we know that Pt−r(u(r) ≺ ξ) ◦ ξ is a smooth
function .
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Provided 0 ≤ r < t we may conclude that for any k′ ∈ Z2

F
(
Pt−r(ξ ≺ u(r)) ◦ ξ

)
(k′)

=
∑

k1,k2,k3∈Z2

1k1+k2+k3=k′m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)ξ̂(k1)ξ̂(k2)û(r, k3)

=F

(ˆ
T2

vξ(t, x; r, z)u(r, z)dz

)
(k′)

Since the Fourier-coefficients with respect to x are of rapid decay for 0 ≤
r < t ≤ T and thus equality of the Fourier coefficients implies equality of
the functions and we may conclude

(Pt−r(u(r) ≺ ξ) ◦ ξ) (x) =

ˆ
T2

vξ(t, x, r, z)u(r, z)dz

Thus we derived an expression for the operator B≺◦(·, ξ, ξ) that can be
-at least in principle - treated with the methods we obtained in Chapter 4.
However, we have the following result:

Proposition 5.3.3. The kernel E [v(t, x; r, z)] admits singular behaviour, to
be more precise, for any t > 0

ˆ t

0

ˆ
T2

E
[
vξ(t, x; r, z)

]
dzdr =∞

Proof. Fort 0 ≤ r < t we calculate

E
[
vξ(t, x; r, z)

]
=E

 ∑
k1,k2,k3∈Z2

e∗k(x)ek3(z)m≺(k3, k2)m◦(k1, k2 + k3)Pr−s(k2 + k3)ξ̂(k1)ξ̂(k2)


=

∑
k1,k2,k3∈Z2

e∗k(x)ek3(z)m≺(k3, k2)m◦(k1, k2 + k3)Pr−s(k2 + k3)E
[
ξ̂(k1)ξ̂(k2)

]
=

∑
k1,k2,k3∈Z2

e∗k(x)ek3(z)m≺(k3, k2)m◦(k1, k2 + k3)Pr−s(k2 + k3)1k1+k2=0

=
∑

k,k′∈Z2

e∗k′(x)ek′(z)m≺(k′, k)m◦(k, k + k′)Pr−s(k + k′).

where the interchange of the expectation and the sums is justified by the
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Fubini-Tonelli theorem since∑
k1,k2,k3

E
[
m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)|ξ̂(k1)ξ̂(k2)|

]
≤

∑
k1,k2,k3∈Z2

m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)E
[
|ξ̂(k1)2

] 1
2
E

[
ξ̂(k2)|2

] 1
2

≤
∑

k1,k2,k3∈Z2

m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3) <∞

due to a slight modification of the proof of lemma 5.3.1.
We considerˆ

T2

E [v(t, x; r, z)] dz

=

ˆ
T2

∑
k,k′∈Z2

e∗k′(x)ek′(z)m≺(k′, k)m◦(k, k + k′)Pt−r(k + k′)dz

=
∑

k,k′∈Z2

e∗k′(x)m≺(k′, k)m◦(k, k + k′)Pt−r(k + k′)

ˆ
T2

ek′(z)dz

=
∑
k∈Z2

m≺(0, k)m◦(k, k)Pt−r(k)

=
∑

k∈Z2 : 1.|k|

e−(t−r)|k|
2
.

Here, the interchange of the sum and integral is justified by the Fubini-
Tonelli theorem and the above estimate. We conclude

ˆ t

0

∑
k∈Z2 : 1.|k|

e−(t−r)|k|
2
dr

=
∑

k∈Z2 : 1.|k|

ˆ t

0
e−(t−r)|k|

2
dr

=
∑

k∈Z2 : 1.|k|

1− et|k|2

|k|2
=∞.

which proves the assertion.

The last proposition especially implies that the operator V ξ is singular.
The strategy to show that we can enhance white noise is as follows:
First we will prove that after a suitable renormalization the singular operator
in fact is well-behaved.+
Then we will show that smooth approximations of the noise give rise to
integral kernels that - after a renormalization - converge to the renormalized

58



operator in a convenient topology.
Since this renormalization will not consist of sequence of constant but rather
a sequence of (deterministic) functions, we will in a next step show that
these deterministic functions can be renormalized with suitable sequence of
constants thus proving the desired result.
The diverging integral motivates the definition of the following renormalized
kernel :

rξ(t, x; r, z) := vξ(t, x; r, z)− E
[
vξ(t, x; r, z)

]
The random integral operator defined by this kernel will be denoted by Rξ.
In order to being able to handle the kernel more easily in the upcoming
computations, we set

b(t, x; r; k3)

:=
∑

k1,k2∈Z2

e∗k1+k2+k3(x)m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)ξ̂(k1)ξ̂(k2).

In the proof of proposition 5.3.1 we provided the estimate∑
k1,k2∈Z2

m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)|ξ̂(k1)||ξ̂(k2)| .N
1

(1 + |k3|)N

for any k3 ∈ Z2, 0 ≤ r < t ≤ T and N ∈ N.
Using this, we may rewrite the kernel as

rξ(t, x, r, z) =
∑
k3∈Z2

e∗k3(z)b(t, x, r; k3)

due to an application of the Fubini Tonelli theorem.
We moreover use the abbreviation

b̃(t, x; r; k3) := b(t, x; r; k3)−E [b(t, x; r; k3)] .

Lemma 5.3.4. Let 0 ≤ r < t ≤ T . For the double dyadic blocks of the
renomarlized kernel the following holds true:

∆ir
ξ∆j(t, x; r, z)

=
∑
k3∈Z2

ek3(z)ρj(k3)∆ib̃(t, x; r; k3)

=
∑
k3∈Z2

ek3(z)ρj(k3) (∆ib(t, x; r; k3)−E [∆ib(t, x; r; k3)])

Proof. To obtain the desired results one needs perform multiple applications
of the Fubini-Tonelli theorem. These are justified by the bounds we derived
for the appearing sums in the above. Moreover note that for j ≥ −1 and
k3 ∈ Z2

∆jE [b(t, x; r, k3)] = E [∆jb(t, x; r, k3)]

which also follows from these arguments.
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Lemma 5.3.5. 1. Let γ ∈ (12 , 1). Then there is κ ∈ [0, 1) such that for
sufficiently large p > 2 we have

rξ ∈ Xγ,2γ−2+d/p;pκ .

2. Moreover, there are numbers 0 < κ < κ′ numbers δ > 0 such that

rξ ∈ Xγ,2γ−2+d/p;pκ′,δ .

Proof. Let T > 0. For arbitrary 2 < p < ∞ we first note that, due to
Gaussian hypercontractivity [11, Chapter 3, Theorem 3.50], we have

E
[
|∆ir

ξ∆j(t, x; r, z)|p
] 1
p
.p E

[
|∆ir

ξ∆j(t, x; r, z)|2
] 1

2
.

for 0 ≤ r < t ≤ T . Moreover, note that∥∥∥∥E [|∆ir
ξ∆j(t, x; r, z)|2

] 1
2

∥∥∥∥
L1
z

.

∥∥∥∥E [|∆ir
ξ∆j(t, x; r, z)|2

] 1
2

∥∥∥∥
L2
z

which follows from Jensen’s inequality.
In the following we set k := k1 + k2 + k3, k

′ := k′1 + k′2 + k3. Plancheral’s
theorem yields∥∥∥∥E [|∆ir

ξ∆j(t, x; r, z)|2|
] 1

2

∥∥∥∥2
L2
z

=E

ˆ
T2

∣∣∣∣∣∣
∑
k3∈Z2

e∗k3(z)ρj(k)∆ib̃(t, x; r; k3)

∣∣∣∣∣∣
2

dz


=
∑
k3∈Z2

ρj(k3)
2
E

[
|∆ib̃(t, x; r, z)|2

]
=
∑
k3∈Z2

ρj(k3)
2Var [∆ib(t, x; r; k3)]

=
∑
k3∈Z2

ρj(k3)
2

∑
k1,k′1,k2,k

′
2∈Z2

ρi(k)ρi(k
′)e∗k(x)e∗k′(x)m≺(k2, k3)m≺(k′2, k3)×

m◦(k1, k2 + k3)m◦(k
′
1, k
′
2 + k3)Pt−r(k2 + k3)Pt−r(k

′
2 + k3)Cov

[
ξ̂(k1)ξ̂(k2), ξ̂(k

′
1)ξ̂(k

′
2)
]
.

Now Wick’s theorem [11, Chapter 3, Theorem 1.28] implies

Cov
[
ξ̂(k1)ξ̂(k2), ξ̂(k

′
1)ξ̂(k

′
2)
]

= 1k1+k′1=01k2+k′2=0 + 1k1+k′2=01k′1+k2=0.

(5.3.6)
We split the following calculations in two parts corresponding to the two
summands in the equation (5.3.6).In the following, the constant c may
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change from line to line.
Using proposition 3.2.9, the first sum can be bounded as follows:∑

k1,k2,k3∈Z2

ρj(k3)
2ρi(k)ρi(k

′)m≺(k3, k2)
2m◦(k1, k2 + k3)m◦(k1, k2 − k3)×

Pt−r(k2 + k3)Pt−r(k2 − k3)

≤
∑

k1,k2,k3∈Z2

ρj(k3)
2ρi(k)ρi(k

′)1|k3|<|k2|1|k2|.|k2+k3|.|k2|1|k1|.|k2+k3|.|k1|×

1|k1|.|k2−k3|.|k1|e
−(t−r)|k2+k3|2e−(t−r)|k2−k3|

2

.
∑

k1 : |k1|&max(2i,2j)

∑
k2,k3∈Z2

ρj(k3)ρi(k)ρi(k
′)e−2(t−r)c|k1|

2

.22i22j
∑

k1 : |k1|&max(2i,2j)

e−(t−r)2c|k1|
2

.22i22j(t− r)−1e−(t−r)c22ie−(t−r)c22j

where we used that∑
k : |k|&max(2i,2j)

e−(t−r)2c|k|
2
.
ˆ ∞
c′max(2i,2j)

xe−(t−r)2cx
2
dx

. (t− r)−1e−(t−r)2cmax(2i,2j)2

≤ (t− r)−1e−(t−r)c22ie−(t−r)c22j .

For the second sum we note:∑
k1,k2,k3∈Z2

ρj(k3)
2ρi(k)ρi(k

′)m≺(k3, k2)m≺(k3, k1)m◦(k1, k2 + k3)×

m◦(k2, k1 − k3)Pt−r(k2 + k3)Pt−r(k1 − k3)

.
∑

k1,k2,k3∈Z2

ρj(k3)
2ρi(k)ρi(k

′)1|k3|<|k2|1|k2|.|k2+k3|.|k2|1|k3|<|k1|1|k1|.|k1−k3|.|k1|×

1|k1|.|k2+k3|.|k1|1|k2|.|k1−k3|.|k2|Pt−r(k2 + k3)Pt−r(k1 − k3)

.
∑

k1∈Z2 : |k1|&max(2i,2j)

∑
k2,k3∈Z2

ρ2j (k3)ρi(k)ρi(k
′)e−(t−r)2c|k1|

2

.22i22j(t− r)−1e−(t−r)c22ie−(t−r)c22j

by the same calculations carried out above.
We hence have for 0 ≤ r < t ≤ T∥∥∥E [|∆ir

ξ∆j(t, x; r, z)|2
]∥∥∥2

L2
z

. 22i22j(t− r)−1e−(t−r)c22ie−(t−r)c22j .

Thus we may conclude∥∥∥∥E [|∆ir
ξ∆j(t, x; r, z)|2

] 1
2

∥∥∥∥
L1
zL
∞
x

. (t− r)−
1
2 2ie−(t−r)c2

i
2je−(t−r)c2

2j
.
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Finally we consider∑
i,j≥−1

2
i(2γ−2+ 2

p
)
2−jγ

∥∥∥E [|∆iv∆j(t, x; r, z)|p]
1
p

∥∥∥
L1
zL
∞
x

.
∑
i,j≥−1

2
i(2γ−2+ 2

p
)
2−jγ2i2je−(t−r)c2

2i
e−(t−r)c2

2j
(t− r)−

1
2

.(t− r)−
1
2

ˆ ∞
−1

2
x(2γ−1+ d

p
)
e−(t−r)c2

2x
dx

ˆ ∞
−1

2x(1−γ)e−(t−r)c2
2x

dx

The transformation x 7→ (t − r)
1
2 2x in the both integral leads -up to a

constant- to

(t− r)−
1
2

ˆ ∞
0

(t− r)−
1
2
(2γ−1+ 2

p
)
x
2γ−2+ 2

p e−cx
2
dx

ˆ ∞
0

(t− r)−
1
2
(1−γ)x−γ+εe−cx

2
dx

.(t− r)−
1
2
(γ+1+ 2

p
)

where the integrals are finite provided that γ > 1
2−

1
p . If moreover γ < 1− 2

p

we have that γ + 1 + 2
p < 2. Setting κ = (γ + 1 + 2

p)/2, we conclude

rξ ∈ Xγ−ε,2γ−2;p
κ (T ) for any γ ∈ (1/2, 1) which can be guaranteed by choos-

ing p sufficiently large.
It remains to prove the second assertion. Again by Gaussian hypercon-
tractivity we have respectively

E

[
|∆ir

ξ∆j(t, x; r, z)−∆ir
ξ∆j(s, x; r, z)|p

] 1
p

.pE

[
|∆ir

ξ∆j(t, x; r, z)−∆ir
ξ∆j(s, x; r, z)|2

] 1
2

for 0 ≤ r < s ≤ t ≤ T . In order to obtain the desired result we need to
estimate∥∥∥∥E [|∆ir

ξ∆j(t, x; r, z)−∆ir
ξ∆j(s, x; r, z)|2

] 1
2

∥∥∥∥2
L2
z

=

∥∥∥∥∥∥∥E
|∑
k3∈Z2

ρj(k3)e
∗
k3(z)

(
∆ib̃(t, x; r; k3)− b̃(s, x; r; k3)

)
|2
 1

2

∥∥∥∥∥∥∥
2

L2
z

=
∑
k3∈Z2

ρj(k3)
2
E

[
|b̃(t, x; r; k3)− b̃(s, x; r; k3)|2

]
=
∑
k3∈Z2

ρj(k3)
2Var [b(t, x; r; k3)− b(s, x; r; k3)]

for 0 ≤ r < s ≤ t ≤ T .
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Since

b(t, x; r; k3)− b(s, x; r; k3)

=
∑

k1,k2∈Z2

e∗k(x)m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)ξ̂(k1)ξ̂(k2)

−
∑

k1,k2∈Z2

e∗k(x)m≺(k3, k2)m◦(k1, k2 + k3)Ps−r(k2 + k3)ξ̂(k1)ξ̂(k2)

=
∑

k1,k2∈Z2

e∗k(x)m≺(k3, k2)m◦(k1, k2 + k3) (Pt−r(k2 + k3)− Ps−r(k2 + k2)) ξ̂(k1)ξ̂(k2)

the above expression leads to sums being almost identical to the one we dealt
with in the proof of the first part with the sole exception that Pt−r(k2 +
k3)Pt−r(k

′
2 + k3) is replaced by(

Pr−s(k2 + k3)− Pt−r(k2 + k3)
)(
Ps−r(k

′
2 + k3)− Pt−r(k′2 + k3)

)
. (5.3.7)

Noting that for arbitrary 0 ≤ a ≤ b and any δ ∈ (0, 1/2) the inequality

1− e−(b−a)x ≤ (b− a)δxδ

holds true for any x ≥ 0 one concludes that (5.3.7) is -up to a constant -
bounded by

(t− s)2δ|k2 + k3|δ|k′2 + k3|δe−(s−r)(|k2+k3|
2+|k′2+k3|2).

Since for each k3 ∈ Z2 we have for changing constants c, c′∑
k1∈Z2

1|k1|.|k3||k1|
2δe−(s−r)2c|k1|

2
.
ˆ ∞
c′|k3|

x1+2δe−(s−r)c2x
2
dx

. (s− r)−(1+δ)e−(s−r)c|k3|2

we can put forward essentially the same computation like in proof of the
first statement, i.e. invoking Wick’s theorem etc. and end up with∑

i,j≥−1
2
i(2γ−2+ 2

p
)
2−jγ

∥∥∥E [|∆ir
ξ∆j(t, x; r, z)−∆ir

ξ∆j(s, x; r, z)
∣∣∣p] 1p∥∥∥

L1
zL
∞
x

.(t− s)δ(s− r)−
1
2
(1+γ+δ+ 2

p
)
.

for all γ ∈ (1/2, 1) after possibly haven chosen p sufficiently large. Since we
may choose p > 1 arbitrarily large, we can choose for a given γ ∈ (1/2, 1) the
constant δ > 0 such that 1+γ+δ+2/p < 2. Setting κ′ = (1+γ+δ+2/p)/2
the assertion follows:

Corollary 5.3.8. For any T > 0 The operator

Rξ : CTC γ → CTC 2γ−2

is well-defined and bounded.
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Proof. This follows immediately from the last lemma combined with corol-
lary 4.2.9.

Next we want to show that the operator Rξ is the limit of suitably renor-
malized kernels of smooth approximations of the white noise.
In order to show this, we first need to choose a family of smooth approxim-
ations:
Let φ a smooth mollifier on R2, i.e. a symmetric function φ ∈ S (R2) such
that φ ≥ 0 and

´
R2 φ(x)dx = 1. Set φn(·) := n2φ(n·) and define ξn := φn ∗ ξ.

The smooth approximations enjoy the following properties:

Proposition 5.3.9. Let k ∈ Z2. Then

ξ̂n(k) = FR2φ

(
k

n

)
ξ̂(k). (5.3.10)

Proof. We calculate

ξ̂n(k) =
∑
k′∈Z2

F
(
〈ξ, n2φ(n(x+ 2πk′ − ·))〉

)
(k)

=
∑
k′∈Z2

ξ̂(k)F (n2φ(n(x+ 2πk′)(k)

=ξ̂(k)
∑
k′∈Z2

ˆ
T2

ek(x)n2φ(n(x+ 2πk′))dx

=ξ̂(k)
∑
k′∈Z2

ˆ
T2

ek+2πk′(x)n2φ(n(x+ 2πk′))dx

=ξ̂(k)

ˆ
R2

ek(x)n2φ(nx)dx

=ξ̂(k)FR2φ

(
k

n

)
where we used dominated convergence to combine the sum and the integral
to an overall integration over R2.

Corollary 5.3.11. For k1, k2 ∈ Z2 we have

E

[
ξ̂n(k1)ξ̂(k2)

]
= 1k1+k2=0Fφ

(
k1
n

)
Fφ

(
k2
n

)
Proof. This is an immediate consequence of the last proposition.

Recall that in theorem 5.1.9 we associated an integral kernel vηto each
smooth noise η. We set rξn := vξn −E

[
vξn
]
.
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Lemma 5.3.12. Let γ ∈ (1/2, 1). Then there is p > 2 such that for any
T > 0

rξn → rξ in Xγ,2γ−2+d/p;p(T ). (5.3.13)

Proof. By definition

rξ − rξn = vξ(t, x; r, z)− vξn(t, x, r, z)−E
[
vξ(t, x; r, z)− vξn(t,x;r,z)

]
.

(5.3.14)
Using Gaussian hypercontractivity, we obtain

E

[
|∆ir

ξ∆j(t, x; r, z)−∆ir
ξn∆j(t, x; r, z)|p

] 1
p

.pE

[
|∆ir

ξ∆j(t, x; r, z)−∆ir
ξn∆j(t, x; r, z)|2

] 1
2
.

Noting that if we set k = k1 + k2 + k2 we have

∆ir∆
ξ
j(t, x; r, z)−∆ir∆

ξn
j (t, x; r, z)

=
∑
k3∈Z2

ek3(z)ρj(k3)
∑

k1,k2∈Z2

e∗k(x)ρi(k)m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)ξ̂(k1)ξ̂(k2)

−
∑
k3∈Z2

ek3ρj(k3)(z)
∑

k1,k2∈Z2

e∗k(x)ρi(k)m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)ξ̂n(k1)ξ̂n(k2)

=
∑
k3∈Z2

ek3(z)ρi(k3)
∑

k1,k2∈Z2

(
e∗k(x)ρi(k)m≺(k3, k2)m◦(k1, k2 + k3)Pt−r(k2 + k3)×

(
1−FR2φ

(
k1
n

))(
1−FR2

(
k2
n

))
ξ̂(k1)ξ̂(k2)

)
where we used proposition 5.3.9. We calculate∥∥∥E [∆ir

ξ∆j(t, x; r, z)−∆ir
ξn∆j(t, x; r, z)

]∥∥∥
L1
z

.
∥∥∥E [∆ir

ξ∆j(t, x; r, z)−∆ir
ξn∆j(t, x; r, z)

]∥∥∥
L2
z

.
∑
k3∈Z2

ρj(k)
∑

k1,k′1,k2,k
′
2∈Z2

ρi(k)ρi(k
′)e∗k(x)e∗k′(x)m≺(k2, k3)m≺(k′2, k3)×

m◦(k1, k2 + k3)m◦(k
′
1, k
′
2 + k3)Pt−r(k2 + k3)Pt−r(k

′
2 + k3)

×
(

1−FR2

(
k1
n

))(
1−FR2

(
k′1
n

))(
1−FR2

(
k2
n

))(
1−FR2

(
k′2
n

))
×

Cov
[
ξ̂(k1)ξ̂(k2), ξ̂(k

′
1)ξ̂(k

′
2)
]
.

Recall that
sup
x∈R2

FR2φ(x) <∞, FR2φ(0) = 1.
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In view of the proof of lemma 5.3.5 the last sum is - up to a constant -
bounded by

1

(t− r)1/2
2i2je−(t−r)c2

2i
e−(t−r)c2

2j

and like above we may conclude for sufficiently large p and suitable κ ∈ [0, 1)

∑
i,j≥−1

2−jγ2i(2γ−2+d/p))
∥∥∥∥E [|∆ir

ξ∆j(t, x; r, z)−∆ir
ξn∆j(t, x; r, z)|p

] 1
p

∥∥∥∥
L1
zL
∞
z

.(t− r)−κ.

Since this is integrable against r on the intervall [0, t) we can apply the
dominated convergence theorem to conclude that rξn converges to rξ in
X
γ,2γ−2+2/p(T ) for any T > 0 as n tends to infinity.

Corollary 5.3.15. For any T > 0 and γ ∈ (2/3, 1)

Rξn → Rξ in L(L γ
T ,L

2γ−2
T ) as n→∞ in probability.

Proof. This follows from the last lemma as well as theorem 4.2.10.

As already mentioned above, E
[
vξn
]

is not a constant and thus not a
suitable renormalization in terms of the enhanced notion of noise we intro-
duced above.
The aim of what follows is to correct this flaw and show, that we can also
renormalize with a sequence of constants.
The proofs that follow will be structurally very similar. To avoid too lengthy
arguments, we will spell out all details only in the first proof and indicate
what to use in the later ones.
Before we proceed we need to introduce some notation:
We set

cn :=
∑
k∈Z2

m≺(0, k)
1

|k|2
FR2φ

(
k2
n

)2

and for u ∈ L γ
t we define

Wn
t u :=

ˆ t

0

ˆ
T2

E

[
vξn(t, x; r, z)

]
u(r, z)dzdr

as well as

Tn1,tu :=

ˆ t

0

ˆ
T
E

[
vξ(t, x, r, z)

]
(u(r, z)− u(t, z))dzdr

and

Tn2,tu(x) :=

ˆ
T2

u(t, z)

ˆ t

0
E

[
vξn(t, x; r, z)

]
drdz − cnu(t, x).
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We clearly have
Tn1,t + Tn2,t = W ξn

t − cnMt.

The ultimate goal of the following is to prove thatWn,t converges in L(L γ ,C 2γ−2)
for any t > 0.
Recall that

E

[
vξ(t, x; r, z)

]
=
∑
k∈Z2

ek(z)e
∗
k(x)

∑
k′∈Z2

m≺(k, k′)m◦(k, k + k′)Pt−r(k + k′)FR2

(
k′

n

)2

.

and consequently for i, j ≥ −1 we have

E

[
∆iv

ξn∆j(t, x; r, z)
]
6= 0

only if |i− j| ≤ 1.

Lemma 5.3.16. For any t > 0 there exists an operator T1,t ∈ L
(
L γ
t ,C

2γ−2)
such that

Tn1,t → T1,t in L
(
L γ
t ,C

2γ−2) as n→∞, ‖T1,t‖L γ
t →C 2γ−2 . 1 (5.3.17)

Proof. Let t > 0 and u ∈ L γ
t .

First, we deal with (Tn1,t)n≥0. We estimate

ˆ t

0

∥∥∥∥∆i

ˆ
T2

E

[
vξn(t, x; r, z)

]
(u(r, z)− u(t, z))dz

∥∥∥∥
L∞x

dr

≤
ˆ t

0

∥∥∥∥ˆ
T2

|∆iE

[
vξn(t, x; r, z)

]
||u(r, z)− u(t, z)|dz

∥∥∥∥
L∞x

.dr

By assumption ‖u(r)− u(t)‖L∞ ≤ ‖u‖L γ
t

(t− r)γ/2. Thus we may estimate

ˆ
T2

|E
[
vξn(t, x; r, z)

]
‖u‖L γ

t
(t− r)γ/2dz

. ‖u‖L γ
t

(t− r)γ/2
(ˆ

T2

|E
[
vξn(t, x; r, z)

]
|2dz

) 1
2

where we used Jensen’s Inequality.
Now Plancheral’s theorem implies

ˆ
T2

|∆iE

[
vξn(t, x; r, z)

]
|2dz

.
∑
k∈Z2

ρi(k)2

(∑
k′

m≺(k, k′)m◦(k
′, k + k′)Pt−r(k + k′)FR2φ

(
k′

n

))2

.
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Note that for k ∈ Z2

|
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)Pt−r(k + k′)FR2

(
k′

n

)
|

.
∑
k′∈Z2

1|k|.|k′|e
−(t−r)c|k′|2

.
ˆ ∞
c′|k|

xe−(t−r)cx
2
dx

.
1

(t− r)
e−(t−r)c

′′|k|2

for suitable constants c, c′, c′′ > 0. For i ≥ −1 we consequently obtain

ˆ t

0

∥∥∥∥∆i

ˆ
T2

E

[
vξn(t, x; r, z)

]
(u(r, z)− u(t, z))dz

∥∥∥∥
L∞x

dr

. ‖u‖L γ
t

ˆ t

0
(t− r)γ/2

∑
k∈Z2

ρi(k)2
1

(t− r)2
e−(t−r)2c

′′|k|2

1/2

dr

. ‖u‖L γ
t

ˆ t

0
(t− r)γ/2

(
22i

1

(t− r)2
e−(t−r)c

′′′22i
)1/2

dr

. ‖u‖L γ
t

2i
ˆ t

0

(t− r)γ/2

(t− r)
e−(t−r)2

2ic′′′/2dr

. ‖u‖L γ
t

2i2−iγ
ˆ ∞
0

rγ/2−1e−rc
′′′/2dr

. ‖u‖L γ
t

2i(1−γ)

where we used the transformation r 7→ t− r as well as r 7→ 22ir and the fact
that the last appearing integral is bounded.
Hence∥∥∥∥ˆ t

0

ˆ
T2

E

[
vξn(t, x; r, z)

]
(u(r, z)− u(t, z))dzdr

∥∥∥∥
C 2γ−2

≤ sup
i≥−1

2i(2γ−2)
ˆ t

0

∥∥∥∥∆i

ˆ
T2

E

[
vξn(t, x; r, z)

]
(u(r, z)− u(t, z))dz

∥∥∥∥
L∞x

dr

. sup
i≥−1

2i(2γ−2) ‖u‖L γ
t

2i(1−γ)

. ‖u‖L γ
t

since γ < 1. Thus we established that for all all n ≥ 0∥∥Tn1,t∥∥L γ
t →C 2γ−2 . 1.
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Here the constant is independent of n and thus the sequence (Tn1,t)n≥0 is

bounded in L
(
L γ
t ,C

2γ−2) for any t > 0.
Next, for n,m ∈ N we estimate∥∥(Tn1,t − Tm1,t)u∥∥C 2γ−2

= sup
i≥−1

2i(2γ−2)
ˆ t

0

∥∥∥∥ˆ
T2

(
∆iE

[
vξn(t, x; r, z)

]
−∆iE

[
vξm(t, x; r, z)

])
|u(r, z)− u(t, z)|dz

∥∥∥∥
L∞x

dr

≤ sup
i≥−1

2i(2γ−2) ‖u‖L γ
t

ˆ t

0

( ∑
k∈Z2

ρi(k)2
( ∑
k′∈Z2

m≺(k, k′)m◦(k, k + k′)Pt−r(k + k′)×

|FR2φ

(
k′

n

)2

−FR2

(
k′

m

)2

|
))1/2

(t− r)γ/2dr

Note that the above made arguments imply that

sup
0≤t<∞

ˆ t

0

( ∑
k∈Z2

ρi(k)2
( ∑
k′∈Z2

m≺(k, k′)m◦(k, k + k′)Pt−r(k + k′)×

|FR2φ

(
k′

n

)2

−FR2

(
k′

m

)2

|
))1/2

(t− r)γ/2dr

. 2i(1−γ)

Since for any fixed L ∈ N and ε > 0 we may choose K ∈ N such that for
m,n ≥ K we have

|FR2φ

(
k′

n

)2

−FR2φ

(
k′

m

)2

| < ε

for |k′| ≤ L and noting that the above bound is indeed uniform in t we con-
clude that

(
Tn1,t
)

is a Cauchy sequence in L(L γ
t ,C

2γ−2) and consequently the

sequence (Tn1,t)n≥0 converges for any t > 0 to an operator T1,t ∈ L(L γ
t ,C

2γ−2)
in this space. This proves the assertion.

Remark 5.3.18. Note that the proof also implies that that for ε > 0 we can
choose K ∈ N such that for all m,n ≥ K we have∥∥Tn1,t − Tm1,t∥∥L γ

t ,C
2γ−2 < ε

independent of t. Since this will also occur below we say that the Cauchy-
property of Tn1,t is independent of time.
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Next, we deal with the operators (Tn2,t)n≥0. Consider

Tn2,t

=

ˆ
T2

u(t, z)

ˆ t

0
E

[
vξ(t, x; r, z)

]
drdz − cnMtu

=

ˆ
T2

u(t, z)

ˆ t

0

∑
k∈Z2

e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)Pt−r(k + k′)FR2

(
k′

n

)
drdz

− cnMtu

=

ˆ
T2

u(t, z)
∑
k∈Z2

e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

1− e−t|k+k′|2

|k + k′|2
FR2

(
k′

n

)
dz

− cnMtu

In order to be able to easier handle Tn2,t, we define operator

Sn1,tu := −
ˆ
T2

u(t, z)
∑
k∈Z2

e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k+k′)

e−t|k+k
′|2

|k + k′|2
dz

as well as

Sn2,tu

:=

ˆ
T2

u(t, z)
∑
k∈Z2

e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

1

|k′|2
FR2φ

(
k′

n

)
dz − cnMtu

Note that we have: Tn2,t = Sn1,t + Sn2,t.

Lemma 5.3.19. For any t > 0 there exists an operator S1,t ∈ L
(
L γ
t ,C

2γ−2)
such that for each ε > 0

Sn1,t → S1,t ∈ L
(
L γ
t ,C

2γ−2) , ‖S1,t‖L γ
t
.

1

tε

Proof. Note that for each ε > 0 we have

e−t|k+k
′|2 .

1

tε|k + k′|2ε

and thus for k ∈ Z2

∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

e−t|k+k
′|2

|k + k′|2

.
∑
k′∈Z2

1

tε
1|k|<|k′|

1

|k′|2+2ε

.
1

tε
1

|k|2ε
.
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By the Fubini-Tonelli theorem we obtain for j ≥ −1

∆j

ˆ
Td
u(t, z)

∑
k∈Z2

e∗k(x)ek
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

e−t|k+k
′|2

|k + k′|2
FR2φ

(
k′

n

)2

dz


=

ˆ
Td
u(t, z)∆j

∑
k∈Z2

e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

e−t|k+k
′|2

|k + k′|2
FR2φ

(
k′

n

)2
 dz.

since FR2φ is of rapid decay.
Using Placheral’s theorem, we estimate

ˆ
T2

|
∑
k∈Z2

ρj(k)e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

e−t|k+k
′|2

|k + k′|2
FR2φ

(
k′

n

)2

|2dz

.
∑
k∈Z2

ρj(k)2

∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

e−t|k+k
′|2

|k + k′|2
|FR2φ

(
k′

n

)
|2
2

.
1

t2ε
22j

1

24jε
.

and consequently, using lemma 4.1.4,∥∥∥∥∥∥∆j

ˆ
Td
u(t, z)

∑
k∈Z2

e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

e−t|k+k
′|2

|k + k′|2
FR2φ

(
k′

n

)2

dz

∥∥∥∥∥∥
L∞x

=

∥∥∥∥∥∥
ˆ
Td
u(t, z)∆j

∑
k∈Z2

e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

e−t|k+k
′|2

|k + k′|2
FR2φ

(
k′

n

)2
dz

∥∥∥∥∥∥
L∞x

. ‖u‖C γ 2−jγ

∥∥∥∥∥∥
∑
k∈Z2

ρj(k)e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

e−t|k+k
′|2

|k + k′|2
FR2φ

(
k′

n

)2
∥∥∥∥∥∥
L∞x L

2
z

.
‖u‖C γ
tκ

2j(1−γ)2−j2κ

which proves that Sn1,tu ∈ C 2γ−2 and∥∥Sn1,t∥∥L γ
t ,C

2γ−2 .
1

tκ

for all suitably small ε > 0 uniform in n.
A very similar argument to the one used in the proof of lemma 5.3.16 shows
that (Sn1,t)n≥0 is a Cauchy sequence in L(L 2γ

t ,C 2γ−2).
This implies the claim.

Here again, the proof implies that the Cauchy-property of (Sn1,t)n≥0 is
independent of time.
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Lemma 5.3.20. For any t > 0 there exists an operator S2,t ∈ L
(
L γ
t ,C

2γ−2)
such that

Sn2,t → S2,t ∈ L
(
L γ
t ,C

2γ−2) , ‖S2,t‖L γ
t →C 2γ−2 . 1

Proof. Recall that

Sn2,tu

:=

ˆ
T2

u(t, z)
∑
k∈Z2

e∗k(x)ek(z)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)

1

|k′|2
FR2φ

(
k′

n

)
dz − cnMtu

Setting

Sn =
∑
k∈Z2

e∗k
∑
k′∈Z

(
m≺(k, k′)m◦(k, k + k′)

1

|k + k′|2
F

(
k′

n

)
−m≺(0, k)

1

|k|2
FR2φ

(
k2
n

))
we first conclude that for all n ≥ 0 we have that Sn ∈ S ′ and

Sn2,tu = Sn ∗ u(t) in S ′.

Now recall that for j ≥ −1

∆jSn ∗ u(t) = Kj ∗ Sn ∗ u(t)

and for i/geq − 1 we have
∑

i≥−1 ∆i∆jSn ∗ u(t) = ∆jSn ∗ u(t) and

∆i∆jSn ∗ u(t) = Ki ∗ Sm ∗Kj ∗ u(t) 6= 0 (5.3.21)

only if |i− j| ≤ 1. We estimate using Young’s inequality

‖Kj ∗ Sn ∗Kj ∗ u(t)‖L∞ ≤ ‖Kj ∗ Sn‖L1 ‖Kj ∗ u(t)‖L∞ . (5.3.22)

First note that

‖Kj ∗ u(t)‖L∞ = ‖∆ju(t)‖L∞ . 2−jγ ‖u‖L γ
t
. (5.3.23)

Next we estimate by using Jensen’s inequality

‖Kj ∗ Sn‖‖L‖1 . ‖∆jSn‖L2 .

We have

∆jSn

=
∑
k∈Z2

ρj(k)e∗k
∑
k′∈Z

(
m≺(k, k′)m◦(k, k + k′)

1

|k + k′|2
F

(
k′

n

)
−m≺(0, k)

1

|k|2
FR2φ

(
k2
n

))
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For k ∈ Z2 we define sets Ak := {k′ ∈ Z2 : m≺(k, k′) 6= 1}. Plancheral’s
theorem allows us to estimate

‖∆S‖2L2

.=
∑
k∈Z2

ρj(k)2

(∑
k′∈Z

(
m≺(k, k′)m◦(k, k + k′)

1

|k + k′|2
F

(
k′

n

)

−m≺(0, k)
1

|k|2
FR2φ

(
k2
n

)))2

Note that for every n ∈ N the term FR2(k′/n) is of rapid decay in k′ and
hence the double sum if finite.
We split the inner sum into two parts. Consider∑

k∈Z2

∑
k′ /∈Ak

(
m≺(k, k′)−m≺(0, k′)

) 1

|k′|2
FR2φ

(
k′

n

)
.

We have ∑
k′ /∈Ak

(
m≺(k, k′)−m≺(0, k′)

) 1

|k′|2
FR2φ

(
k′

n

)
.

∑
k′∈Z2 : k′ 6=0

1|k′|.|k|
1

|k′|2

. ln(|k|)

Now we need to deal with the sum

∑
k′∈Ak

m◦(k, k + k′)
1

|k + k′|2

(
FR2

(
k′

n

)2

−FR2

(
k + k′

n

)2
)
.

Using that FR2φ is a Schwartz function on R2 we conclude:

|FR2

(
k + k′

n

)2

−FR2

(
k′

n

)2

|

=|FR2

(
k + k′

n

)
−FR2

(
k′

n

)
||FR2

(
k + k′

n

)
+ FR2

(
k′

n

)
|

.
|k|
n

1

(1 + |k′/n|)

≤ |k|
(1 + |k′|)

.
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This allows us to estimate∑
k′∈Ak

m◦(k, k + k′)
1

|k + k′|2

(
FR2

(
k′

n

)2

−FR2

(
k + k′

n

)2
)

.
∑
k′∈Z2

1|k|.|k′|
1

|k′|2
|k|

(1 + |k′|)

. k
∑
k′∈Z2

1|k|.|k′|
1

|k′|3

. 1.

Hence we conclude that

‖∆jSn‖L2 . 22j(ln(2i) + 1)2

and we conclude that∥∥∆jS
n
2,tu
∥∥
L∞
‖∆jSn ∗ u‖

. ‖∆ju‖L∞ ‖∆jSn‖L2

.2j(1−γ)j ‖u‖L γ
t

which implies that Sn2,tu ∈ C 2γ−2 with an uniform bound in n.
Using the approach, we can akin to the above also show that (Sn2,t)n≥0
constitutes a Cauchy sequence in L

(
L γ
t ,C

2γ − 2
)

and hence, for any t > 0
there is an operator S2,t ∈ L

(
L γ
t ,C

2γ−2) such that

Sn2,t → S2,t in L
(
L γ
t ,C

2γ−2) as n→∞.

Finally note that also for this operator the Cauchy-property is independ-
ent of time.
This enables us to prove the following corollary

Corollary 5.3.24. For any t > 0 there exists an operator T2,t in L(L γ
t ,C

γ−2)
such that for each κ > 0

Tn2,t → T2,t in L(L γ
t ,C

2γ−2) as n→∞, ‖T2,t‖L γ
t →C 2γ−2 . max(t−κ, 1).

Proof. Using the respective results for the operators S1,t, S2,t the claim fol-
lows.

Corollary 5.3.25. For any t > 0 there exists an operator Wt ∈ L(L γ
t ,C

2γ−2)
such that

Wn
t −cnMt →Wt in L(L γ

t ,C
2γ−2) as n→∞, ‖Wt‖L γ

t ,C
2γ−2 . max(t−κ, 1).

Moreover,the map s 7→Wtu is continuous on (0, t] in L
(
L 2γ
t ; C 2γ−2

)
.
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Proof. For the first claim we just just have to use the respective results for
the operators T1,t, T2,t.
For the continuity recall first that by definition

Wn
t u =

ˆ t

0

ˆ
T2

E

[
vξn(t, x; r, z)

]
u(r, z)dzdr

For 0 < s ≤ t we consequently have

Wn
t u−Wn

s u

=

ˆ t

s

ˆ
T2

E

[
vξn(t, x; r, z)

]
u(r, z)dzdr

+

ˆ s

0

ˆ
T2

(
E

[
vξn(t, x; r, z)

]
−E

[
vξ(s, x, r, z)

])
u(r, z)dzdr

Since ∑
k∈Z2

ρj(k)
∑
k′∈Z2

m≺(k, k′)m◦(k
′, k + k′)Pt−r(k + k′)|FR2

(
k′

n

)
|2

. 22i
e−(t−r)c2

2i

(t− r)
We now can prove using the same arguments as above∥∥∥∥∆j

ˆ t

s

ˆ
T2

E

[
vξn(t, x; r, z)

]
u(r, z)dzdr

∥∥∥∥
L∞x

. ‖u‖CtC γ 2j2−jγ
ˆ t

s

e−(t−r)c2
2j

(t− r)1/2
dr

. ‖u‖CtC γ 2j(1−γ)
ˆ t

s

1

(t− r)1/2
dr.

The last integral is finite since by assumption s > 0 and converges to zero
as s→ t.
Moreover note that for δ ∈ (0, 1)

e−(s−r)|k+k
′|2 − e−(t−r)|k+k′| ≤ (t− s)δ|k + k′|δe−(s−r)|k+k′|2

and using this, we obtain by very similar computation∥∥∥∥∆j

(ˆ s

0

ˆ
T2

(
E

[
vξn(t, x; r, z)

]
−E

[
vξ(s, x, r, z)

])
u(r, z)dzdr

)∥∥∥∥
L∞x

. ‖u‖CtC γ 2j(1−γ)(t− s)δ

On the other hand, one can by the same methods show that

‖cnMtu− cnMsu‖C 2γ−2

.n ‖u(t)− u(s)‖C γ
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and consequently, for each n ∈ N the continuity property holds. Then

lim
s→t
‖Wtu−Wsu‖C 2γ−2

≤ lim
s→t
‖Wn

t − cnMt −Wtu‖C 2γ−2 lim
s→t
‖Wnus − cnMsu−Wn

t u− cnMsu‖C 2γ−2

+ lim
s→t
‖Wn

s u− cnMsu−Wsu‖C 2γ−2

tends to zero uniform in u if n → ∞ since the Cauchy-properties of the
operators that add up to Wn

t is independent of time.
This proves the claim.

Set V := Rξ +W . We note that for all t > 0 by construction

Rξnt − cnMt → V in L
(
L γ
t ,C

2γ−2) as n→∞

since Rξnt − cnMt = Rξnt −Wn
t +Wn

t − cnMt.
Using this, we are finally able to prove:

Theorem 5.3.26. Let γ ∈ (2/3, 1) then (ξ, V ) ∈X γ almost surely.

Proof. Using the results obtained above we first note that for all T > 0 we
have (Vt)0<t≤T is a sequence of operators in L

(
L γ
t ,C

2γ−2) and satisfies us-
ing (ξn)n≥0 as a sequence of smooth approximations for ξ the approximation
and continuity properties.
Next note that for each T > 0 and ε > 0

‖V ‖L γ
t →C 2γ−2 . max(t−ε, 1).

Hence
tεVt ∈ L

(
L γ
T ;CTC 2γ−2) .

Now we can apply theorem 3.1.20 to conclude that IV ∈ L(L γ
T ; L 2γ−

T ) for
any T > 0.
We conclude (η, V ) ∈X γ .

We now get the following theorem

Theorem 5.3.27. Let u0 be a random variable that almost surely takes val-
ues in C 2γ.
Then the renormalized PAM with driving noise (η, V ) and initial datum u0

admits a unique global solution u ∈ L γ and if we the take smooth approx-
imations of the white noise constructed above (i.e. ξn), for the approximate
solutions to the renormalized PAM un ∈ L γ with initial data (u0n)n≥0 in
C 2γ such that u0n converges to u0 in probability we have

un → u in L γ as n→∞ in probability.
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