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1 Introduction

Mean field game theory is the analysis of symmetric games with a very
large number of players that interact with each other, change positions and
endure costs or gain profit depending on their positions throughout and in
the end of the game. The players follow a strategy with respect to which they
decide how to move when they find themselves in a specific position. This
strategy is chosen such that it minimizes their cost or respectively maximizes
their profit. During the analysis, we take the limit case where the number
of players is infinite, and thus each player receives statistically the same
mean impact from every opponent in the game and where the impact is felt
through the empirical distribution of the dynamics of the positions of all the
players. The name mean field has been inspired by the mean field theory
in physics which is used to study the movement of a particle that lives and
interacts in a space with a very large number of other particles.

This kind of games have, in our knowledge, first been studied by Jean-
Michel Lasry and Pierre-Louis Lions. They approached these games with
the theory of PDEs and they formulated the limiting problem as a cou-
pled system of the Hamilton-Jacobi-Bellman and the backward Kolmogorov
equation. The first one is a forward equation that ensures the optimization
problem is solved, whereas the backward equation takes care of the time
consistency of the statistical distribution of the positions of the players.

In this thesis, we are following the probabilistic approach of René Car-
mona and Franois Delarue in [5] and the results presented here, unless oth-
erwise stated, are results from this paper. In this approach, we do not work
with PDEs but instead we create a coupled system of a forward and a back-
ward SDE (FBSDE). To do this, they reformulated the problem as a fixed
point problem in a space of flows of probability measures and with the use
of the fixed point theory prove the existence of such a point. The resulting
FBSDE system can then be solved with the use of the stochastic maximum
principle, which results in a strategy which, if followed by all the players,
no one player would want to change as this would result in a disadvantage.
In other words, the resulting strategy is proved to be an approximate Nash
equilibrium.

This thesis is split in three chapters. In the first chapter we give basic
definitions and results that will be used throughout the analysis and to which
we will refer repeatedly. Furthermore, we denote the spaces in which we will
be working in, describe the setting of the game and give an outline of the
steps that we will follow to solve the mean field game. At the end of the
section we write the most important assumptions of the game and which
will come in force gradually.

In the following chapter we introduce the theory of mean field games
(MFG) and seek the strategies that optimize the costs of the players. During
the MFG the distribution of the dynamics of the positions of the players is
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the empirical distribution created by their private states. As a first step,
we assume some fixed arbitrary distribution for the private states of the
players. The reduces the problem to a standard stochastic control problem.
For this reason, we introduce the notions of the value function and the
stochastic maximum principle, which play a key role for the solution of
the MFG. In order to apply the stochastic maximum principle, we define
the Hamiltonian and prove that it has a unique minimizer. Afterwards,
we create a FBSDE system for which we prove that it is solvable and we
find the value function. From this point on, we stop working with the fixed
distribution and we change the general FBSDE by adding another restriction
to our problem, this of finding the correct distribution. We then define what
can be considered as a solution to the MFG and prove the existence of such
a solution.

In the last chapter, we move back to our initial game with the large,
yet finite, number of players and compare it to our theoretical approach
of the FBSDE solution. Then we prove that the strategy that was found
during the theoretical model, can indeed be used for the large game as it is
an approximate Nash equilibrium. We end the analysis by proving an even
stronger result which has to do with the fact that the cost of the player
that decides to rebel will definitely worsen, depending also on the kind of
strategy chosen, whereas the cost of (at least one) of his opponents will still
remain close to the optimal cost.
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1.1 Preliminary Definitions

In the following, we state some definitions that are used throught this
thesis as a reminder. The definition and the intuiton for the admissible strat-
egy have been taken from [2]. The definition for the probability measures of
finite momentum can be found in the article [5], as well as the definition of
the Wasserstein distance. In the book of Pham [16] one finds the stochas-
tic control problem, the optimal control and the value function. Gronwall’s
inequality appears in [17], whereas Prof. Bill Jackson in his lectures in [13]
analyzes the definition of a Hausdorff space. In [18] one can find the implicit
function theorem for Lipschitz functions.

• Admissible strategy:
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Definition 1.1. The progressively measurable stochastic process β =
(βt)0≤t≤T ∈ Rk is said to satisfy the admissibility condition if

E

[∫ T

0
|βt|2dt

]
<∞. (1)

• Nash equilibrium:
In a game with N players, a strategy β = (β1, . . . , βN ) constitutes a
Nash equilibrium if no player has the incentive (i.e. is better off) to
change their strategy while every other player retains theirs. Mathe-
matically, this is formulated as follows

Definition 1.2. If J is a function denoting the outcome of the game
given the N players follow the strategies βi, i ∈ {1, 2, . . . , N}, then the
set of admissible strategies βi is said to form a Nash equilibrium for
the game if

J i(β1, β2, . . . , βN ) ≥ J i(β1, β2, . . . , βi−1, αi, βi+1, . . . , βN )

for all i ∈ {1, 2, . . . , N}, where αi is any strategy that differs from βi.

• Probability measures with finite momentum:

Definition 1.3. For E a separable Banach space and p an integer
greater than 1, a probability measure µ is said to have a moment of
order p if

Mp,E(µ) =

(∫
E
||x||pEdµ(x)

)1/p

< +∞.

We write Mp for Mp,Rd .

• Wasserstein distance:

Definition 1.4. For a separable Banach space E, for all p ≥ 1, µ, µ′ ∈
Pp(E), the Wasserstein distance Wp(µ, µ

′) is defined by

Wp(µ, µ
′) = inf

{[∫
E×E

|x− y|pEπ(dx, dy)

]1/p

:

π ∈ P(E × E) with marginals µ and µ′
}
.

• Stochastic control problem: For a measurable space (A,F ,Ft,P)
and a d-dimensional Brownian motion Wt = (W 1

t , · · · ,W d
t ) with re-

spect to F , assume two given functions b(t, x, α) : [0, T ]×Rd×Ω→ Rd
and σ(t, x, α) : [0, T ] × Rd × A → Rd×k, as well as stochastic process
Xt, which solves the following stochastic differential equation (SDE)

dXt = b(t, x, αt)dt+ σ(t, x, αt)dWt.
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Definition 1.5. A stochastic control problem is given by

– a dynamical system whose state is characterized by the evolution
of the stochastic variable Xt;

– the process αt is an admissible control, i.e. a process satisfying
the admissibility condition;

– the goal of the problem is to find such an admissible control αt that
optimizes a given cost function J(t, x, αt) defined on [0, T ]×Rd×A
and going to Rd.

• Optimal control:

Definition 1.6. Given a stochastic control problem as the one defined
above and for all the possible initial points (t, x) ∈ [0, T ] × Rd of the
problem, an admissible control αt is called optimal if the functional J
obtains its optimum value when αt is applied to it.

• Value function:

Definition 1.7. For any point (t, x) ∈ [0, T ] × Rn let a function
υ : [0, T ]× Rn → R denote the optimal value of the functional J , that
is the value of J under an optimal control. This function υ is called
the value (or utility) function. More specifically this means that

– for a maximization problem the value function is defined as
υ(t, x) = supαt∈A J(t, x, αt),

– for a minimization problem the value function is defined as
υ(t, x) = infαt∈A J(t, x, αt).

• Gronwall’s inequality:

Theorem 1.8. Let α be a function from R+ to itself, and suppose

α(s) ≤ c+ k

∫ t

0
α(r)dr < +∞

for 0 ≤ s ≤ t. Then α(t) ≤ cekt. Moreover, if c = 0 then α vanishes
identically.

• Hausdorff space:

Definition 1.9. A topological space X is Hausdorff if for any x, y ∈ X
with x 6= y there exist open sets U containing x and V containing y
such that U ∩ V = ∅.

Remark: Every metric space is Hausdorff, in particular Rd.
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• A useful estimate:
The following is a useful estimate of the 2-Wasserstein distance which
will be used during the proof of the approximate Nash equilibrium.

Theorem 1.10. We define Pp(Rd) to be the subspace of the space of
probability measures of order p, i.e. haveing a finite moment of order
p as defined before. Given µ ∈ Pd+1(Rd), there exists a constant c
depending only upon d and Md+5(µ), such that

E
[
W 2

2 (µ̄N , µ)
]
≤ CN−2/d+4,

where µ̄N denotes the empirical measure of any sample of size N .

• The implicit function theorem for Lipschitz functions:

Theorem 1.11. Let Um ⊂ Rd and Un ⊂ Rd open. Next fix a ∈ Um
and b ∈ Un where U = Um × Un. Consider F : U → Rn a Lipschitz
function such that F (a, b) = 0 and with the property that there exists
a constant K > 0 for which |F (x, y1) − F (x, y2)| ≥ K|y1 − y2| for
all (x, yj) ∈ U where j = 1, 2. Then there exists Vm ⊂ Rm open,
such that a ∈ Vm and a Lipschitz function φ : Vm → Un such that
Φ(a) = b, and (x, y) ∈ Vm × Un : F (x, y) = 0 = (x,Φ(x)). In particu-
lar, F (x,Φ(x)) = 0 for all x ∈ Vm.
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1.2 The setting

First, we define the spaces in which we will be working

• the space of the possible positions of the players A ⊂ Rk, for some
k ∈ N,

• the space of strategies A = H2,k of progressively measureable A-valued
stochastic processes β = (βt)0≤t≤T satisfying the admissibility condi-
tion,

• AN is the space of the strategies β = (β1, . . . , βN ) of all the players
and it denotes the product of N copies of A,

• for a topological space E equipped with a Borel σ- field, we define P(E)
to be the space of its probability measures. P(E) is also endowed with
the Borel σ -field generated by the topology of weak convergence of
measures,

• Pp(E) stands for the subspace of P(E) with probability measures of
order p, (see also preliminary definitions),

• bounded subsets of Pp(E) are defined as sets of probability measures
with uniformly bounded moments of order p,

• all regularity properties with respect to the measure µ during the anal-
ysis are understood in the sense of the 2-Wasserstein distance W2.

Throughout the thesis, we avoid defining the initial starting point for each
player, as this has no significant influence on the modelling and the solution
of the game, with the exception of the dynamic programming principle and
the proofs of Lemma (2.8) and Lemma (2.9).

1.3 The game

A mean field game consists of N players, where we let N ∈ N be very
large. We are conducting the analysis from the viewpoint of one of the
players. This player i ∈ {1, 2, ..., N} begins their journey from the starting
point x0 and in each step chooses the next step βit of their strategy in such a
way that minimizes their final cost (or in a similar setting, that maximizes
their final pay off). Remember that a strategy βt is in the space A if it
satisfies the admissibility condition. It is assumed that the dynamic of the
position U it ∈ Rd of the player i at time t ∈ [0, T ] is given by the following
Ito stochastic differential equation

dU it = b(t, U it , µ
N
t , β

i
t)dt+ σ(t, U it , µ

N
t , β

i
t)dW

i
t , (2)

where
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• 0 ≤ t ≤ T ,

• i ∈ {1, . . . , N},

• µNt ∈ P(Rd) is the empirical distribution of the positions U it of all
players in the game at time t, defined as

µ̄Nt (dx′) =
1

N

N∑
i=1

δU it (dx
′),

• [bi, σi] : [0, T ]×Rd × P (Rd)×A ↪→ Rd ×Rm×d are deterministic mea-
surable functions,

• W i
t is the m-dimensional Wiener Process driving the SDE with inde-

pendent coefficients.

The final outcome of the player i depends on a measurable function
f i : [0, T ]×Rd × P (Rd)×A ↪→ R, which evaluates the cost of each position
that the player has occupied throughout the game, as well as a terminal
function gi : Rd × P (Rd) ↪→ R capturing the cost of the final position of the
player. This means that the final outcome of player i is given by

J i(β, µ) = E
[∫ T

0
f i(t, U it , µ

N
t , β

i
t)dt+ gi(U iT , µ

N
T )

]
(3)

for a strategy βt ∈ AN .
The goal of each player in this game is to follow such a strategy that

minimizes the overall cost that they need to pay during the game. That is
to find the optimal strategy αt that gives the minimum value for J i(β, µN ),
that is such that

J i(α, µN ) = inf
βi∈A

E
[∫ T

0
f i(t, U it , µ

N
t , β

i
t)dt+ gi(U iT , µ

N
T )

]
. (4)

Note that the final cost depends upon the whole vector of β, i.e. the strategies
of all players and not only on the strategy of player i. This is because the
strategy of player i depends on the empirical distribution µ, which is a result
of the positions of all players.

Since the number of players in the game is very large, it is assumed that
each opponent affects the outcome of our player in a statistically identical
way. This means that the functions βi, σi, f i, gi actually do not depend on
player i, but are the same for each player and thus they will be denoted as
β, σ, g and f respectively. Obviously, this is not true for the cost function
J , as it depends on the position of the individual player i and thus cannot
be the same for all players. Moreover, note that in this case, we will let the
volatility be an uncontrolled constant matrix σ ∈ Rd×m, in order to avoid
many technicalities.
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1.4 Main steps of the process

This model resembles a stochastic control problem. What makes it differ-
ent from a typical stochastic problem is the fact that the players’ distribution
is not fixed, but rather depends on the strategy that each player chooses and
the resulting position they have at each time t ∈ [0, T ]. Therefore, the way
to solve it, is by following the next steps

1. Assume that µt is a fixed deterministic distribution throughout the
game;

2. Try to solve the stochastic control problem that results, i.e.

inf
β∈A

E

[∫ T

0
f(t, Ut, µt, βt)dt+ g(UT , µT )

]
,

dXt = b(t, Ut, µt, βt)dt+ σdWt, U0 = u0

using the usual methods of stochastic control theory;

3. Use the theory of propagation of chaos in order to find a function{
[0, T ] ↪→ P(Rd)

t 7→ µt

s.t. for all t it holds PUt = µt.

The last step is the most important as this is what gives the mean field
solution, i.e. the solution for an undefined distribution µ. More importantly,
this solution “orders” the strategy that each player would be best off follow-
ing, given that all her co-players “obey” to the optimal strategy, i.e. forms
an approximate Nash equilibrium, as it will be defined later on.

1.5 Assumptions of the model

As is the case in most models, there are certain assumptions that need to
hold in order to prove and find the solution for the game. These assumptions
will be layed out here, as they have been written in [5] and they will come
in force gradually during this thesis

(A.1) The drift b is an affine function of α in the sense that it is of the form

b(t, x, µ, α) = B1(t, x, µ) + b2(t)α,

where

- the mapping {
[0, T ] ↪→ Rd×k

t 7→ b2(t),

is measurable and bounded, and
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- the mapping {
[0, T ] ↪→ Rd

t 7→ B1(t, x, µ)

is measurable and bounded on bounded subsets of [0, T ] × Rd ×
P2(Rd).

(A.2) There exist two positive constants λ and cL such that for all t ∈ [0, T ]
and µt ∈ P2(Rd) such that

– the function {
Rd × A ↪→ R

(x, α) 7→ f(t, x, µ, α)

is once continuously differentiable with Lipschitz continuous deriva-
tives, i.e. f(t, ·, µ, ·) ∈ C1,1,

– the Lipschitz constant in x and α is bounded by cL (so that it is
uniform in t and µ),

– the Lipschitz constant in x and α satisfies the convexity assump-
tion

f(t, x′, µ, α′)− f(t, x, µ, α)

− 〈(x′ − x, α′ − α), ∂(x,α)f(t, x, µ, α)〉 ≥ λ|α′ − α|2, (5)

where ∂(x,α) stands for the gradient in the joint variables (x, α).

Furthermore, f , ∂xf and ∂αf are locally bounded over [0, T ] × Rd ×
P2(Rd)× A.

(A.3) The function {
[0, T ] ↪→ Rd

t 7→ B1(t, x, µ)

is affine in x, i.e. it has the form
B1(t, x, µ) = b0(t, µ) + b1(t)x, where b0 ∈ Rd, b1 ∈ Rd×k are bounded
on bounded subsets of their respective domains.

(A.4) The function {
Rd × P2(Rd) ↪→ R
(x, µ) 7→ g(x, µ)

is locally bounded. Moreover, for any µt ∈ P2(Rd) the function{
Rd ↪→ R
x 7→ g(x, µ)

is once continuously differentiable and convex and has a cL-Lipschitz-
continuous first order derivative.
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(A.5) – The functions{
[0, T ] ↪→ Rd

t 7→ f(t, 0, δ0, 0)
,

{
[0, T ] ↪→ Rd

t 7→ ∂xf(t, 0, δ0, 0)
and

{
[0, T ] ↪→ Rd

t 7→ ∂αf(t, 0, δ0, 0)

are bounded by cL,

– for all t ∈ [0, T ], x, x′ ∈ Rd, α, α′ ∈ A and µ, µ′ ∈ P2(Rd), it holds

|(f, g)(t, x′, µ′, α′)− (f, g)(t, x, µ, α)| ≤
cL
[
1 + |(x′, α′)|+ |(x, α)|+M2(µ) +M2(µ′)

][
|(x′, α′)− (x, α)|+W2(µ′, µ)

]
,

– b0, b1 and b2 as defined in (A.3) are bounded by cL,

– for any µ, µ′ ∈ P2(Rd), b0 satisfies the following inequality

|b0(t, µ′)− b0(t, µ)| ≤ cLW2(µ, µ′).

(A.6) For all t ∈ [0, T ], x ∈ Rd and µ ∈ P2(Rd) it holds |∂αf(t, x, µ, 0)| ≤ cL.

(A.7) For all (t, x) ∈ [0, T ]× Rd

〈x, ∂xf(t, 0, δx, 0)〉 ≥ −cL(1 + |x|),

〈x, ∂xg(0, δx)〉 ≥ −cL(1 + |x|).

Note that when assumptions (A.1) and (A.3) are valid, function b reads

b(t, x, µ, α) = b0(t, µ) + b1(t) · x+ b2(t) · α. (6)
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2 Solving the MFG

2.1 Freezing the distribution

As we have already mentioned, we cannot directly solve the MFG, since
there are too many variables. More specifically, we need to find the solution
with respect to the distribution of the private states of the players, while at
the same time detecting the optimal distribution. For this exact reason as
a first step we choose to fix the distribution and consider it to be known,
therefore we can use the usual tools for solving a standard stochastic control
problem.

2.2 Solving the Standard SCP

After fixing the distribution of the private states, to be some µ, which is
assumed to be known, our initial problem reduces to solving the stochastic
control problem that arises.

For our setting we are going to use two important aspects of the solution
of a stochastic control problem. The first one is the notion of the value
function, which can be best understood through the dynamical programming
principle(DPP), and the second is Pontryagin’s maximum principle, also
called the stochastic maximum principle. In this section we will explain the
value function and present the stochastic maximum principle and define the
Hamiltonian. The information about the dynamical programming principle,
as they are presented next, appear in [16] and have been adjusted to our
setting.

During the analysis of DPP, the initial point where the stochastic process
starts its path is of great importance, and thus we will add the initial point
into our notation for this section. Furthermore, the theory illustrated here
is valid for a game that happens within a certain period of time [0, T ] and
not for arbitrarily long time, thus it is still valid in the mean field game that
we are studying throughout the thesis.

2.2.1 The dynamic programming principle

Mathematically, it is easy to define the value function. Let us consider
a process Xt that starts at a point x0 ∈ Rd at time t0 ∈ [0, T ], denoted by
Xt0,x0
t . Furthermore, let J stand for the cost function of the game, as it was

defined in (3) and let µN be the fixed distribution in the game. Then the
value function is defined to be

υµ(t0, x0) = inf
β∈A

J(β, µN ).

Before we proceed, we will also define the set Tt0,T to be the set of all
stopping times in the set [t0, T ]. We quote from Pham “the intepretation
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of the DPP is that the optimization problem can be split in two parts an
optimal control on the whole time interval [t0, T ] may be obtained by first
searching for an optimal control from time θ given the state value Xt0,x0

θ ,

i.e. compute υµ(θ,Xt0,x0
θ ), and then maximizing over controls on [t, θ] the

quantity

E
[∫ θ

t
f(s,Xt0,x0

s , βs)ds+ υµ(θ,Xt0,x0
θ )

]
.”

After stating the principle formally we will illustrate it with an example to
make the intuition clear. The proof of the theorem can be found in [16].

Theorem 2.1 (Dynamic programming principle). Let (t0, x0) ∈ [0, T ]×Rd
be the initial starting point of the process Xt. Then we have

υµ(t0, x0) = inf
β∈A

inf
θ∈Tt,T

E
[∫ θ

t0

f(s,Xt0,x0
s , βs)ds+ υµ(θ,Xt0,x0

θ )

]
.

Remark: Pham in [16] notes that the there is an even stronger version than
the usual version of the DPP, which is the following

υ(t0, x0) = inf
β∈A

E
[∫ θ

t
f(s,Xt0,x0

s , βs)ds+ υµ(θ,Xt0,x0
θ )

]
for any stopping time θ ∈ Tt0,T .

We will try to illustrate this a bit better in the following example, which
has been inspired by the examples of [19]

Example 2.2. Assume that you live in the city o S and that you want to
go on vacation in one of the islands I1, I2 or I3. You have no personal
preference between the islands, other than minimizing the total cost of the
vacation, i.e. to minimize the sum of going and staying there. Therefore,
you have to choose the trip (i.e. the island and the way to reach it) such that
you have to spent the least money.

Figure 1: Trying to move from city S to one of the islands I1, I2 or I3 by
minimizing the total cost.
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The cost of staying in each island Ik is depicted by a function
g : {I1, I2, I3} → R that takes some positive values

g(I1) = c1, g(I2) = c2, g(I3) = c3,

that depict the cost of staying in the respective island. The arrows between
the cities on the picture denote that there is a road connecting these cities
and for each road there is a toll that needs to be payed. This cost is depicted
by a function f : {S,M1,M2,M3, I1, I2, I3}2 → R.

From the picture it is clear that the only way to reach the island I1 is
through city K2. Thus the minimum cost J to visit island I1 is

J = min{start at city S and reach city K2}+ f(K2, I1) + g(I1).

If we try to write it in the same way as it was expressed in the DPP, then,
with a slide abuse of the notation, we would write

υ(0, S) = inf
β∈A

E
[∫ 2

0
f(m,X0,S

m , βm)dm+ υµ(2, X0,S
2 )

]
.

2.2.2 Pontryagin’s maximum principle

Pontryagin’s maximum principle, also known as stochastic maximum
principle, was introduced in 1956 by Lev Pontryagin. In order to define the
stochastic maximum principle, they introduced the Hamiltonian, which is
a tool necessary to find the optimum value. For reasons of consistency, we
follow the definition of the Hamiltonian that can be found in [5].

As we said, the volatility is an uncontrolled constant matrix in our setting
and thus we can use the following version for the Hamiltonian

H(t, x, µ, y, α) = 〈b(t, x, µ, α), y〉+ f(t, x, µ, α)

for t ∈ [0, T ], x, y ∈ Rd, α ∈ Rk and µ ∈ P(Rd).
With this principle, Pontryagin proves that in order to find the optimum

value of a stochastic control problem, it is enough to find the optimum value
of the Hamiltonian. Then, we know that the stochastic control problem
obtains its optimum value at the same point, where the Hamiltonian obtains
its minimum.

For each α ∈ A, we consider a backward SDE (BSDE), called the adjoint
equation, which is as follows

−dYt = ∂xH(t,Xt, µt, Yt, α)dt+ ZtdWt.

Theorem 2.3 (Pontryagin’s maximum principle). Let α̂ ∈ A be a control
and X be the associated controlled diffusion of the system. Suppose that the
BSDE has a solution (Ŷt, Ẑt) such that

H(t,Xt, µt, Ŷt, α̂) = max
α∈A

H(t,Xt, µt, Yt, α),

13



and also such that
(x, α)→ H(t, x, µ, y, α)

is a convex function for all t ∈ [0, T ]. Then α̂ is an optimal control, i.e. it
holds

J(α̂) = inf
α∈A

J(α).

Proof. The proof can be found in [16] and is similar to the proof of Theorem
(2.6) and will, thus, be skipped.

2.2.3 Minimizing the Hamiltonian

As we have mentioned, we will use the Pontryagin maximum principle
to find the solution of the standard stochastic problem.

The Pontryagin maximum principle proves that the minimizer of the
Hamiltonian is also the minimizer of the SDE. Thus, our next step will be
to find if there exists (at least one) a minimizer of the Hamiltonian.

Lemma 2.4. If we let the assumptions (A.1) and (A.2) be in force, then
for all (t, x, µ, y) ∈ [0, T ]×Rd×P(Rd)×Rd, there exists a unique minimizer
α̂(t, x, µ, y) of H.

Proof. Letting the assumption (A.1) be in force, the Hamiltonian has the
following form

H(t, x, µ, y, α) = 〈b1(t, x, µ), y〉+ 〈b2(t)α, y〉+ f(t, x, µ, α).

The function α ↪→ H(t, x, µ, y, α) is strictly convex and continuously differ-
entiable for any (t, x, µ, y). Thus we know that this function has a unique
minimum, which will be achieved at the same point where the gradient hits
the origin, i.e. where ∂αH(t, x, µ, y, α) = 0.

In fact, we even know a bit more about this minimizer

Lemma 2.5. Assuming the assumptions (A.1) and (A.2) are in force, the
function {

[0, T ]× Rd × P2(Rd)× Rd ↪→ Rk

(t, x, µ, y) 7→ α̂(t, x, µ, y),

which is the minimizer function of H, is measurable, locally bounded and
Lipschitz-continuous with respect to (x, y), uniformly in (t, µ) ∈ [0, T ] ×
P2(Rd), where the Lipschitz constant depends only upon λ (from (A.2)), the
supremum norm of b2 and the Lipschitz constant of ∂αf in x.

Proof. The strict convexity property and the gradient descent algorithm
result in the measurability of the minimizer. The local boundedness of
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α̂(t, x, µ, y) also follows from strict convexity. Firstly, since α̂(t, x, µ, y) is
the minimizer, it obviously holds that

H(t, x, µ, y, 0) ≥ H(t, x, µ, y, α̂(t, x, µ, y)).

Furthermore, we will use assumption (A.2) to obtain another inequality for
the Hamiltonian which we gain by applying inequality (5) for x′ = x, α = 0
and α′ = α̂. This then yields

f(t, x, µ, α̂(t, x, µ, y))− f(t, x, µ, 0)

−
〈(

0, α̂(t, x, µ, y)
)
, ∂(x,α)f(t, x, µ, 0)

〉
≥ λ|α̂(t, x, µ, y)|2.

Adding and subtracting the inner product norm of the Hamiltonian we ob-
tain

H(t, x, µ, y, α̂(t, x, µ, y))−H(t, x, µ, y, 0)− α̂T (t, x, µ, y)∂αH(t, x, µ, y, 0)

− bT (t, x, µ, α̂(t, x, µ, y))y − b(t, x, µ, 0)y

+ α̂(t, x, µ, y)∂α
(
bT (t, x, µ, 0)y

)
≥ λ |α̂(t, x, µ, y)|2 ,

where the matrix AT stands for the transpose of A. Taking advantage of
the affinity of function b, from assumption (A.1), we obtain

H(t, x, µ, y, α̂(t, x, µ, y))−H(t, x, µ, y, 0)− α̂T (t, x, µ, y)∂αH(t, x, µ, y, 0)

− bT2 (t)α̂(t, x, µ, y)y + α̂T (t, x, µ, y)bT2 (t)y ≥ λ |α̂(t, x, µ, y)|2 .

We reorganize the above, therefore that we obtain

H(t, x, µ, y,α̂(t, x, µ, y)) ≥ H(t, x, µ, y, 0)

+ α̂T (t, x, µ, y)∂αH(t, x, µ, y, 0) + λ|α̂(t, x, µ, y)|2.

Combining this with the first inequality that we proved, we obtain

H(t, x, µ, y,0) ≥ H(t, x, µ, y, 0)

+ α̂T (t, x, µ, y)∂αH(t, x, µ, y, 0) + λ|α̂(t, x, µ, y)|2.

This then leads us to

|α̂(t, x, µ, y)|2 ≤ λ−1α̂T (t, x, µ, y)∂αH(t, x, µ, y, 0)

≤ λ−1α̂T (t, x, µ, y)
(
∂αf(t, x, µ, 0) + bT2 (t)y

)
≤ λ−1|α̂(t, x, µ, 0)|

∣∣∂αf(t, x, µ, 0) + bT2 (t)y
∣∣ ,

where we have used the Cauchy-Schwarz inequality. Using the triangle in-
equality we finally obtain

|α̂(t, x, µ, y)| ≤ λ−1(|∂αf(t, x, µ, 0)|+ |b2(t)||y|), (7)

which proves the local boundedness of α̂(t, x, µ, y). The Lipschitz continuity
of α̂(t, x, µ, y) with respect to (x, y) comes by applying the implicit function
theorem on ∂αH. The Lipschitz constant depends on the uniform bound on
b2 and on the Lipschitz-constant of ∂(x,α)f .
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2.3 The general FBSDE

In order to be able to use the known theory from the forward backward
stochastic differential equations theory, we need to “create” such a system.
To do this, we need to construct a stochastic process (Yt)0≤t≤T that moves
backwards and which will be coupled with Xt.

We define the filtration (Ft)0≤t≤T generated by the Wiener Process Wt

and we determine the initial condition of the constructed process to be
YT = ∂xg(XT , µT ). Then we start the “construction” of the Backward
process by iteration with the following first step

Y 0
t = E[YT |Ft].

Since we let Yt be a square integrable process measurable with respect to Ft,
we then know by the martingale representation theorem that there exists a
predictable process Zt adapted to Ft such that

dY 0
s = Z0

sdWs, when Y 0
T = YT .

Then, assuming that we have constructed the n-first iteration, the next one
is defined to be

Y n+1
t =E

[
YT −

∫ T

0
(−∂xH(s,Xs, µs, Y

n
s , αs)) dt

∣∣∣Ft]
+

∫ t

0
(−∂xH(s,Xs, µs, Y

n
s , αs)) ds.

Again by the martingale representation theorem, the conditional expectation
can be represented as an Ito integral

E
[
YT −

∫ T

0
(−∂xH(s,Xs, µs, Y

n
s , αs)) dt

∣∣∣Ft] =

∫ t

0
Zn+1
s dWs,

so that the differential version of the process Yt can be given by

dY n+1
t = −∂xH(t,Xt, µT , Y

n
T , αT )dt+ Zn+1

t dWt.

From the above and by letting the number of iterations become very large
we finally obtain the Backward SDE

dYt = −∂xH(t,Xt, µT , YT , αT )dt+ ZtdWt,

with the initial condition YT = ∂xg(XT , µT ). This BSDE is obviously cou-
pled with the SDE (2) that gives the dynamics of the positions of the players.
Thus, we have created a system of a FBSDE system, which is the following

dXt = b(t,Xt, µt, α̂(t,Xt, µt, Yt))dt+ σdWt

dYt = −∂xH(t,Xt, µt, Yt, α̂(t,Xt, µt, Yt))dt+ ZtdWt,
(8)
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where X0 = x0, YT = ∂xg(XT , µT ) are the border conditions. Of course, the
stochastic processes Yt and Zt are required to be adapted as well.

At first glance, it might seem that the above FBSDE has come up com-
pletely arbitrarily and it is not obvious that there is any connection between
(8) and our problem. In the next theorem, which is also the key theorem
of this thesis, we will prove just that, i.e. that the optimum solution of the
FBSDE, if it exists, is an almost minimizer for the cost function.

Theorem 2.6. Under the assumptions (A.1)-(A.4), let the mapping

[0, T ] ↪→ P2

(
C
(

[0, T ],Rd×k
))

t 7→ µt

be measurable and bounded, the FBSDE (8) have a solution (Xt, Yt, Zt) such
that

E

[
sup

0≤t≤T

(
|Xt|2 + |Yt|2

)
+

∫ T

0
|Zt|2dt

]
<∞, (9)

defining the cost functional J(β, µ) as in (3), where U = (Ut)0≤t≤T is the
corresponding controlled diffusion process which solves (2) for x0 ∈ Rd and
setting α̂t = α̂(t,Xt, µ, Yt), where the function α̂ is the minimizer of the
Hamiltonian, then for any admissible control β = (βt)0≤t≤T , it holds

J(α̂, µ) + λE
∫ T

0
|βt − α̂t|2dt ≤ J(β, µ).

Proof. This proof can be done in a similar way as the standard proof of the
stochastic maximum principle (see Theorem 6.4.6 [16]). We split the proof
into four steps.

Step 1:
First, we need to prove that the solution provided by the FBSDE (8) can be
considered to be a solution of the mean field game. In other words, we need
to show that it is admissible. This can be shown by using the inequality
(7), assumption (A.1) and (A.2) on the functions b2 and f , and by using the
assumption (9) on the solution of the FBSDE.

Step 2:
By the definition of J we know that for some strategy β and the Hamiltonian-
minimizing strategy α̂t = α̂(t,Xt, µt, Yt) one can write

J(α̂t, µt)− J(βt, µt) = E
[ ∫ T

0

(
f(t,Xt, µt, α̂t)− f(t, Ut, µt, βt)

)
dt

−
(
g(XT , µT )− g(UT , µT )

)]
.
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In the above equation, the right hand side can be split into the ′′f−part′′ and
the ′′g − part′′ and thus that it is possible to work on them independently.

For the ′′f − part′′:
We use the definition of the Hamiltonian and thus we obtain

E
[ ∫ T

0

(
f(t,Xt, µt, α̂t)− f(t, Ut, µt, βt)

)
dt

]
=

E
[ ∫ T

0

(
H(t,Xt, µt, Yt, α̂t)− 〈b(t,Xt, µt, α̂t), Yt〉

−H(t, Ut, µt, Ỹt, βt) + 〈b(t, Ut, µt, βt), Ỹt〉
)
dt

]
,

where Ỹt is the solution of the backward equation that one can associate
with the Forward SDE of Ut.

For the ′′g − part′′:
By assumption (A.4) we know that the function g is convex with respect to
the variable x, i.e. that for any two points x, y ∈ Rd it holds that g(x, µ) ≥
g(y, µ)− ∂xg(y, µ)(y − x). Thus we obtain

E
[
g(XT , µT )− g(UT , µT )

]
≤ E

[
(UT −XT )T∂xg(XT , µT )

]
= E

[
(UT −XT )TYT

]
,

where we have taken advantage of the initial condition of the Backward
SDE of (14). Now we need to apply Ito’s formula on the stochastic function
h(UT , XT , YT ) =

[
UT −XT

]
YT , from which it follows that

h(UT , XT , YT ) = h(U0, X0, Y0) +

∫ T

0
Y T
t dUt −

∫ T

0
Y T
t dXt+∫ T

0
(Ut −Xt)

TdYt +
1

2

∫ T

0
(d〈U, Y 〉t − d〈X,Y 〉t)

= h(U0, X0, Y0) +

∫ T

0
Y T
t (dUt − dXt) +

∫ T

0
(Ut −Xt)

TdYt.

Note that since U and X satisfy SDEs with a (same) Brownian Motion and
the same diffusion term σ, we know that they have the same quadratic vari-
ation, i.e. d[U ]t = d[X]t and therefore their quadratic covariations with Y
cancel each other out, so that d〈U, Y 〉t− d〈X,Y 〉t = 0. Furthermore, U and
X are assumed to have the same initial position, and thus h(U0, X0, Y0, ) = 0.

By replacing dXt, dUt and dYt with the equivalent of their respective
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SDE, we obtain

h(UT , XT , YT ) =

∫ T

0
Y T
t (b(t, Ut, µt, βt)− b(t,Xt, µt, α̂t) dt

+

∫ T

0
(Ut −Xt)

T∂xH(t,Xt, µt, Yt, α̂t)dt

+

∫ T

0
(Ut −Xt)

TZtdWt.

This results in the following inequality for the ′′g − part′′

E
[
g(XT , µT )− g(UT , µT )

]
≤

E
[ ∫ T

0
Y T
t (b(t, Ut, µt, βt)− b(t,Xt, µt, α̂t)) dt

−
∫ T

0
(Ut −Xt)

T∂xH(t,Xt, µt, Yt, α̂t)dt

+

∫ T

0
(Ut −Xt)

TZtdWt

]
.

Combining the results for the ′′f − part′′ and ′′g − part′′ we obtain

J(α̂t, µt)− J(βt, µt) ≤ E
[ ∫ T

0

(
H(t,Xt, µt, Yt, α̂t)− bT (t,Xt, µt, α̂t)Yt

−H(t, Ut, µt, Ỹt, βt) + bT (t, Ut, µt, βt)Ỹt

)
dt

−
∫ T

0
Y T
t (b(t, Ut, µt, βt)− b(t,Xt, µt, α̂t)) dt

+

∫ T

0
(Ut −Xt)

T∂xH(t,Xt, µt, Yt, α̂t)dt

−
∫ T

0
(Ut −Xt)

TZtdWt

]
.

We note the following points

• −bT (t,Xt, µt, α̂t)Yt + Y T
t b(t,Xt, µt, α̂t) = 0,

• E
[ ∫ T

0 (Ut−Xt)
TZtdWt

]
= 0, since it is the expectation of a martingale

and the processes Ut and Xt have the same initial condition,

• ∂αH(t,Xt, µt, Yt, α̂t) = 0 by the definition of the strategy α̂t, and thus
(βt − α̂t)T∂αH(t,Xt, µt, Yt, α̂t) = 0,

• without loss of generality we can assume that Ỹt and Yt coincide, and
thus we conclude that

bT (t, Ut, µt, βt)Ỹt = Y T
t b(t, Ut, µt, βt).
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Therefore, we have proved, that the following inequality holds for H

J(β, µ) ≥ J(α̂, µ) + E
∫ T

0
[H(t, Ut, µt, Yt, βt)

−H(t,Xt, µt, Yt, α̂t)− (Ut −Xt)
T∂xH(t,Xt, µt, Yt, α̂t)

− (βt − α̂t)T∂αH(t,Xt, µt, Yt, α̂t)]dt. (10)

Step 3:

In this step we are going to prove that if assumption (A.2) is in force,
the Hamiltonian satisfies the same convexity assumption. We start by the
convexity assumption of f

f(t, x′, µ, α′)− f(t, x, µ, α)

− 〈(x′ − x, α′ − α), ∂(x,α)f(t, x, µ, α)〉 ≥ λ|α′ − α|2.

We will try to adjust it, to obtain the respective convexity assumption for
the Hamiltonian in it.

H(t, x′, µ, y′, α′)−H(t, x, µ, y, α)

− 〈(x′ − x, α′ − α), ∂(x,α)H(t, x, µ, y, α)〉 − bT (t, x′, µ, α′)y + bT (t, x, µ, α)y

+ (x′ − x)T bT1 (t)y + (α′ − α)T bT2 (t)y ≥ λ|α′ − α|2.

Note that we will again denote by y the variable y′ without loss of generality.
By simple calculations one can see that

− bT (t, x′, µ, α′)y + bT (t, x, µ, α)y

+ (x′ − x)T bT1 (t)y + (α′ − α)T bT2 (t)y = 0,

since by (6) it holds that

−bT (t, x′, µ, α′)y + bT (t, x, µ, α)y

= −
(
bT0 (t, µ) + bT1 (t)x′T + bT2 (t)α′T

)
y

+
(
bT0 (t, µ) + bT1 (t)xT + bT2 (t)αT

)
y

= −bT1 (t)(x′ − x)T y − bT2 (t)(α′ − α)T y.

Thus it was proved that the convexity assumption holds for the Hamiltonian,
i.e. that

H(t, x′, µ, y′, α′)−H(t, x, µ, y, α)

− 〈(x′ − x, α′ − α), ∂(x,α)H(t, x, µ, y, α)〉 ≥ λ|α′ − α|2.
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Step 4:
Using the convexity assumption of the Hamiltonian and applying it in (10),
it yields

J(β, µ) ≥ J(α̂, µ) + E
∫ T

0
λ|β − α̂|2dt

which completes the proof.

Remark: From the above one can conclude that the optimal strategy, if
it exists, it is also unique. This can be seen easily, since for two optimal
solution, say α̂1

t and α̂2
t it would hold that

J(α̂1, µ) + λE
∫ T

0
|α2
t − α̂1

t |2dt ≤ J(α2
t , µ),

and at the same time

J(α̂2, µ) + λE
∫ T

0
|α1
t − α̂2

t |2dt ≤ J(α1
t , µ),

which can only be true if the two strategies coincide.
Remark: It can also be seen that the solution (Xt, Yt, Zt) will also be
unique as well. As we saw, the optimal strategy function α̂ comes from the
solution of the Hamiltonian. To obtain the optimal solution of the game, we
then have to apply the solution of the FBSDE (8) to the α̂ function. From
this, one can conclude, that if we have two sets of solutions of the FBSDE
(Xt, Yt, Zt) and (X ′t, Y

′
t , Z

′
t), then it holds that

α̂(t,Xt, µt, Yt) = α̂(t,X ′t, µt, Y
′
t ), dP⊗ dt a.e..

Thus, by the Lipschitz property of b and σ, the coefficients of the forward
equation, we can easily conclude that the Xt and X ′t will coincide. Similarly,
we can conclude that the same is true also for the pairs Yt and Y ′t , as well
as for Zt and Z ′t.

Proposition 2.7. Under the same assumptions and notation as in Theo-
rem 2.6 above, if we consider in addition another measurable and bounded
mapping

[0, T ] ↪→ P2(Rd)
t→ µ′t

and the controlled diffusion U ′ = (U ′t)0≤t≤T defined by

U ′t = x′0 +

∫ t

0
b(s, U ′s, µ

′
s, βs)ds+ σWt, t ∈ [0, T ],
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for an initial condition x′0 ∈ Rd possibly different from x0, then,

J(α̂, µ) + (x′0 − x0)TY0 + λE
∫ T

0
|βt − α̂t|2dt

≤ J([β, µ′], µ) + E
[ ∫ T

0

(
b0(t, µ′t)− b0(t, µt)

)T
Ytdt

]
, (11)

where

J([β, µ′], µ) = E
[
g(U ′T , µT ) +

∫ T

0
f(t, U ′t , µt, βt)dt

]
.

The parameter [β, µ′] in the cost J([β, µ′], µ) indicates that the flow of mea-
sures in the drift of U ′ is (µ′t)0≤t≤T whereas the flow of measures in the cost
functions is (µt)0≤t≤T . In fact, we should also indicate that the initial con-
dition x′0 might be different from x0, but we prefer not to specify this, since
there is no risk of confusion in the sequel. Also, when x′0 = X0 and µ′t = µt
for any t ∈ [0, T ], J([β, µ′], µ) = J(β, µ).

Proof. The proof of the theorem follows the same idea as in (2.6), where the
Ito formula is applied on(

(U ′t −Xt)
TYt +

∫ T

0
[f(s, U ′s, µ

′
s, βs)− f(s,Xs, µs, α̂s)]ds

)
0≤t≤T

.

Since the initial points of the processes Ut and Xt are two possibly different
points x0 and x′0, the function h(U0, X0, Y0) will not cancel out, as in the
proof of (2.6) and will thus yield the additional term (x0− x′0)Yt on the left
hand side of the statement. The second additional term∫ T

0 (b0(t, µ′t)− b0(t, µt))
T Yt dt comes from the fact that the drifts of the two

processes Ut and Xt follow the different probability distributions µt and
µ′t.

In the following sections, we will see that the above mentioned FBSDE,
as well as its mean field version (which will come up later), are key to solving
the stochastic control problem when the distribution µt is not fixed.

2.3.1 The general FBSDE is uniquely solvable

Theorem (2.6) proves that the solutions of the FBSDE and the simple
SDE provide us with our optimal strategy, which is a very important result.
However, this theorem also has many conditions that need to be true.

We have already seen that the Hamiltonian H has a minimizer. We
also work on the same setting i.e. having the exact FBSDE, the minimizing
function and the corresponding SDE, thus these condition are also true. It
remains to prove that the FBSDE also has a solution (Xt, Yt, Zt). This is
exactly what we will do in this section, starting with the next theorem. The
following theorem can be found in [5].
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Lemma 2.8. Given µ ∈ P2

(
C
(
[0, T ],Rd

))
with marginal distribution

(µt)0≤t≤T the FBSDE (2) is uniquely solvable.

Proof. Since the assumption (A.3) is true, we can take advantage of the
simplified form of the function b. Thus we can simplify the Hamiltonian and
by simple calculations we can see that

∂xH(t, x, µ, y, α) = bT1 (t)y + ∂xf(t, x, µ, α).

Note that in the FBSDE (2) the minimizer α̂ of H has already been in-
duced. Then, by Lemma (2.5) we conclude that the function (t, x, µ, y) ↪→
α̂(t, x, µ, y) is Lipschitz continuous with respect to (x, y) and uniformly in
(t, µ). Considering also the form of ∂xH and the above properties of α̂
we know that ∂xH is also Lipschitz continuous with respect to (x, y) and
uniform in t.

Then, by standard results in FBSDE theory (see for example Theorem
(5.1) in [15]) we know that there exists a T0 > 0 s.t. for all t0 ∈ (0, T0]
and any x ∈ Rd, the FBSDE (2) has a unique solution. On the other hand,
when T is arbitrary and not necessary small, there exists δ > 0 depending
on the Lipschitz constant of the coefficients in the variable x and y such that
the FBSDE is uniquely solvable on [T − δ, T ] given that the starting point
x0 ∈ Rd of Xt occurs at some time t0 ∈ [T − δ, T ].

Obviously, as in the case of the DPP, the initial time and point (t0, x0)
are important. Thus, we define our above solution in each set [T − δ, T ] to
be (Xt0,x0

t , Y t0,x0
t , Zt0,x0t )t0≤t≤T , where t0 = T − δ.

Using Theorem (2.6) from ([10]) we conclude that the existence and the
uniqueness of the solution holds for the whole [0, T ], provided that

∀x0, x
′
0 ∈ Rd |Y t0,x0

t0
− Y t0,x′0

t0
|2 ≤ c|x0 − x′0|2,

for some constant c, independent of t0 and δ.
To finish the proof, we will prove that even under only the assumption

(A.1)-(A.4) the necessary condition holds. By Blumenthal’s Zero-One-Law

one can see that the random variables Y t0,x0
t0

and Y
t0,x′0
t0

are deterministic.
Since assumptions (A.1)-(A.4) are in force, we can use the conclusion of
Proposition (2.7) and apply our solution (Xt0,x0

t0
, Y t0,x0

t0
, Zt0,x0t0

) two times to
the inequality (11), where the second time we interchange x0 and x′0 which
gives us

Ĵ t0,x0 + 〈x′0 − x0, Y
t0,x0
t0
〉+ λE

∫ T

t0

|α̂t0,x0t − α̂t0,x
′
0

t |2dt ≤ Ĵ t0,x′0 ,

Ĵ t0,x
′
0 + 〈x0 − x′0, Y

t0,x′0
t0
〉+ λE

∫ T

t0

|α̂t0,x
′
0

t − α̂t0,x0t |2dt ≤ Ĵ t0,x0 ,
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where Ĵ t0,x0 = J
(
(α̂t0,x0t )t0≤t≤T

)
and α̂t0,x0t = α̂(t,Xt0,x0

t0
, µt, Y

t0,x0
t0

). Ĵ t0,x
′
0

and α̂
t0,x′0
t have been defined accordingly. By summing up the last two

inequalities we obtain

2λE
∫ T

t0

|α̂t0,x
′
0

t − α̂t0,x0t |2dt ≤ 〈x′0 − x0, Y
t0,x′0
t0

− Y t0,x0
t0
〉.

Finally, by standard BSDE estimates, which will be proven at the end of
the proof, there exists a constant c, independent of t0 and δ, such that

E[ sup
t0≤t≤T

|Y t0,x0
t − Y t0,x′0

t |2] ≤ cE
∫ T

t0

|α̂t0,x
′
0

t − α̂t0,x0t |2dt. (12)

Combining the last two inequalities, together with the fact that Y t0,x0
t0

is
deterministic, proves that the necessary condition holds. Thus, we conclude
the existence and uniqueness of the solution of the FBSDE (2) in the whole
[0, T ].

The last step of the proof, will be to prove the estimate in (12). By the
construction of the Backward SDE we know that

Yt = E
[
YT +

∫ T

t0

∂xH(t,Xt0,x0
s , µ, Y t0,x0

y , α̂t0,x0s )ds−
∫ T

t0

ZsdWs|Fs
]
.

Thus, for the difference that we want to estimate, we deduce

|Y t0,x0
t − Y t0,x′0

t |2 = E
[∣∣∣Y t0,x0

T − Y t0,x′0
T

+

∫ T

t0

(
∂xH(t,Xt0,x0

s , µ, Y t0,x0
y , α̂t0,x0s )− ∂xH(t,X

t0,x′0
s , µ, Y

t0,x′0
y , α̂

t0,x′0
s )

)
ds
∣∣∣2|Fs],

where the Ito integral vanishes, since both SDEs have the same diffusion for

both processes Y t0,x0
t and Y

t0,x′0
t . This now yields

E sup
0≤t≤T

|Y t0,x0
t − Y t0,x′0

t |2 = E
[∣∣∣Y t0,x0

T − Y t0,x′0
T |

+ sup
0≤t≤T

∫ T

t0

(
∂xH(t,Xt0,x0

s , µ, Y t0,x0
y , α̂t0,x0s )

− ∂xH(t,X
t0,x′0
s , µ, Y

t0,x′0
y , α̂

t0,x′0
s )

)
ds
∣∣∣2],

where the conditional expectation becomes normal expectation by the tower
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property. Thus, we can deduce

E

[
sup

0≤t≤T
|Y t0,x0
t − Y t0,x′0

t |2
]
≤ cE

[
|Y t0,x0
T − Y t0,x′0

T |2
]

+ c(T − t)
∫ T

t
E

[
sup

0≤t≤T
|Y t0,x0
s − Y t0,x′0

s |2
]

+ c

∫ T

0
E|α̂t0,x0s − α̂t0,x

′
0

s |2ds,

which completes the proof of (12).

2.3.2 The value function

Recall, that our primary goal it so solve the mean field game, i.e. equation
(4). According to our main theorem, to find the solution, we need to use the
minimizer of the Hamiltonian and then apply the solution (Xt, Yt, Zt) to it,
to find the optimal strategy of the SDE. More precisely, we need to apply
only the processes Xt and Yt to α̂.

One could ask whether one needs to move to the FBSDE every time
they have an MFG problem at hand and go into the trouble of solving the
FBSDE, in order to find the optimum of the initial problem. Fortunately,
the answer is no.

In the next theorem we prove that there exists a function u, that gives
us the value of the process Yt when we apply the process Xt to it. This
means, that it is enough to know the minimizer of the Hamiltonian, the
value function u and the solution Xt of the forward SDE, in order to find
the optimal strategy for the game.

Lemma 2.9. Assume that (Xx0,µt
t , Y x0,µt

t , Zx0,µtt )0≤t≤T is the solution of the
FBSDE (8). Then there exists a constant c > 0, only depending upon the
parameters of (A.1-7), and a locally bounded measurable function uµ : [0, T ]×
Rd ↪→ Rd such that

∀x, x′ ∈ Rd, |uµ(t, x′)− uµ(t, x)| ≤ c|x− x′|, (13)

and P-a.s., for all t ∈ [0, T ], Y x0,µt
t = uµ(t,Xx0,µt

t ).

Proof. In Lemma (2.8) we proved that since assumption (A.1)-(A.4) hold,
it is true that

∀x0, x
′
0 ∈ Rd |Y t0,x0

t0
− Y t0,x′0

t0
|2 ≤ c|x0 − x′0|2.

The above bound triggers the idea that we might be looking for a function
uµ that resembles the process Yt. Thus, we define

uµ : [0, T ]× Rd ↪→ Rd

uµ(t, x) = Y t,x
t .
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Then from the above inequality, it easily follows that

|uµ(t0, x0)− uµ(t0, x
′
0)|2 ≤ c|x0 − x′0|2, ∀x0, x

′
0 ∈ Rd,

where the constant c is the square root of the constant in the first inequality
and which is again independent of t0 and x0.

The representation property of Y in terms of X directly follows from
the fact that the process Xt is Markov. This can be seen intuitively, since
the decision on the new move at time t depends upon the position of the
player and not how the player gets there. Mathematically, this can be seen
by the fact that the process Xt is the solution of the forward SDE in (8),
which according to our assumption has Lipschitz coefficient with respect to
x (b is Lipschitz by the assumptions (A.1) and (A.3) and σ is constant and
thus also Lipschitz). Thus, Yt can be represented as a function of Xt, which
means that the required representation property is also satisfied (see also
Corollary 1.5 of [10]). Moreover, by the definition of the function uµ we can
also conclude that it is measurable.

Finally, by the fact that uµ is Lipschitz continuous with respect to x,
together with the inequality

sup
0≤t≤T

|uµ(t, 0)| <∞,

it follows that uµ is locally bounded, where the last fact is a consequence of
the following inequality

sup
0≤t≤T

|uµ(t, 0)| = sup
0≤t≤T

[
E[|uµ(t,X0,0

t )− uµ(t, 0)|] + E[|Y 0,0
t |]

]
.

2.4 The mean field FBSDE

Now, that the solution to the standard problem has been found, we can
define the mean field problem, where we look for the optimal distribution
within the mean field game setting. In order to do this, we move on to
define the mean field FBSDE, i.e. the FBSDE where we replace the fixed-
“known” distribution µt by the family of distributions PXt . This means that
the FBSDE becomes

dXt = b(t,Xt,PXt , α̂(t,Xt,PXt , Yt))dt+ σdWt,

dYt = −∂xH(t,Xt,PXt , Yt, α̂(t,Xt,PXt , Yt))dt+ ZtdWt,
(14)

with X0 = x0 ∈ Rd and YT = ∂Xg(XT ,PXt).
The goal of this section is to find a distribution (µt) such that there exist

three stochastic process (Xt, Yt, Zt) that satisfy the above system when we
induce the distribution (µt) to it.
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2.4.1 What is a solution?

Before we solve the FBSDE, we need to define what we mean by “so-
lution”. In [5] Carmona and Delarue work with the following notion of a
solution

Definition 2.10. Assume that we have a measure (µt) ∈ P2(C([0, T ]),R)
which generates the stochastic process X = Xx0,µ when applied to the FB-
SDE[12], assuming that the initial point is x0. The law of this stochastic
process is denoted by PXx0,µ and assume the mapping

Φ: P2(C([0, T ]),Rd) ↪→ P2(C([0, T ]),Rd)
µ ↪→ Px0,µX .

Then we say that the measure µt is a solution to (14), if it is a fixed point
of Φ.

In other words, we say that a distribution µt is accepted for the mean
field FBSDE system, if it coincides with the empirical distribution generated
by the dynamics of the positions of the players.

2.4.2 Existence of solution

The above notion of a solution would not be useful at all, would there be
no such fixed point of Φ. Thus, we will prove the existence of such a point,
by using Schauder’s fixed point theorem, which we state next, as it appears
in [3], where one can also find the proof.

Theorem 2.11. [Schauder - Tychonoff] Let K be a non-empty compact
convex subset of a locally convex Hausdorff linear topological set E, and let
T be a continuous mapping of K into itself. Then T has a fixed point in K.

The key to proving the existence of a solution is to take advantage of the
convexity of the coefficients, since this will also lead us to compactness. We
will first prove that such a fixed point exists for functions f and g that have
additionally their partial derivatives ∂f and ∂g be uniformly bounded. The
problem is that such functions are unfortunately limited in number. The
good thing is that one can take a sequence of such nice functions and use
them as approximations of the function f and g that define the mean field
FBSDE. Then, this approximation system does indeed have a solution.

We will proceed our analysis by proving that if f and g have their first
derivatives bounded, then the mean field FBSDE systems is solvable.

Proposition 2.12. The mean field FBSDE is solvable, if in addition to the
assumption (A.1) to (A.7), we also assume that ∂xf and ∂xg are uniformly
bounded, i.e. that for some constant cB > 0 it holds that

|∂xg(x, µ)| ≤ cB and |∂xf(t, x, µ, α)| ≤ cB,

for all t ∈ [0, T ], x ∈ Rd, µ ∈ P2(Rd).
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Proof. In order to prove the existence of the solution we are going to use
Schauder’s fixed point theorem. To apply it, we are going to work on the
spaceM1(C([0, T ];Rd)) of finite signed measure ν of order 1 on C([0, T ];Rd),
which is endowed with the Kantorovich-Rubinstein norm:

‖ν‖KR = sup

{∣∣∣∣∫
C([0,T ];Rd)

F (w)dν(w)

∣∣∣∣ ; F ∈ Lip1

(
C([0, T ];Rd)

)}
,

for ν ∈ M1(C([0, T ];Rd)). The reason why we can use this metric for
our system, is because it is known to coincide with the Wasserstein dis-
tance W1 on P1(C([0, T ];Rd)). For the proof we will work on the space
M1(C([0, T ];Rd)) and we will prove that there exists a closed convex subset
E ⊂ P2(C([0, T ];Rd)) ⊂M1(C([0, T ];Rd)) which is stable for Φ, with a rela-
tively compact range, Φ being continuous on E .

Step 1:

In this step we will prove some a priori estimates for the solution (Xt, Yt, Zt)

for the solution of the general FBSDE. By the conditions of the theorem we
know that the coefficients ∂xf and ∂xg are bounded and that the terminal
condition in the general FBSDE is bounded. Moreover, the growth of the
driver is bounded as follows

|∂xH
(
t, x, µt, y, α̂(t, x, µt, y)

)
| ≤ cB + cL|y|.

We use standard BSDE and Gronwall’s inequality to conclude that there
exists a constant c, only depending upon cB, cL and T , such that, for any
µ ∈ P2(C([0, T ];Rd)),

∀t ∈ [0, T ], |Y x0;µ
t | ≤ c

holds P-almost surely. Thus, by the estimate for the minimizer α̂ found in
(7) and the bound in assumption (A.6), we obtain

∀t ∈ [0, T ], α̂
(
t,Xx0;µ

t , µt, Y
x0;µ
t

)
≤ c.

We can use the above bound for the forward part of the general FBSDE
and then we know by standard Lp estimates for SDEs that there exists a
constant c′, only depending upon cB, cL and T , such that also the solution
X is bounded by c′, i.e.

E
[

sup
0≤t≤T

|Xx0;µ
t |4

]
≤ c′. (15)

We consider the restriction of Φ to the subset E of probability measures of
order 4 whose fourth moment is not greater than c′, i.e.

E =
{
µ ∈ P4

(
C([0, T ],Rd)

)
: M4,C([0,T ],Rd)(µ) ≤ c′

}
.
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We know that E is convex and closed for the 1-Wasserstein distance and Φ
maps E into itself.

Step 2:

The two bounds that we found for the drift α̂ and the solution X con-
clude that the family of processes ((Xx0;µ

t )0≤t≤T )µ∈E is tight in C([0, T ];Rd).
Tightness then proves that Φ(E) is relatively compact for the topology of
weak convergence of measures. By the bound of X we know that every any
weakly convergent sequence (PXx0;µn )n≥1, with µn ∈ E for any n ≥ 1, is
convergent for the 1-Wasserstein distance. From this we deduce that Φ(E)
is actually relatively compact for the 1-Wasserstein distance on C([0, T ];Rd).

Step 3:

In this final step we are going to prove that Φ is continuous on E . Using
the cost inequality for different measures, proved in Proposition (2.7) and
for some measure µ′ ∈ E we obtain

J(α̂, µ)+λE
∫ T

0
|α̂′t − α̂t|2dt

≤ J([α̂′t, µ
′], µ) + E

[ ∫ T

0

(
b0(t, µ′t)− b0(t, µt)

)T
Ytdt

]
, (16)

where α̂t = α̂(t,Xx0,µ
t , µt, Y

x0,µ
t ), for t ∈ [0, T ], and where α̂′t is defined

similarly by replacing µ by µ′. Note that in this case J(α̂, µ) is the cost
associated with the flow of measures (µ′t)0≤t≤T and the controlled diffusion
process U satisfying

dUt =
[
b0(t, µ′t) + b1(t)Ut + b2(t)α̂t

]
dt+ σdWt, t ∈ [0, T ], U0 = x0,

which is also the reason why in (16) the term of the initial points has van-
ished. The cost J(α̂, µ′) is associated with the flow of measures (µt)0≤t≤T
and the diffusion process Xx0,µ. The optimality of α̂′ for the cost functional
J(·;µ′) then results in

J
([
α̂′, µ′

]
, µ
)
≤ J

(
α̂, µ′

)
+ J

([
α̂′, µ′

]
, µ
)
− J

(
α̂′, µ′

)
.

Applying this into (16) we deduce

λE
∫ T

0
|α̂′t − α̂t|2dt ≤ J

(
α̂, µ′

)
− J(α̂, µ) + J

([
α̂′, µ′

]
, µ
)

− J
(
α̂′, µ′

)
+ E

[ ∫ T

0

(
b0(t, µ′t)− b0(t, µt)

)T
Ytdt

]
, (17)

By Gronwall’s lemma, there exists a constant c such that

E
[

sup
0≤t≤T

|Xx0,µ
t − Ut|2

]
≤ c

∫ T

0
W 2

2 (µt, µ
′
t)dt.
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Using the above we can now compare J(α̂, µ′) with J(α̂, µ) (and respectively
J(α̂′, µ′) with J([α̂′, µ′], µ)). Since µ and µ′ are both in E , we can use the
bound for the minimizer α̂ and the bound (15), as well as the last part from
assumption (A.5) to obtain

J
(
α̂;µ′

)
− J

(
α̂;µ

)
≤ c
(∫ T

0
W 2

2 (µt, µ
′
t)dt

)1/2

.

A similar bound can be proved in the same way for J([α̂′, µ′];µ)− J(α̂′;µ′),
where the argument is even simpler as the costs are driven by the same
processes. Applying this on (17), using the a priori estimate for Y x0,µ

t and
applying Gronwall’s lemma allows us to go back to the controlled SDEs and
it yields

E
∫ T

0
|α̂′t − α̂t|2dt+ E

[
sup

0≤t≤T
|Xx0;µ

t −Xx0;µ′

t |2
]
≤ c
(∫ T

0
W 2

2 (µt, µ
′
t)dt

)1/2

.

Remember that the following holds

W1(Φ(µ),Φ(µ′)) ≤ E

[
sup

0≤t≤T
|Xx0;µ

t −Xx0;µ′

t |

]
.

As a result and since probability measures in E have bounded moments of
order 4, the Cauchy-Schwartz inequality yields

W1(Φ(µ),Φ(µ′)) ≤ c
(∫ T

0
W 2

2 (µt, µ
′
t)dt

)1/4

≤ c
(∫ T

0
W

1/2
1 (µt, µ

′
t)dt

)1/4

,

which shows that Φ is continuous on E with respect to the 1-Wasserstein
distance W1 on P1(C([0, T ];Rd)).

Thus, we have to find a way to use the above theorem for our setting. The
way to do this, is by using function fn and gn that satisfy the assumptions
(A.1)-(A.7) and have furthermore uniformly bounded first derivatives ∂xf

n

and ∂xg
n. In the next theorem, Carmona and Delarue show that if we have

such functions, they do indeed solve the mean field FBSDE (14).

Lemma 2.13. If there exist two sequences (fn)n≥1 and (gn)n≥1 such that

(i) there exist two parameters λ′ and c′L such that, for any n ≥ 1, fn and
gn satisfy (A.1)-(A.7) with respect to λ′ and c′L,

(ii) fn (resp. gn) converges towards f (resp. g) uniformly on any bounded
subset of [0, T ]× Rd × P2(Rd)× Rk (resp. Rd × P2(Rd)),

(iii) for any n ≥ 1, equation (14), with (∂xf, ∂xg) replaced by (∂xf
n, ∂xg

n),
has a solution which we denote by (Xn, Y n, Zn).
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Then, equation (14) is solvable.

Proof. Since this theorem has to do with the approximations fn and gn, we
will also work with approximations of the other tools as well. For any n ≥ 1,
we define the approximated Hamiltonian

Hn(t, x, µ, y, α) = bT (t, x, µ, α)y + fn(t, x, µ, α),

and its minimizer (α̂n(t, x, µ, y))0≤t≤T . We define the candidate for approxi-
mated optimal strategy as α̂nt = α̂n(t,Xn

t ,PXn
t
, Y n

t ) for any t ∈ [0, T ], where
(Xn

t , Y
n
t , Z

n
t )0≤t≤T is the solution of the approximated FBSDE. Since Xn

t

gives the dynamics of the states of the player when the strategy α̂n is fol-
lowed, we can use theorem (2.6) to compare the resulting optimal cost to
the cost generated when some strategy (βnt )0≤t≤T is being followed, so that
we obtain

J(α̂nt ,PXn
t

) + λE
∫ T

0
|βnt − α̂nt |2dt ≤ J(βnt ,PXn

t
). (18)

We define by (Unt )0≤t≤T the outcome process when the player follows strat-
egy βnt . The proof can be split in the three following steps. Our first two
steps consist in proving that

sup
m≥1

E
[∫ T

0
|α̂ns |2ds

]
< +∞.

which can used to prove that the processes (Xn)n≥1) are tight.

Step 1:
For this step we consider the strategy βn to be such that βns = E(α̂nt ) for
0 ≤ t ≤ T . In this case, by the affinity of b in (6), for t ∈ [0, T ] we obtain

Unt = x0 +

∫ T

0
[b0(s,PXn

s
) + b1(s)Uns + b2(s)E(α̂ns )]ds+ σdWt.

The last equation shows that both Unt and Xn
t have the same expectation

for t ∈ [0, T ]. As a result

[Unt − E(Unt )] =

∫ T

0
b1(s)[Uns − E(Uns )]ds+ σdWt.

We proceed to the cost function, and for this reason we will work with the
approximation functions gn and fn, with the same distribution µt = PXn

t
.

Now, we will replace the cost functions in (18) and thus we obtain

E
[
gn(Xn

T ,PXn
T

)
]

+E
[∫ T

0

(
λ|βns − α̂ns |2 + fn(s,Xn

s ,PXn
s
, α̂ns

)
ds

]
≤ E

[
gn(UnT ,PXn

T
) +

∫ T

0
fn(s, Uns ,PXn

s
, βns )ds

]
.
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Using the fact that βns = E(α̂nt ) and assumption (A.2) which states that g
is convex, yields

gn(E [Xn
T ] ,PXn

T
)+E

[∫ T

0

(
λ|E(α̂ns )− α̂ns |2 + fn(s,Xn

s ,PXn
s
, α̂ns

)
ds

]
≤ gn(E [UnT ] ,PXn

T
) + E

[∫ T

0
fn(s, Uns ,PXn

s
,E(α̂ns ))ds

]
.

Using also the convexity assumption for f as it was stated in (A.4) we obtain

gn(E [Xn
T ] ,PXn

T
)+

[∫ T

0

(
λVar(α̂ns ) + fn(s,E(Xn

s ),PXn
s
,E(α̂ns )

)
ds

]
≤ gn(E [UnT ] ,PXn

T
) +

[∫ T

0
fn(s,E(Uns ),PXn

s
,E(α̂ns ))ds

]
,

since E(|E(α̂ns ) − α̂ns |2) = Var(α̂ns ). Then by assumption (A.5) we conclude
that there exists some constant c, possibly different from line to line and
which depends only on λ, cL, x0 and T so that∫ T

0
Var(α̂ns )ds ≤ c

(
1 + E

[
|UnT |2

]1/2
+ E

[
|Xn

T |2
]1/2)E [|UnT − E(Xn

T )|2
]1/2

+

∫ T

0

(
1 + E

[
|Uns |2

]1/2
+ E

[
|Xn

s |2
]1/2

+ E
[
|α̂ns |2

]1/2)
× E

[
|Uns − E(Xn

s )|2
]1/2

ds.

By definition E(Xn
t ) = E(Unt ) for 0 ≤ t ≤ T , therefore since the variance of

(Unt )0≤t≤T ) is uniformly bounded, we obtain∫ T

0
Var(α̂ns )dt ≤ c

[
1 + sup

0≤s≤T
E
[
|Xn

s |2
]1/2

+

(
E
∫ T

0
|α̂ns |2dt

)1/2
]
.

We also know that

sup
0≤s≤T

E
[
|Xn

s |2
]
≤ c

[
1 + E

∫ T

0
|α̂ns |2ds

]
, (19)

so that we can use it, in combination with the linearity of the dynamics of
Xn and Gronwall’s inequality, to obtain

sup
0≤s≤T

Var(Xn
s ) ≤ c

[
1 +

(
E
∫ T

0
|α̂ns |2ds

)1/2
]
,

The last bound is used to control the Wasserstein distance between distri-
bution of Xn

s and the Dirac mas at the point E(Xn
s ) for all ∈ [0, T ].
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Step 2:
In this step we will use the process Unt controlled by the strategy βnt = 0,
so the process becomes

Ũnt = x0 +

∫ T

0
[b0(s,PXn

s
) + b1(s)Ũns ]ds+ σdWt,

for all t ∈ [0, T ]. We use the boundedness of b0 defined in assumption (A.5),
so that we have

sup
n≥1

E[ sup
0≤t≤T

|Ũnt |2] < +∞.

We use the comparison on the costs from theorem (2.6) and the convexity
of gn and fn, as in the first step, which yields

gn(E [Xn
T ] ,PXn

T
)+

∫ T

0

(
λE(|α̂ns |2) + fn(s,E(Xn

s ),PXn
s
,E(α̂ns )

)
ds

≤ E
[
gn(ŨnT ,PXn

T
) +

∫ T

0
fn(s, Ũns ,PXn

s
, 0)ds

]
.

Assumption (A.2) provides us with the convexity of fn with respect to the
strategy and so we can combine it with the assumption (A.6) for
fn(s, Uns ,PXn

s
, 0) which yields

gn(E [Xn
T ] ,δE(Xn

T )) +

∫ T

0

(
λE(|α̂ns |2) + fn(s,E(Xn

s ),PXn
s
, 0
)
ds

≤ E
[
gn(ŨnT ,PXn

T
) +

∫ T

0
fn(s, Ũns ,PXn

s
, 0)ds

]
+ cE

∫ T

0
|α̂ns |,

for some constant c, with a value that might change from line to line, in-
dependent of n. By assumption (A.5) and letting the constant c change it
value from line to line, we deduce

gn(E [Xn
T ] , δE(Xn

T )) +

∫ T

0

(
λE(|α̂ns |2) + fn(s,E(Xn

s ), δE(Xn
T ), 0

)
ds

≤ gn(0, δE(Xn
T )) +

∫ T

0
fn(s, 0, δE(Xn

T ), 0)ds+ cE
∫ T

0
|α̂ns |ds

+ c

(
1 + sup

0≤s≤T

[
E
[
|Xn

s |2
]1/2])(

1 + sup
0≤s≤T

[Var(Xn
s )]1/2

)
.

Thus, we use the inequality (19) and apply Young’s inequality so that we
obtain

gn(E [Xn
T ] , δE(Xn

T )) +

∫ T

0

(
λ

2
E(|α̂ns |2) + fn(s,E(Xn

s ), δE(Xn
T ), 0

)
ds

≤ gn(0, δE(Xn
T )) +

∫ T

0
fn(s, 0, δE(Xn

T ), 0)ds+ c

(
1 + sup

0≤s≤T
[Var(Xn

s )]

)
.
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Next, we use the result from the first step, to bound the last term by the
integral of the expectation of the strategy and so we conclude

gn(E [Xn
T ] , δE(Xn

T )) +

∫ T

0

(
λ

2
E(|α̂ns |2) + fn(s,E(Xn

s ), δE(Xn
T ), 0

)
ds

≤gn(0, δE(Xn
T )) +

∫ T

0
fn(s, 0, δE(Xn

T ), 0)ds+ c

(
1 +

[∫ T

0
E
(
|α̂ns |2

)
ds

]1/2
)
.

By assumption (A.2) we know that gn and fn are convex and applying also
Young’s inequality we obtain

(E(Xn
T ))T∂xg

n(0, δE(Xn
T ))

+

∫ T

0

[
λ

4
E
(
|α̂ns |2

)
+ (E(Xn

s ))T ∂xf
n(s, 0, δE(Xn

s ), 0)

]
ds ≤ c.

The last of our basic assumptions in the paper, gives us

E
(
|α̂ns |2

)
≤ c

(
1 + sup

0≤s≤T
E
[
|Xn

s |2
]1/2)

,

so that the desired bound (2.4.2) results from (19). This bound then results
in

E

[
sup

0≤s≤T
|Xn

s |2
]
≤ c. (20)

Thus using the last two results of (20) and (2.4.2) we can conclude that
the processes (Xn)n≥1 are tight and thus a convergent subsequence can be
found.

Step 3:
Assume that the empirical distribution of the convergent subsequence
(Xnp)p≥1 is (PXnp ), and define its limit as µ. Since the supremum of the
process Xn

s has be found in (20) to be bounded, we get

M2,C([0,T ],Rd)(µ) < +∞.

Thus we can use Lemma (2.8) and we now that the general FBSDE has a
unique solution, which we define as (Xt, Yt, Zt)0≤t≤T . By Lemma (2.9) we
know that the value function u : [0, T ] × Rd ↪→ Rd exists and is moreover
c-Lipschitz with respect to the variable x for the same constant as in thte
statement of the theorem. Therefore, as we proved, it holds that for all
t ∈ [0, T ] Yt = u(t,Xt). More specifically, it holds that

sup
0≤t≤T

|u(t, 0)| ≤ sup
0≤t≤T

[E [|u(t,Xt)− u(t, 0)|] + E[|Yt|]] < +∞. (21)
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From the above we conclude that there even exists a constant c′ so that

|u(t, x)| ≤ c′(1 + |x|), 0 ≤ t ≤ T, x ∈ Rd. (22)

Last but not least, the bound (7) for the optimal strategy, together with
the assumption (A.6) result in the fact that the same bound holds for the
optimal strategy, i.e. that

|α̂(t, x, µt, u(t, x))| ≤ c′(1 + |x|),

where the constant c′ could have a different value than before. Using this
bound in the forward SDE from general FBSDE system, we obtain that

∀L ≥ 1, E

[
sup

0≤t≤T
|Xt|L

]
< +∞. (23)

This result then ensures that the optimal strategy remains an admissible
strategy even when we plug the solution (Xt, Yt, Zt) in it, that is

E
∫ T

0
|α̂(t,Xt, µt, Yt)|2dt < +∞, t ∈ [0, T ].

The same argument can be used to prove the same for the approximation
solution (Xn

t )0≤t≤T . We now use the fact that

sup
n≥1

E

[
sup

0≤t≤T
|Xn

t |L
]
< +∞, (24)

for all L ≥ 1 which will be proved in the final step. Following the same train
of thought as in the proof of (17), we obtain

λE
∫ T

0
|α̂nt − α̂t|2dt ≤Jn(α̂, µn)− J(α̂, µ) + J([α̂n, µn], µ)− Jn(α̂n, µn)

+ E
∫ T

0
(b0(t, µnt )− b0(t, µt))

T Ytdt. (25)

For the notation difference of J([α̂n, µn], µ) and J(α̂n, µn) can be seen clearly
in Proposition (2.7) and J(α̂n, µn) has as similar definition as J(α̂, µ) except
that the approximation function fn and gn are used. We define the process
(Unt )0≤t≤T for n ≥ 1 as follows

dUnt = b(t, UnT , µ
n
t , α̂t)dt+ σdWt,

with the initial condition Un0 = x0 and where the drift b is again affine and
has the form defined in (6). From the above we conclude

Jn(α̂, µn)− J(α̂, µ) =E [gn(UnT , µ
n
T )− g(XT , µT )]

+ E
∫ T

0
[fn(t, Unt , µ

n
t , α̂t)− f(t,Xt, µt, α̂t)] dt.
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We use Gronwall’ inequality and the convergence of the µnp to µ for the
2-Wasserstein distance, we claim that

Unp
p→+∞−−−−→ X,

for the norm E
[
sup0≤s≤t |.s|2

]1/2
. By

• the uniform convergence of gn and fn towards f and g on bounded
subsets of their respective domains, as stated in the theorem,

• the convergence of µnp towards µ,

• the bound in (23), and

• the admissibility of the strategy α̂(t,Xt, µt, Yt),

we conclude that
Jnp(α̂, µnp)

p→+∞−−−−→ J(α̂, µ).

Similarly, we use

• the finiteness of E
[
sup0≤t≤T |Xt|L

]
,

• the finiteness proved in (24), and

• the finiteness of supm≥1 E
[∫ T

0 |α̂
n
s |2ds

]
to conclude that

b0(t, µnt )− b0(t, µt)
p→+∞−−−−→ 0,

J([α̂n, µn], µ)− Jn(α̂n, µn)
p→+∞−−−−→ 0.

By (25), we thus deduce

α̂np
p→+∞−−−−→ α̂,

in L2([0, T ]×Ω, dt⊗dP). This proves that X is the limit of the subsequence

(Xnp)g≥1 for the norm E
[
sup0≤s≤t |.s|2

]1/2
. This finally yields the conclu-

sion that µ = PXt and therefore the mean field FBSDE (14) is solvable.

Step 4:
This step consists of the proof of

sup
n≥1

E

[
sup

0≤t≤T
|Xn

t |m
]
< +∞,

for all m ≥ 1. Notice that the constant c in Theorem (13) is independent of
n. Furthermore, as can be seen in (20), the second moments of sup0≤t≤T |Xn

t |
are uniformly bounded for n ≥ 1. By assumption (A.5) we know that
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the driver in the backward equations of the general FBSDE system has a
driver that is at most of linear growth in (x, y, α), so that the finiteness

of supn≥1 E
∫ T

0 |α̂
n
s |2ds and by standard L2-estimates for backward SDEs,

we conclude that also the second moments of sup0≤t≤T |Y n
t | are uniformly

bounded for n ≥ 1. Repeating the calculations used to prove (23), we
conclude the result.

So we have found that there exists a solution of the FBSDE and that
can be approximated by two nice enough sequences. The next step is to see
how one can choose these approximating sequences.

Lemma 2.14. Assume that, in addition to (A.1)-(A.7), there exists a con-
stant γ > 0 such that the functions f and g satisfy

f(t, x′, µ, α′)− f(t, x, µ, α)− 〈(x′ − x, α′−α), ∂(x,α)f(t, x, µ, α)〉
≥ γ|x′ − x|2 + λ|α′ − α|2, (26)

g(x′, µ)− g(x, µ)− 〈x′ − x, ∂xg(x, µ)〉 ≥ γ|x′ − x|2.

Then, there exist two positive constants λ′ and c′L, depending only upon λ,cL
and γ, and two sequences of functions (fn)n≥1 and (gn)n≥1 such that

(i) for any n ≥ 1, fn and gn satisfy (A.1)-(A.7) with respect to the pa-
rameters λ′ and c′L and ∂xf

n and ∂xg
n are bounded,

(ii) for any bounded subsets of [0, T ] × Rd × P2(Rd) × Rk, there exists an
integer n0, such that, for any n ≥ n0, fn and gn coincide with f and
g respectively.

Proof. The proof of this theorem is very technical and without particular
interest, thus we will not be presented here. The interested reader is referred
to [5].

One should compare the above convexity assumptions for f and g with
(5) from the assumption (A.2) that we have. For the above approximating
sequences (fn)n≥1 and (gn)n≥1, Lemma (2.13) can be applied and thus one
obtains a solution of (14). Next, we state and prove the second main result
in this thesis.

Theorem 2.15. Under assumptions (A.1) to (A.7), the forward-backward
system (14) has a solution. Moreover, for any solution (Xt, Yt, Zt)0≤t≤T to
(14), there exists a function u : [0, T ] × Rd ↪→ Rk (i.e. a value function),
satisfying the growth and Lipschitz properties

|u(t, x)| ≤ c(1 + |x|),
|u(t, x)− u(t, x′)| ≤ c|x− x′|,

37



for all t ∈ [0, T ], for all x, x′ ∈ Rd for some constant c ≥ 0, and such that,
P-a.s., for all t ∈ [0, T ], Yt = u(t,Xt). In particular, for any m ≥ 1,
E[sup0≤t≤T |Xt|m] < +∞.

Proof. In theorem (2.14) we proved that the mean field FBSDE is uniquely
solvable if the assumptions (A.1)-(A.7) hold, and furthermore f and g satisfy
the additional convexity assumption (26). Then, we know that there exist
two approximating function fn and gn that converge to f and g and having
bounded partial derivatives. Then by (2.14) we know that the FBSDE
system (14) has a solution.

If on the other hand, only the assumption (A.1)-(A.7) are satisfied, with-
out the additional convexity assumption, then one defines the following ap-
proximating functions

fn(t, x, µ, α) = f(t, x, µ, α) +
1

n
|x|2, gn(x, µ) = g(x, µ) +

1

n
|x|2,

for (t, x, µ, α) ∈ [0, T ]×Rd ×P2(Rd)2 and for n ≥ 1. Then, we can see that
these approximating functions satisfy the assumptions of Lemma (2.13) and
thus, the mean field FBSDE is uniquely solvable. Then, for an arbitrary
solution of the mean field FBSDE, one can conclude the existence of the
value function by Lemma (2.9) and the bound (21). Last but not least, the
bound (23) proves the boundedness of the moments of Xt.
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3 Solving the large game

3.1 The large game in connection to the FBSDE

In this section we will try to show the connection between the solution
that we got from the FBSDE and the large game that we wanted to solve
initially. But first, let us summarize and make the different notations at
hand clear.

• The FBSDE
In this thesis we have defined the mean field FBSDE

dXt = b(t,Xt,PXt , α̂(t,Xt,PXt , Yt))dt+ σdWt,

dYt = −∂xH(t,Xt,PXt , Yt, α̂(t,Xt,PXt , Yt))dt+ ZtdWt,

We proved that the above FBSDE system has a unique solution
(Xt, Yt, Zt)0≤t≤T and furthermore that the associate value function
u(t, x) exists. We have defined the flow of marginal probability mea-
sures (µt)0≤t≤T that are considered in this case, which satisfy the
condition µt = PXt . During the analysis we have found a strategy
α̂(t,Xt, µt, u(t,Xt)) which is the minimizer of the Hamiltonian of the
FBSDE. We denote by J the optimal cost

J = E
[
g(XT , µT ) +

∫ T

0
f(t,Xt, µt, α̂(t,Xt, µt, Yt)dt

]
.

Recall that in this setting there are infinitely many players, i.e. we let
N → +∞.

To sum up, we have proved that this limiting problem provides us with
both the distribution µt, as well as the strategy α̂t that minimize the
cost function J(β, µt), whose minimum we will denote as J .

• The large game:
In the large game setting, we assume that we have N different players,
where N is again large, yet finite. This time we have a system of N
stochastic differential equations

dU it = b(t, U it , ν̄
N
t , βt)dt+ σdW i

t , ν̄Nt =
1

N

N∑
j=1

δ
Ujt
, (27)

with t ∈ [0, T ] and U i0 = u0 and where βt is an admissible strategy.
This is the notation that we use when the players follow an arbitrary
admissible strategy βt.

We want to investigate what happens when the N players of the large
game, follow the strategies that have been found in the limiting case.
Thus, we define the strategies

ᾱN,it = α̂(t,Xi
t , µt, u(t,Xi

t)), (28)
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for 0 ≤ t ≤ T and i ∈ {1, 2, . . . , N}.
What is important to understand, is that the strategy α̂ only depends
on the time t, the position Xt of the player at this time and the
positions of their opponents through the empirical distribution, but
not on the strategies that the rest of the players follow. Thus, all
players would essentially follow the same strategy, should they start
at the same initial point and play the game under the exact same
circumstances (i.e. without the influence of the random factor Wt).

In this setting, and with the assumption that the player i follows strat-
egy ᾱN,it , the dynamics of the their private state will be given by

dXi
t = b(t,Xi

t , µ̄
N
t , ᾱ

N,i
t )dt+ σdW i

t .

Note that the above equation is well defined, since as we saw in Lemma
(2.5) the minimizer α̂(t, x, µt, y) of the Hamiltonian is Lipschitz con-
tinuous and at most of linear growth with respect to the variables x
and y, uniformly in t ∈ [0, T ]. Moreover, the function u satisfies the
properties as defined in (2.15). As in the limiting case, the cost func-
tion for the player i when every player follows the strategy ᾱ, is given
by

J i,µ(ᾱ1, ᾱ2, . . . , ᾱN ) = E
[
g(XT , µT ) +

∫ T

0
f(t,Xt, µt, ᾱt)dt

]
. (29)

3.2 An approximate Nash equilibrium

In this section, we will prove that the solution provided by the FBSDE,
forms an approximate Nash equilibrium for the Stochastic Problem (2) at
hand. This proof follows the approache of Bensoussan,Sung, Yam and Yung
in “Linear quadratic mean field games” (2011) and Cardaliaguet in “Notes
on mean field games” (2010).

Theorem 3.1. Letting all assumptions in section (1.5) hold, the strategies
(ᾱN,it )0≤t≤T, i∈{1,...,N} defined in (28) form an approximate Nash equilibrium
of the N -player game at hand. More precisely, there exists a constant c > 0
and a sequence of positive number (εN )N≥1 such that, for each N ≥ 1,

i) εN ≤ cN−1/(d+4),

ii) for any player i ∈ {1, 2, . . . , N} and any progressively measurable strat-
egy βi = (βit)0≤t≤T that is admissible, one has

J̄N,i(ᾱN,1, .., ᾱN,(i−1), βi, ᾱN,i+1, .., ᾱN,N ) ≥ J̄N,i(ᾱN,1, .., ᾱN,N )− εN .
(30)
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Proof. Throughout this proof we will use the three processes U it , X
i
t and

¯̄Xi
t and their respective empirical distributions. It is important that their

definitions are clear and thus we write them here for clarification.

dU it = b(t, U it , ν̄
N
t , βt)dt+ σdW i

t , ν̄Nt =
1

N

N∑
j=1

δ
Ujt

;

dXi
t = b(t,Xi

t , µ̄
N
t , α̂t(t,X

i
t , µ̄

N
t , u(t,Xi

t)))dt+ σdW i
t , µ̄Nt =

1

N

N∑
j=1

δ
Xj
t
;

d ¯̄Xi
t = b(t, ¯̄Xi

t , µ
N
t , α̂t(t,

¯̄Xi
t , µ

N
t , u(t, ¯̄Xi

t)))dt+ σdW i
t , ¯̄µNt =

1

N

N∑
j=1

δ ¯̄Xj
t
,

where the distribution ¯̄µNt is defined to coincide with the empirical distribu-
tion µt of the solution Xt of the FBSDE.

Step 1: Bounding the random dynamics U it by the random strategy of the
first player.

Since the function J̄ is symmetric, we only need to prove the theorem for

i = 1. Thus we assume that the first player follows a progressively mea-
surable strategy β1 such that E

∫ T
0 |β

1|2ds < +∞ and that the rest of the

players follow the admissible strategies ᾱN,it as they were defined in (28).
We apply the above strategies to the quantities U it and J̄N,i as they were
introduced in (27) and (29). Then, by boundedness of b0, b1 and b2, as well
as by Gronwalls’s lemma, we obtain

E

[
sup

0≤t≤T
|U1
t |2
]
≤ c

(
1 + E

∫ T

0
|β1
t |2dt

)
, (31)

E

[
sup

0≤t≤T
|U it |2

]
≤ c

(
1 + E

∫ T

0
|ᾱi,Nt |2dt

)
,

where i ∈ {2, . . . , N}. Using the fact that the strategies (ᾱN,it ) satisfy the
square integrability condition of admissibility, the last inequality becomes

E

[
sup

0≤t≤T
|U it |2

]
≤ c.

Summing up the bounds for all E
[
sup0≤t≤T |U it |2

]
for i ∈ {1, . . . , N} yields

N∑
i=1

E

[
sup

0≤t≤T
|U it |2

]
≤ c

(
N + E

∫ T

0
|β1
t |2dt

)
,
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or equivalently,

1

N

N∑
i=1

E

[
sup

0≤t≤T
|U it |2

]
≤ c

(
1 +

1

N
E
∫ T

0
|β1
t |2dt

)
, (32)

Step 2: The distance of the distributions µt and µNt can be estimated.

As the description of this step reveals, we will be working with a copy of Xt.

Thus we introduce for all i ∈ {1, . . . , N} a new stochastic process ¯̄Xt that
occurs when the players follow strategy

¯̄αN,it = α̂(t, ¯̄Xi
t , µt, u(t, ¯̄Xi

t)),

and which then results to the following system of decoupled independent
and identically distributed states

d ¯̄Xi
t = b(t, ¯̄Xi

t , ¯̄µNt , ¯̄αN,it )dt+ σdW i
t ,

for 0 ≤ t ≤ T . Since the processes ¯̄Xi
t are by construction independent

copies of Xi (note that these processes are a copy of the process from the
mean field game, not the approximation Xi

t) for all i ∈ {1, . . . , N}, it also
holds that ¯̄µt = P ¯̄Xi

t
= µt for any t ∈ [0, T ]. Using the properties of the

value function and the uniform boundedness of (Md+5(µt))0≤t≤T proved in
Theorem (2.15), together with the useful estimate that can be found in the
introduction, one can apply Theorem (3.2) so that we obtain

sup
1≤i≤N

E

(
sup

0≤t≤T
|Xi

t − ¯̄Xi
t |2
)
≤ cN

−2
d+4 ,

where in our case becomes even stronger so that

max
1≤i≤N

E

(
sup

0≤t≤T
|Xi

t − ¯̄Xi
t |2
)
≤ cN

−2
d+4 . (33)

Recall that Xi
t solves

dXi
t = b(t,Xi

t , µ̄
N
t , ᾱ

N,i
t )dt+ σdW i

t .

Moreover, for each t ∈ [0, T ]

W 2
2 (µ̄Nt , µt) ≤

2

N

N∑
i=1

|Xi
t − ¯̄Xi

t |2 + 2W 2
2 (

1

N

N∑
i=1

δXi
t
, µt).

We take expectations in both sides and use the bound for the maximum in
(33) together with the useful estimate presented in the introduction. The
above equation then becomes

sup
0≤t≤T

E
[
W 2

2 (µ̄Nt , µt)
]
≤ cN

−2
d+4 . (34)
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Step 3: The cost J̄N,i(ᾱN,1, . . . , ᾱN,N ) approximates the optimal cost J.

To prove the next step we will use the local Lipschitz regularity of the

coefficients f and g as it was defined in the assumption (A.5) and the Cauchy
Schwarz inequality. Thus, for all i ∈ {1, . . . , N} and for a constant c > 0,
that might change from line to line, we obtain

|J − J̄N,i(ᾱN,1, . . . , ᾱN,N |

=

∣∣∣∣E[g( ¯̄Xi
T , µT ) +

∫ T

0
f(t, ¯̄Xi

t , µt, α̂
i
t)dt− g(Xi

T , µ̄
N
T )

−
∫ T

0
f(t,Xi

t , µ̄
N
t , ᾱ

N,i
t )dt

]∣∣∣∣
≤cE

1 + | ¯̄Xi
T |2 + |Xi

T |2 +
1

N

N∑
j=1

|Xj
T |

2

 1
2

E
[
| ¯̄Xi

T −Xi
T |2 +W 2

2 (µT , µ̄
N
T )
] 1

2

+ c

∫ T

0

[
E

1 + | ¯̄Xi
t |2 + |Xi

t |2 + |α̂it|2 + |ᾱN,it |2 +
1

N

N∑
j=1

|Xj
T |

2

 1
2

× E
[
| ¯̄Xi

t −Xi
t |2 + |ᾱN,it − α̂it|2 +W 2

2 (µt, µ̄
N
t )
] 1

2

]
dt.

By the boundedness of b0, the properties of the value function of the mean
field game and by the estimate we found for the minimizer strategy in (7),
we obtain

sup
N≥1

max
1≤i≤N

[
E[ sup

0≤t≤T
|Xi

t |2] + E
∫ T

0
|ᾱN,it |2dt

]
< +∞. (35)

Applying this to the above inequality for the cost function we deduce

|J − J̄N,i(ᾱN,1, . . . ,ᾱN,N | ≤ cE
[
| ¯̄Xi

T −Xi
T |2 +W 2

2 (µT , µ̄
N
T )
] 1

2

+c

(∫ T

0
E
[
| ¯̄Xi

t −Xi
t |2 + |ᾱN,it − α̂it|2 +W 2

2 (µt, µ̄
N
t )
]) 1

2

.

Using the Lipschitz properties of the minimizer strategy α̂t and the value
function u, we obtain

|α̂it − ᾱ
N,i
t | = |α̂it(t, ¯̄Xi

t , µt, u(t, ¯̄Xi
t))− ᾱ

N,i
t (t,Xi

t , µt, u(t,Xi
t))|

≤ c| ¯̄Xi
t −Xi

t |.

By the inequalities (34) and (33) we finally obtain

J̄N,i(ᾱN,1, . . . , ᾱN,N ) = J +O(N
−1
d+4 ). (36)
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Step 4: The distance between ν̄t and µt generated by the optimal distribution
can be estimated.

The fact that the cost of each player i is almost the optimal cost, when we

assume that all players follow the prescribed strategy, leads to the conclusion
that it is enough to prove that

J̄N,i(β1, ᾱN,2, . . . , ᾱN,N ) ≥ J − εN .

By similar computations as the one that we used to prove (32), it can be
shown that

E

[
sup

0≤t≤T
|U1
t −X1

t |2
]
≤ c

N

∫ T

0

N∑
j=1

E
[

sup
0≤r≤s

|U jr −Xj
r |2
]
ds

+ cE
∫ T

0
|β1
t − ᾱ

N,1
t |dt

for the rebel player. For the rest of the players, for i ∈ {2, . . . , N} it even
holds that

E

[
sup

0≤t≤T
|U it −Xi

t |2
]
≤ c

N

∫ T

0

N∑
j=1

E
[

sup
0≤r≤s

|U jr −Xj
r |2
]
ds.

Thus, we apply Gronwall’s inequality and obtain

1

N

N∑
j=1

E

[
sup

0≤t≤T
|U jt −X

j
t |2
]
≤ c

N
E
∫ T

0

[
sup

0≤r≤s
|β1
t − ᾱ

N,i
t |2

]
ds.

Furthermore, when i ∈ {2, . . . , N}, we can even conclude that

sup
0≤t≤T

E
[
|U jt −X

j
t |2
]
≤ c

N
E
∫ T

0

[
|β1
t − ᾱ

N,i
t |2

]
dt.

This last conclusion, combined with (33) and (35) proves that for any A > 0,
there exists a constant cA depending on A, such that if

E
∫ T

0
|β1
t |2dt ≤ A ⇒ max

2≤i≤N
sup

0≤t≤T
E
(
|U it − ¯̄Xi

t |2
)
≤ cAN

−2
d+4 . (37)

For the next step of the proof we will fix a number A such that E
∫ T

0 |β
1
t |2dt ≤

A. In the last part of the proof, we discuss why we don’t need to take into
account the opposite case, where E

∫ T
0 |β

1
t |2dt > A. Thus, let us fix some

A > 0 such that the above condition is satisfied. By (37) we get that

1

N − 1

N∑
i=2

E
(
|U it − ¯̄Xi

t |2
)
≤ 1

N − 1
max

2≤i≤N
sup

0≤t≤T
(N − 1)E

(
|U it − ¯̄Xi

t |2
)

≤ cAN
−2
d+4 ,
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where the constant cA might change its value from line to line. Next, we
will apply the triangle inequality for the Wasserstein distance, so that we
obtain

E
[
W 2

2 (ν̄Nt , µt)
]
≤ c

{
E

W 2
2

 1

N

N∑
j=1

δ
Ujt
,

1

N − 1

N∑
j=2

δ
Ujt


+

1

N − 1

N∑
j=2

E
[
|U jt − ¯̄Xj

t |2
]

+ E

W 2
2

 1

N − 1

N∑
j=2

δ ¯̄Xj
t
, µt

}. (38)

Using the fact that

E

W 2
2

 1

N

N∑
j=1

δ
Ujt
,

1

N − 1

N∑
j=2

δ
Ujt

 ≤ 1

N(N − 1)

N∑
j=2

E
[
|U1
t − U

j
t |2
]
,

we can simplify (38), so that we obtain

E
[
W 2

2 (ν̄Nt , µt)
]
≤ c

{
1

N(N − 1)

N∑
j=2

E
[
|U1
t − U

j
t |2
]

+
1

N − 1

N∑
j=2

E
[
|U jt − ¯̄Xj

t |2
]

+ E

W 2
2

 1

N − 1

N∑
j=2

δ ¯̄Xj
t
, µt

}.
Furthermore, we have already seen that the second term can be estimated,
and we also have the useful estimate stated in the preliminary definitions.
Thus, the above inequality becomes

E
[
W 2

2 (ν̄Nt , µt)
]
≤ c

{
1

N(N − 1)

N∑
j=2

E
[
|U1
t − U

j
t |2
]

+ cAN
−2
d+4 + cAN

−2
d+4

}
.

Since the first term is O(N−1), as can be seen by the first three estimates
of this proof, we conclude that

E
[
W 2

2

(
ν̄Nt , µt

)]
≤ cAN

−2
d+4 , (39)

which is the desired estimate for the distance of the two distributions.

Step 5: Proving (30) for (β1
t ) whose expected square integral is not too large.

For this step of the prove we define the process ( ¯̄U1
t )0≤t≤T of the private

state of the rebel player, which is defined as the solution of

d ¯̄U1
t = b(t, ¯̄U1

t , µt, β
1
t ),
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for 0 ≤ t ≤ T and the initial condition ¯̄U1
0 = x. Using also the definition

of the process (U1
t )0≤t≤T , and the form of the drift as assumed in (6), we

obtain

U1
t − ¯̄U1

t =

∫ t

0

[
b0(s, µs)− b0(s, ν̄Ns )

]
ds+

∫ t

0

[
b1(s)[U1

s − ¯̄U1
s ]
]
ds.

In the last equality we take advantage of the Lipschitz property of b0, the
boundedness of b1 and the estimate found in the last step, and by applying
Gronwall’s inequality, we conclude

sup
0≤t≤T

E
[
U1
t − ¯̄U1

t

]
≤ cAN

−2
d+4 .

We define the mean-field cost of the rebel player as J(β1), i.e.

J(β1
t ) = E

[
g( ¯̄U1

T , µT ) +

∫ T

0
f(t, ¯̄U1

t , µt, β
1
t )dt

]
.

Following the same calculations as in the third step, where we exchange J
for J(β1) and J̄N,i(ᾱN,1, . . . , ᾱN,N ) for J̄N,i(β1, ᾱN,2, . . . , ᾱN,N ), we obtain

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ J − cAN
−1
d+4 . (40)

To end this step, we combine the above inequality with (36) and obtain easiy
the desired approximate Nash equilibrium equation.

Step 6: Explain how the bound A can be chosen.
For this step we are going to use the convexity of g with respect to x in a
neighbourhood around 0, as well as the convexity of f in the variables (x, α)
again in a neighbourhood around (0, 0). From this, it follows that

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ E
[
g(0, ν̄NT ) +

∫ t

0
f(t, 0, ν̄Nt , 0)dt

]
+ λE

∫ T

0
|β1
t |2dt+ E

[ (
(U1

T )T∂xg(0, ν̄NT )
)

+

∫ t

0

[
(U1

t )T∂xf(t, 0, ν̄Nt , 0) +
(
(β1
t )T∂αf(t, 0, ν̄Nt , 0)

)]
dt

]
.

The assumption over the local-Lipschitz continuity with respect to the
Wasserstein distance, as well as the definition of the metric ensure the exis-
tence of some constant c > 0, such that for all 0 ≤ t ≤ T we obtain

E
[
|f(t, 0, ν̄Nt , 0)− f(t, 0, δ0, 0)|

]
≤ cE

[
1 +M2

2 (ν̄Nt )
]

= c

[
1 +

(
1

N

N∑
i=1

E
[
|U it |2

])]
,
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so that

E
[
|f(t, 0, ν̄Nt , 0)

]
≥ f(t, 0, δ0, 0)− c

[
1 +

(
1

N

N∑
i=1

E
[
|U it |2

])]
for f . A similar inequality holds for g. Thus, we deduct that

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N )

≥g(0, δ0) +

∫ t

0
f(t, 0, δ0, 0)dt+ λE

∫ T

0
|β1
t |2dt

+ E
[ (

(U1
T )T∂xg(0, ν̄NT )

)
+

∫ t

0
(U1

t )T∂xf(t, 0, ν̄Nt , 0)dt

+

∫ t

0

(
(β1
t )T∂αf(t, 0, ν̄Nt , 0)

)
dt

]
− c

[
1 +

(
1

N

N∑
i=1

sup
0≤t≤T

E
[
|U it |2

])]
.

Since by assumption (A.5) we know that ∂xg, ∂xf and ∂α are at most of
linear growth for the variable µt, we can conclude that for any δ > 0, there
exists a constant cδ, so that we obtain

J̄N,1(β1, ᾱN,2, . . . ,ᾱN,N ) ≥ g(0, δ0) +

∫ t

0
f(t, 0, δ0, 0)dt+

λ

2
E
∫ T

0
|β1
t |2dt

−δ sup
0≤t≤T

E
[
|U1
t |2
]
− cδ

[
1 +

(
1

N

N∑
i=1

sup
0≤t≤T

E
[
|U it |2

])]
.

The estimates for sup0≤t≤T |U it |2, where i ∈ {1, . . . , N}, that we found in
the beginning of this proof, show that for the appropriate c and for δ small
enough we deduce

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ −c+

(
λ

4

−c
N

)
E
∫ T

0
|β1
t |2dt.

Thus, we know that there exists some positive integer N0 such that for any
N ≥ N0 and constant Ā, we can choose the constant A such that

E
∫ T

0
|β1
t |2dt ≤ A ⇒ J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ J + Ā. (41)

This means that if the strategy β1 has an expected square integrable that
is very large, then the cost for the rebel player will definitely be more than
the optimal value. However, the theorem states that the minimum cost for
the rebel player can get very close, or in an extreme case, can even get less
than the optimal value. We now know, that this can only happen when the
expected square integrable of the strategy does not get too large and so it
is enough to prove the statement for this case, as we did in the proof. The
statement in (41) give us the guidelines on how to choose the bound A.
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Remark: As the above proof shows, if all the players follow the pre-
scribed strategy ᾱN,i for all i ∈ {1, . . . , N} and if there is a large number of
players participating in the game, the result is an ε-Nash equilibrium, with
a precise quantification of the relationship between N and ε, even though
the quantification is not optimal.

For reasons of completeness we will write the part of Theorem (1.3) from
[10], that is used in the above proof. We have adjusted the proof into our
setting.

Theorem 3.2. Assume that x0 and (Wt)0≤t≤T are square integrable, and
that the diffusion mapping σ is Lipschitz continuous when Rd×P2(Rd) is en-
dowed with the product of the canonical topology on Rd and the Wasserstein
metric Wp on P2(Rd). If E

(
|X0|d+5 + |WT |d+5

)
< +∞, then

sup
i≤N

E

(
sup

0≤t≤T
|Xi

t − X̄i
t |2
)
≤ CN+

2

d+ 4
,

where the constant C does not depend on N and where X̄i
t are independent,

distributed like Xi
t and the solutions of the same SDE as Xi

t .

3.3 A stronger result

From the last step of the proof of the approximate Nash equilibrium one
can conclude that we have an even stronger result. Namely, if we let player
1 diverge from the prescribed strategy ᾱ1,N

t and let them use some arbitrary
strategy β1

t instead, whose expected square integral is not too large, then
we can see in a similar way as in the proof above, by using the estimates
(39), (37) and (31) as in (36), that equation (40) holds for the cost of any
player, i.e. that for any i ∈ {2, . . . , N}

J̄N,i(β1, ᾱ
N,2, . . . , ᾱN,N ) = J − cAN

−1
d+4 . (42)

Theorem 3.3. Under the assumptions of section 1.5, not only does

((ᾱN,it = α̂(t,Xi
t , µt, u(t,Xi

t)))1≤i≤N )0≤t≤T

form an approximate Nash equilibrium of the N -player game, but even more

(i) there exists an integer N0 such that, for any N ≥ N0 and Ā > 0, there
exists a constant A > 0 such that, for any player i ∈ {1, . . . , N} and
any admissible strategy βi = (βit)0≤t≤T ,

E
∫ T

0
|βit|2dt ≥ A =⇒

J̄N,i(ᾱ1,N , . . . , ᾱi−1,N , βi, ᾱi+1,N , . . . , ᾱN,N ) ≥ J + Ā.
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(ii) Moreover, for any A > 0, there exists a sequence of positive real number
(εN )N≥1 converging towards 0, such that for any admissible strategy

βj = (βjt )0≤t≤T , for the j-th player, where j ∈ {1, . . . , N}

E
∫ T

0
|βjt |2dt ≤ A =⇒

min
1≤i≤N

J̄N,i(ᾱN,1, .., ᾱN,j−1, βj , ᾱN,j+1, .., ᾱN,N ) ≥ J − εN . (43)

Proof. This theorem is a result from the proof of the approximate Nash
equilibrium.

The first case of the theorem says that if there is one player that decides
to rebel and that chooses a strategy other than ᾱt,which has a very large
expected square integral, then his own cost will never be optimal. On the
other hand, the second result of the theorem shows what happens with the
cost of the other players when all but one follow the almost optimal strategy.
In this case, if the expected square integral of the arbitrary strategy βjt does
not get values that are too large, then for some of the other players the cost
might remain almost optimal, depending also on how many players there
are in the game.

It is important to notice that in (3.1) we are exploring how the cost of
one player is affected by their own unruliness. The same is being explored
in the first case of the last theorem. On the other hand in (42) and in (43)
we investigate how the cost of any player is affected, when it is a different
player that has decided to follow an arbitrary strategy.
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4 Outlook

Throughout this thesis, we studied the theory of mean field games from
the probabilistic viewpoint. Our goal was to find an optimal control strat-
egy for the cost functional of the players. To do this and in order to take
advantage of the theory of propagation of chaos, we assumed that the num-
ber of the players tends to infinity and that there is a statistically identical
influence from one player to the other. This allowed us to reduce our prob-
lem to solving only one SDE (or in our case to solving a FBSDE system),
instead of a system of N -coupled SDEs. Moreover, we have assumed that
the SDEs that represent the dynamics of the positions of the players, each
have individual noise σ which is some arbitrary constant matrix, but there
is no common noise for all the players. As for the players, we have assumed
that the game is symmetric and also that the decisions of the players are
independent from the other players (with the exception of the indirect in-
fluence that comes from the empirical distribution of the game). There are
several ways that one could generalize and apply the above results.

One way to apply the above theory in the real world are the evacuation
scenarios. In this problem, we assume that we have a big crowd of people
that are located inside a room and that for some reason and at some time t
they all simultaneously decide that they want to leave the room as quickly
as possible. In this case we could define the cost functional to be the time
needed to exit the room. A relatively simple way to study such a problem,
is to take the drift to be only a function of the distance between the initial
position of the player and the door. A complete model would include a
drift that depends on the distance from the door, the velocity of the player,
the overall density of the crowd and the exit time. This problem has been
studied by Burger, Di Fransesco, Markowich and Wolfram in [4].

Another interesting application of the theory of mean field games is
the case of interbank borrowing, which was studied in [7]. In interbank
borrowing we assume that we have N banks whose evolution of the log-
monetary reserves are described by a system of differential equations that
are coupled with each other. Should the monetary reserves of one bank
become low, the bank has to borrow money from a central bank. Should on
the other hand the monetary reserves of some bank become high, then the
bank must lend to the central bank. In this game, the control process is the
rate of borrowing (or respectively of lending) the money from the central
bank, which is determined by the bank itself. Each bank depends on the
empirical distribution created by the log-monetary reserves from the rest of
the banks, in the sense that the “systemic risk is characterized by a large
number of banks reaching a default threshold by a given time horizon”, as
we read in [7].

One modification of the last application, which one could argue to be
closer to the real world, would be to assume that there is one player, whose
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influence on the other players will never become statistically identical to the
rest of the players, no matter how big N becomes. This has been studied
in [9] with the title of a mean-field game with major and minor players.
This seems to be a more realistic example since in the banking system there
are a few systemically important financial institutions, where the impact of
their actions never becomes negligible, nor even similar to that of the small
banking institution, no matter how many banks there are in total.

In the stochastic differential equations theory there are weak and strong
solutions depending on whether the solution is adapted to the given filtra-
tion. In the same sense, one could distinguish between weak and strong
MFG solutions. In this case, the term weak refers to the fact that the limit
of the fixed point distribution may not be adapted to the filtration of the
common noise any longer. In this case, one would need to condition the fixed
point distribution with respect to the common noise B and should assume
that the resulting distribution will be independent from the individual noise
that comes from the Wiener processes. In this sense, a weak solution is also
strong when the associate measure flow is measurable with respect to the
common noise B. More on this can be seen in [6].

Mean field game theory seems to still have much potential to evolve,
generalize the existing theory and find more real life applications. We look
forward to what is yet to come!
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