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ABSTRACT

This interdisciplinary thesis aims at applying probabilistic methods and tools used in the theory of
invariant diffusion processes to the setting of compact Lie groups in order to solve and discuss
problems related to randomised benchmarking procedures of near-term quantum devices. Specif-
ically we show how one can use degenerate quantum control systems to generate sufficiently

uniform random distributions on compact Lie groups, and discuss some examples.

The work is organised as follows. In the introduction we provide some background on the general
context, randomised benchmarking methods and discuss our results with some simulations. Part I
is dedicated to the necessary prerequisites regarding quantum systems and the structures we are in-
terested in. Following that, in Part II we first review stochastic integration/differentiation in order to
properly characterise stochastic processes that originate in randomly controlled quantum systems
(Chapter ) and subsequently introduce the associated probability semigroups and their generators
in Chapter[5] Finally in Part IIT we combine the setting of Part I with the tools from Part II, and
show how we can use quantum control systems to efficiently simulate the uniform distribution
on compact Lie groups (Chapters[6][7). Since this thesis relies on results from probability theory
and representation theory of Lie algebras alike, the Appendix features two sections dedicated to

each of these topics in order to provide a compact overview of the important results and definitions.
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INTRODUCTION AND SUMMARY

Motivation

Quantum information and quantum computing have the potential to create a significant impact in
various fields of science and technology in the near term future, ranging from secure communica-
tion protocols to scientific applications in simulating quantum systems and molecule structures.
The idea to use the laws of quantum mechanics for computational purposes was first suggested by
Richard Feynman in the 1980’s, who recognised that classical computers cannot simulate multi-
particle quantum systems efficiently [1]]. Since then a lot of effort has been put into the pursuit of
the practical realisation of quantum computers. One major contribution suggesting the superiority
of quantum computers for specific tasks is due Peter Shor, who devised a quantum algorithm
that allows to efficiently factorise large integers into their primes [2], thereby undermining the
premise of secure communication protocols based on RSA-cryptography. Despite considerable
efforts in research, the quantum processors available today and in the near future only belong to
the category of Noisy Intermediate Scale Quantum (NISQ) processors. These are characterised
by a limited qubit range, and more importantly a lack of built-in procedures for error correction
and are therefore sensitive to all kinds of noise. Fault-tolerant quantum computing requires much
more resources than are available today, demanding possibly well over a hundred physical qubits
in order to encode one single logical qubit [3]. The Sycamore quantum processor presented by
Google researchers in 2019 only features 53 fully entangled qubits, and even the current leader,
IBMs ‘Eagle’ processor consists merely of 127 qubits. In order to perform high-end computational
tasks such as Shor’s factorisation algorithm reliably, several more breakthroughs are needed in
order to overcome the obstacles in scaling the underlying quantum systems.

Even though fault-tolerant quantum computers are currently out of reach, NISQ devices still
promise to bring advantages in various fields of applications. Some of the most prominent ones are
quantum simulations [4] and several classes of hybrid quantum-classical optimisation procedures,
such as Quantum Approximate Opimisation Algorithms (QAOA) [5,(6,[7]], Variational Quantum
Algorithms (VQA)[8]] and Variational Quantum Eigensolvers (VQE) [9]. The core idea of such
algorithms is to relate an objective function to be minimised to the Hamiltonian of a quantum
system. Then one can determine the ground state of the system by a combination of quantum

simulation and classical optimising procedures on involved parameters. Several combinatorial
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optimisation tasks related to graphs (e.g. MaxCut) have been investigated in this regard [[10],[6].
One way or the other, one will have to settle with the fact that near term quantum devices should
be treated with some caveats as far as the fidelity of the outcome is concerned. This makes it a

necessity to reliably assess how accurate a quantum device of interest works.

Randomised Benchmarking

Errors that arise in quantum computations can be split into two major groups. First, we have errors
that are related to state preperation and measurment (SPAM) and therefore independent of the
computation time. On the other hand, there are errors which depend on the computation length,
such as the noisy implementation of the gates themselves and leakage effects which are caused by
the system not being properly isolated.

One possible way to proceed is by performing quantum state tomography. By performing
different measurements on ensembles of states that have undergone a noisy evolution of a unitary U,
we can reconstruct the outcome, and compare this with the state which we would expect if the gate
implementation was error free. Repeating this for different quantum gates, we can create a map,
telling us which operations are ‘good’ or ‘bad’. This method however has several drawbacks. In
order to properly determine how the the operation acts on one state using different measurements,
we repreatedly need to obtain the same output state under the same input. Therefore this procedure
is particularly sensitive to SPAM errors and also unreliable because the (non-deterministic) noisy
gate implementation does not produce identical states which is required for the tomography. It is
needless to say that it also scales rather badly in system size. Nevertheless, efficient and robust
methods to estimate the fidelity of fixed gate sequences exist, as discussed, e.g. in [[11]. But even
here, handling the amount of data we retrieve for many different combinations of gates over
the course of a computation becomes somewhat impractical. The natural solution is to consider
averaged gate fidelities, leading to the various flavours of randomised benchmarking, which were
first proposed in [12]]. The key idea here is to first apply random gate sequences of fixed length to
an initial state p and compare the results with the expected outcome. By varying the length of the
sequence we can the efficiently extract the time-dependent error rates and the influence of SPAM
errors. Most protocols for randomised benchmarking work along the lines of the algorithm in

Tab[T] which was proposed by [13] and designed to be applicable in analogue quantum computing.

Randomised benchmarking procedures have several benefits. Besides providing a single figure of
merit characterising the accuracy of the quantum processor, they are robust to noise and scalable
[[14}|15]]. In order to produce reliable results and evenly detect the error rates, we are now faced
with a different problem: We need to simulate distributions over unitary groups, that are sufficiently

close to being unifom.
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Randomised Benchmarking (analogue setting, as suggested in [[13]])

1. Randomly choose uniformly distributed unitaries Uy, . .., U, € SU(d) indepen-
dently.

2. Repeatedly apply the sequence S = [Ay,, AUI“ Ay,
where Ay, denotes the channel representing the noisy implementation of the gate
U;. Compare the final state pg with the input state py and determine the survival
probability Tr(pg p:r)) by repeated measurements. If the gate implementation was

Ay;] to initial state po,

perfect, this would return Tr(pgs pg) =1.

3. Repeat the two prior steps for various random sequences of the same length to
obtain an average fidelity F;, for the computation length n

4. Repeat the steps above to determine F}, for different n.

5. Determine the constants A, B, f such that F;,, ~ A + Bf"™. The constants A and
B absorb SPAM errors, while r := d%dl(l — f) is the average error rate, the
quantity we are ulimately interested in.

Tab. 1: Algorithm

In the setting of discrete quantum computing, this is accomlished by so called unitary k-designs
which are finite subsets D C SU(d) satisfying

1 B _
UeD SU(d)

The moment operator of the Haar measure p — [, U* pUT®*dju g0, (U) is also known as the
twirling channel in the physics literature.

Notation: In the following we will usually write ®*** for the representation U — U®* @ U®* ¢
End(C?%)®? and sometimes M} := [, ®,dv(U) for the ®*-*-moment of a probability distribu-
tion v on G C SU(d).

Several gate sets have been identified to form 2-designs on SU(d), most notably the Clifford group,
which even forms a 3-design [16]]. One can also relax the requirement (1)) only to hold up to an
error in operator norm, leading to the notion of approximate designs. For instance fixed length
products of universal gate sets (Def. [I.3) form approximate deigns of every order and arbitrarily
small error, if the length is chosen to be sufficiently large [|17]]. Going back to the randomised
benchmarking protocol, with such an (approximate) design D C U(d), we replace the uniform

sampling on SU(d) in step 1 by averaging over the elements in D instead.

! In the literature, these are usually called ¢-designs. However confusing this with the time parameter at some stage is
almost guaranteed, therefore we shall stick to k-designs for the remainder of this thesis.
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However this only partially solves the original problem. After having theoretically identified
some gate set to be an (approximate) design, it is generally neither easy nor efficient to physically
implement them one by one on the quantum processor. It seems somewhat redundant to invest
a lot of effort in implementing gates more or less precisely, which are supposed to simulate a
close to uniform but nevertheless random distribution. This holds even more so if we are trying to
benchmark quantum devices that are used for analogue simulation tasks. Since every quantum
operation will eventually be physically realised using a quantum control system in one form or
another, it is natural to switch to the underlying analogue setting and generate random distributions
by applying random pulses to the control parameters we have over the system. Ideally, we would
expect that after a sufficiently long mixing time, we obtain a distribution v which is close enough
to the Haar measure for our purposes. Therefore, we generalise the notion of unitary designs
in the obvious way by replacing the averaged sum in the left hand side of (I) by an integration
over the considered distribution  on SU(d). Of course this means that we effectively give up the
design-property, in the sense that designs are finite sets by definition. In the literature this aspect is
largely ignored, we however shall refer to such distributions as (¢-approximate) k-Haar measures
(Chapter[3).

The approach to generate random distributions on SU(d) using quantum control systems has
been investigated for instance by Onorati et al. [[18] and Banchi et al. [19]. In the scenario of
[18], the authors proved that one needs to wait a time of T'(g, k,d) € O(log(d), e, poly(k)) in
order to get e-approximate k-Haar mesures on SU(d) (see Theorem 10 therein). However this
is accomplished under the rather restrictive assumption, that one control term is available for
every possible direction on the Lie group. While this might work well for smaller systems, such
assumptions are usually beyond the scope of what is practically realisable as soon as the system
scales. For the degenerate scenario on SU(d) - i.e. we have less controls than possible directions
on the generated Lie group - the same qualitative result of exponential convergence still holds as
argued in [|19]. Due to a lack of control over the degeneracies, universally applicable convergence
rates cannot be expected. Deriving concrete bounds therefore requires a detailed special case

analysis, as for instance done by [19] for random walks on spin chains.

This thesis mainly evolves around the outline presented in [19]], understanding and formalising
the proof and exploring possible improvements. In particular, we manage to lift the restriction on
G = SU(d) of [19]] and can include all cases, in which the generated Lie group is semisimple. If
the center is non-trivial, this still works as long as one chooses the drift and controls of the system
carefully enough. The precise statement is summarised in Result[I] This more general scenario is
relevant for near term applications, since in many cases one does not have control over the full
available Hilbert space, as in the examples of [13]] which we also used for our simulations. We
still cannot derive easy computable bounds on the convergence rates. At the core we are facing
the problem to find bounds on the convergence rate of so called hypoelliptic diffusion processes.

Although such methods are discussed in several publications, [20, 21} 22} 23| 24] rooting in the
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initial work by Bakry and Emery [25]], several attempts to apply the available methods to the setup
we are interested in have turned out to be ultimately unsuccessful. Nevertheless, we have the

following two results, which clarify the conditions needed for convergence in all moments.

Results

Result 1 (Theorem [7.9). Consider a control system with drift Hamiltonian H, and control
Hamiltonians HY, ..., HS which generates a subgroup G C SU(d). Further we assume that the
zero-time ideal J of the control system satisfies Jo = g. This conditions means that already the
controls ¢HY, ... ,iHS and the commutators [iHy, iHY], ..., [iHo, iH] generate the Lie algebra
of G, and ensures that the drift direction can be influenced by the control terms. In the following
we shall call control system exhibiting these properties regular. Consider the random evolution on

G determined by

%Ut - —(z’Ho +izj:cj(t)H;) U, )

where the c; are piecewise constant, and normally distributed ~ A/ (0, AT ) for a sufficiently
small time step AT > 0. Then for all £ € N we have that

lim E[US* @ U] = / U @ U duc(U).
t—o0 el

The convergence rate is exponential and determined by the gap of the Lindblad operator £; =
i[HG*, ] — 5 0, [(H)®* [(HE)®*, ]], where the tensor product is to be understood in the Lie
algebra sense (see Ex.[A.16).

The second result is essentially a corollary to Result[I|and Thm. of [26].

Result 2 (Prop.[7.13). On a compact semisimple Lie group G, the convergence of the process
(@) to the Haar measure in all higher moments is completely encoded in the convergence of the

second moment. Specifically, the following statements are equivalent:

1. lim o E[UE2 @ Uy ] = B, [US2 0 U7,
k
]

2. limy o0 E[USF @ UE"] = B, [USF @ T®"] forall k € N.

The implications of these results are two-fold. First of all, Result A shows that it is possible to
simulate uniform distributions on semisimple Lie groups even by the means of highly degenerate
control systems. Secondly, already the second moment contains the information about the conver-
gence to the uniform distribution. For the exact convergence speed, however one needs to take
the convergence in moments with respect to all (irreducible) representations into acount again,
which is of course not feasible for pracical purposes. In many applications having a 2-design is

already completely suffcient. Consider again for instance the randomised enchmarking protocol
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where we want to estimate the average gate fidelity in steps 1. and 2. The survival probability of

the initial state under the noisy implementation of a gate U € SU(d) is given by

Tx(pfps) = Tr (phAuiAu (o) ). 3)

For a linear noise model where we can express the noisy implementation with suitable A;, B; via

Ay(p) = (Z AiUBi> p (Z BZTUTA}>

for all U € SU(d), we can replace the integration of (3)) over the Haar measure by averaging over
a unitary 2-design on SU(d). This is also applicable to longer sequences when the random gates
are chosen independently. In order to include higher orders in the noise model as well, one needs

to consider designs of an appropriate higher degree instead.

Examples and Simulations

When applying Result[T]to randomised benchmarking procedures of analogue quantum devices, we
will only take into account finitely many samples from this random distribution, and therefore arrive
again at approximate (discrete) unitary k-designs. Assume that we have a measure » on a compact
G C SU(d) which is close to the Haar measure in the ®*+*-moment. How uniform will the discrete
sampling from this distribution turn out eventually? Or phrased differently, for independently
chosen Uy, ...,Un ~ v how large is the expected difference of % Zfil @llcj’ik — Mé e.g. in the

the 2-norm? As a matter of fact, we can explicitly state the expected error byE]

d** N?-N
=tz IMIIE — MG “)

Ey®n N N2

N 2

1 bk k

v 2% = M
=1 2

For large N, we can put NjV_QN ~ 1 and therefore va_zNHMfng — |ME|2 ~ || M} — ME|3, cf.

In the following we consider systems of 2,3 and 4 qubits subject to an XY -Heisenberg
interaction with a transverse magnetical field. This translates to the drift being described by the
Hamiltonian

Hy = Z Jij (O’iO"; + 0;0-;) + Zog, (5)
i< J
where the coupling strength is captured by a real matrix (J;;). We assume the control Hamiltonians

of the system to be the terms o 07 for which J;; # 0. This setup is just one possible incarnation

2 The computation is somewhat similar to the ones of Rem. and in the proof of Thm. 2.
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Oo—O0—ACO—-=0

Case A: Nearest-neighbour (chain) Case B: Nearest-neighbour (lattice) Case C: All-to-all couplings
Fig. 1: Different interaction graphs representing J

of the Hubbard model which is ubiquitous in solid states physics. Potential platforms for quantum
simulation based on this are for instance considered in [27]] (without magnetic field) or in [13]].
For our examples we assume the coupling strengths to be either 0 or 1. With different choices
for (J;;), we can capture different architectures such as nearest neighbour interactions (J; ;41 =
1 and O otherwise), or all-to-all couplings (J;; = 1 for all 7, j). In the four-qubit scenarios
A-C, we consider three different choices of coupling structures which are illustrated by the
interaction graphs in Fig. [T} For the two- and three-qubit examples D,E we choose nearest-
neighbour interactions on a chain, similar to A. The generated Lie algebras, dimensions and
symmetries etc. in each of these cases are summarised in Fig.[2] We model the process for the
respective choices of control systems via the random differential equation

d ) . .
—Us = —(zHO + zzj:cj(t)Hj)Ut, Uy = 1¢ (6)

where the ¢; are piecewise constant and normally distributed ~ N'(0, AT ') for the time step
AT := 7 x 1073, We introduce the factor 7 because it takes the drift Hamiltonian the time
T = 27 to perform a full rotation on each of the Lie groups.

In order to quantify the difference to the uniform distribution that we get by discretely sampling

from u; = Law(Uy) we use the frame potential of the sampled distribution. Recall that for a finite

Lie algebrag dim(g) JFuin Full Lie algebra
A 508 28 18 SUi6
B 508 @ s0g 56 12 Sl
C sug P sug 126 8 Slqg
D sus R 4 20 Sy
E Sy 15 14 SuUg

Fig. 2: The different Lie algebras, dimensions, minimum frame potential Fin on the corresponding Lie
group determined by the quadractic symmetries of the 2 representation, and the enclosing Lie
algebra. The Lie algebras in A-C,E are semisimple and therefore automatically satisfy the assumption
of Result[T] (see Remark [2.9). For the case D this is explicitly checked in Ex. The Lie algebras
and the respective symmetries were computed using the Magma computational algebra system [28].
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Case A, Fin = 18

Case B, Fruin = 12

Case C, Fin = 8

T T T T T T T T T T e
10° - El= El= 10000
E 1l L 30000 |
10_1 = E E E E —— 50000 H
é 1 L —— 80000 |
1072 ¢ 1 1 E
« | 11 | |
1073 & 4 E 4 F =
— o L
107 B 1 F g
. B b B ’:, B ’:,
10 ; | | | é E\ | | | E E\ | | | E
0O 05 1 15 2 0 05 1 15 2 0 05 1 15 2

Time ¢ (x) Time ¢ (x) Time ¢ (x)

Fig. 3: Explanation: Reduced frame potential F as defined in @) of {U1,...,Un}for Uy,...,Un ~
independent is plotted for different sample sizes /N against the evolution time ¢ in the respective
cases with o o2 -controls and Hamiltonian (3) corresponding to the interaction _graphs in Fig. |1} The
time-step in the simulations is 6 = 0.001(x ), with 10 computed values of F; per time unit. The
Julia code can be found in Appendix |g

subset S C G C SU(d), the frame potential is defined by (cf. e.g. [29])

1
F(S) = 5P > TUTY)[ (7

U,Ves

which coincides with the 2-norm of the moment Mg of the uniform distribution over S with

respect to the representation ®22, see Rem. [3.7] The symmetries of the representation ®2-2 then

determine the minimum value F,;, the frame potential of any subset S C G can attain, since
P P12 P12 &2

0 < [Mg — Mgz = [IM5 |z — 1M1 (®)

holds for all representations ® (see proof of Thm.[3:4). For a better comparability of the scenarios

with different system sizes, we add a factor d~* to (7)), where su, is the full enclosing Lie algebra.

This amounts to the normalisation é Tr(14) = 1 of the trace. We therefore introduce the reduced
frame potential for S C G C SU(d) by

1

.7?(5) =

(F(9) = Fuin(G)), ©
which also absorbs the value of Fyi,. The plots in Fig. |3 and Fig. E| show how F, decays for
different choices of control systems and sample sizes. In Fig. d] we compare this also to the

exact moment by computing the reduced 2-norm d~* (|| exp(t£2)|3 — Fumin) of the exponential



Introduction

13

ET T I 3 &l T T L - ]
100 B4, 1x10* { 10° \ 1x10%
-1 E S —5x 10* || — 5 x 10% |
B "\\ —— exact | —— exact [

1072 ¢ e H
g 11072F A -
_ 1073 £ B N B
GY 10-4 ; ? 103 a A“:-.* g
1075} 1 w07
1070 | 1 107°F 1
-7L J = ]
10 %\ | | | | % 1076 ; | | | | | | | E
0 0.5 1 1.5 2 2.5 0 05 1 15 2 25 3 35 4

D: 2-qubit chain F,;, = 20

E: 3-qubit chain F,;, = 14

Time ¢ in multiples of 7 Time ¢ in multpiles of 7

Fig. 4: Reduced frame potential ﬁt asin @) of {U1,...,Un}forUs,...,Un ~ u independent, plotted for
different sample sizes N = 5 x 10* and N = 1 x 10? against the evolution time ¢ for the two cases
D (2-qubit chain) and F (3-qubit chain). The time step in the simulations is § = 0.001(x ), with 10
computed values of Fe per time unit. The black line plots the corresponding reduced squared 2-norm
of the exact moment operator, computed using the representation 1/, 3 , = exp(tL2), cf. Prop.

describing the moment semigroup in terms of its generator by M, ,ft = exp(tL2) (see Prop. .
In order to evaluate this operator exponential reliably, we need to work with exact arithmetics and
therefore only compute this for these lower-dimensional examples. In each of the plots in Fig. 3]
and Fig.[4] we see that initially the convergence is exponentially fast and independent of the sample
size. Fig. ] suggests that we more or less exactly recover the exact moment during this stretch of
time. Depending on the number of samples, the decay then goes into a short transition and becomes
stagnant after a while. Since the bound should become strictly better according to Eq. (7.18)), this
indicates that any improvement on the ‘uniformity’ of the distribution is subsequently lost in the
error caused by discrete sampling.

We also observe that the level, on which .f’-\'t stabilises only depends on the chosen sample size
and is approximately 1/N in each of the plots. This matches the predictions from Eq.(@) which
we would expect when sampling from a k-Haar measure, after getting rid of the factor d?* = d*.
These findings suggest that with the chosen number of samples and polynomials of bidegree (2, 2),
we cannot statistically distinguish the simulated distribution from the Haar measure anymore and
therefore have reached the ‘mixing time’ in this sense. In the examples of Fig. [3] the mixing times
for N = 10%, N = 5 x 10* are relatively short when compared to Fig. |4-_1| and the exponential decay
in Fig.[3] A,B,C is already stopped at 7' &~ 0.5 as opposed to 7'~ 1 in Fig. @D and 7" ~ 1.5 in
Fig 4] E respectively. The reason is that a fixed number of samples becomes less and less adequate
to properly simulate the Haar measure with growing system sitze. A unitary 2-designs on SU(d)

for instance needs to consist of at least d* — 2d? + 2 elements [29]. In this context it also needs
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to be clarified what choice of norm and scale is suited to characterise the margin of error we
want to allow for the purpose of randomised benchmarking. Several candidates are for instance
discussed in Lemma 2.2.14 in [30], one of which is the diamond norm || - ||, (see Def.[1.2). The
diamond norm is frequently used in quantum information to characterise the distance between
quantum channels and is the norm usually chosen to define approximate designs [|19, |18} 30].
Since universal estimates relating || - ||2 and || - || are possibly overly pessimistic in general, one
should probably investigate the following question: Given quantum channel A in dimension d x d
which has 2-norm ||A]|2 = 1, what is the expectation of ||A||, assuming a uniform distribution
over these normalised quantum channels? Even if this does not give a definite answer on how the
norms || M} [|2 and || M} || are related in every specific case, together with Eq. @) it would at
least give a hint on how the sample size should be scaled with the number of involved qubits in

order to achieve the desired uniformity of the distribution.

Conclusion and Outlook

Result [T] rigorously shows that we can efficiently simulate the Haar measure on compact Lie
groups using even highly degenerate control systems as long as they satisfy the assumption on
regularity. Our simulations in lower dimensions indicate that even with relatively large number of
samples we quickly reach a point, after which we cannot distinguish the simulated distribution
from the Haar measure in the second moments anymore. It would be interesting to see how this
mixing time in the second moment scales in different systems with the sample size, or how fast
we reach the mixing times in higher orders as compared to the second. For the precision with
which we can hope to simulate the Haar measure in the k-th moment using /N samples of any
distribution, Eq. 4| suggests an order of O(v'd* N—1) in the 2-norm if we have G C SU(d). This
is closely related to the question how to exactly quantify the desired precision, which still needs
to be clarified. Nevertheless it seems to be a promising approach to be used for randomised

benchmarking protocols such as in Table/[I]



Part 1

BACKGROUND ON QUANTUM INFORMATION AND
QUANTUM CONTROL

In this part we provide the quantum-theoretic background needed to appreciate the
results of Part III. The first Chapter gives a short introduction to quantum information.
We proceed in Chapter 2 by briefly discussing control systems on compact Lie groups
which are the tool to implement operations on quantum computers. Chapter 3 reviews
the concept of unitary designs in digital quantum computing and formally generalise

this to get the corresponding notion in the analogue setting.



1. FRAMEWORK OF QUANTUM INFORMATION

Quantum information differs form classical information procssing by the assumption that a binary
piece of information is not necessarily in either of the classical states 0, 1 but rather in a quantum
mechanical superposition of those. This has a significant impact on how to process information
within such a framework. In particular one has to deal with certain obstacles such as the fact that
quantum information cannot be copied. In this section, we provide a very short introduction to
the basic framework of quantum information and its mathematical lanuage. As a general and
comprehensive reference we hint at the book by Nielsen and Chuang [31].

Quantum States

In quantum mechanics, (pure) states are modelled as normalised elements of a complex Hilbert
space H. We will always consider the scalar product (-, -) to be antilinear in the first component.
Depending on which property of a quantum system one is interested (e.g. spin of electrons,
position of particle, polarisation of photons to name a few), the state space can be finite or
infinite dimensional. Because we are mainly focusing on quantum information, all Hilbert spaces
modeling quantum states are assumed to be finite dimensional. In particular we only deal with
finite-dimensional representations of the involved Lie groups. Throughout we employ the Dirac
notation where quantum states are denoted by ‘kets’ |¢)) € H and their canonical duals by ‘bras’
(1| € H*. Scalar products are then expressed by (1, ) = (1|¢). If we choose an orthonormal
basis [1),...,|d), we can write a quantum state as |¢)) = > . c;|4). The intuition here is that if we
perform a measurement in this basis, we find the system in state |i) with probability |c;|?. These
probabilities should add up to one of course, hence the condition on states being normalised is

imposed.

Composite systems

For two quantum systems modelled by Hilbert spaces H 4 and H g, the composite quantum system
is given by the tensor product Hap = Ha @ Hp. Astate [y ap € Ha ® Hp is called seperable
if it can be decomposed into a tensor product [)) ap = [1)4) ® |¢) . Otherwise it is called
entangled. The concept of entangled states is the key ingredient for many potential application
of quantum information, in particular for devising protocols for secure quantum key distribution.
Entanglement will not explicitly play a role in our further treatment, but any introduction on

quantum information would be substantially incomplete without it.
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Evolution

For a closed system, quantum mechanics postulates that the time evolution is described by a
unitary evolution, i.e. there exists a time-dependent unitary operator U (¢) such that for any state
[1(t)) we have |1(t)) = U(t)|1(0)). The evolution in a closed quantum systems is governed by

L d
ih— [ (1) = H®)l(t), (1.1)

for some time-dependent self-adjoint operator H (t), called the Hamiltonian of the system. Here
is the reduced Planck constant, which we consequently absorb by the Hamiltonian in the following.
The evolution is unitary only if the system does not interact with its environment. This is rather

different if we perform measurements and thereby interfere with the system.

Measurements

Formally, a positive operator valued measurement (POVM) of a quantum system consists of a set
of operators M, ..., M} which are designed to detect certain outcomes 1. .., k. The probability
to detect outcome j is then p(j) = (Y| M ; M;|+). Because all probabilities should add up to
one, we impose the completeness relation | M ; M; = 1. An important special case are projec-
tive measurements, where we assume the measurement operators to be projectors P; onto the
eigenstates of some hermitian operator A = > ; Aj Pj. Here the eigenvalues of A are the possible
outcomes of the measurement. The expectation for the outcome when measuring A on the state
[1) is given by (A) = (| A|). We also see that measurements cannot detect global complex

phases €' of |1)). Therefore it suffices to model the evolution of quantum systems on SU(d).

How do we describe the state properly after having performed a measurement? The quantum
mechanical superposition collapses randomly to one of the states M;|¢)) with the respective
probability during the process. This is structurally quite different from the original superposition,
since we know that the system is in one of the states 1/;|4)) after the measurement, but we a priori
do not know in which. In order to properly grasp this mathematically, we need to slightly enhance
the model.

Mixed states

A mixed state is an operator p € L(#H), sometimes also called density operator, which is selfadjoint,
positiveﬂ and satisfies Tr(p) = 1. It is called pure if there exists a state [)) € H such that
p = |¢)(¥|. Because they are positive and selfadjoint, mixed states can always be written as
p =, Nilthi) (| with 3~ A; = 1 for some orthogonal states |1;). It is not difficult to show that
a mixed state is pure if and only if Tr(p?) = 1.

! Recall that a selfadjoint operator A on a Hilbert space is positive iff (v, Av) > 0 forallv € H
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Quantum Channels

What conditions do we need to impose on a linear map A : L(#H) — L(H) such that mixed states
are mapped into quantum states again? A quantum channel or quantum map on a Hilbert space H
is a linear map A : L(H) — L(#) which is

1. trace preserving, i.e. Tr(Ap) = Tr(p) for all p € L(H), and
2. completely positive,i.e. A® 1,, : L(H ® C") — L(H ® C™) is positive for every n € N.

Demanding complete positivity rather than just positivity is linked to the fact, that it should be
possible to trivially extend quantum channels when considering composite systems. The structure

of quantum channels is clarified by the next result, due to Kraus.

Theorem 1.1 (see [31], Theorem 8.1). For any quantum channel acting on L(#), there exists
a finite collection of operators {My, ..., Mx} C L(H) satisfying the completeness relation
Zj MJTMJ = 1, such that

N
A(p) = M[pM;  Vpe L(H).
J=1

Conversely, any such collection of operators defines a quantum channel.

Therefore every quantum operation can be perceived as some kind of measurement. This
includes the unitary evolution as the special case with N = 1. A notion frequently used in quantum
information to measure the distance of two quantum channels, is the metric associated to the

diamond norm.

Definition 1.2. For a quntum channel A : L(#H) — L(H) we define the diamond norm by
[Allo := sup [A ® Ln[lop (1.2)
neN

where we equip L(H ® C™) with the 2-norm as usual.

With p(t) = Uy pUtT , the mixed-state analogon of Schrodinger’s equation reads

< p(t) = ~ilH, (1),

which is sometimes also called the von Neumann equation. This is one of the reasons why
the Adjoint/adjoint representations of Lie groups and their algebras often appear in quantum

mechanics.

Liouville Space

When working with quantum channels, it is sometimes convenient to use the Liouville space,

which is a useful way of expressing linear operators acting on linear maps. The identification
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(v ® B)(w) = (B, w)v induces an isomorphism H ® H = End(#). With this we can express
operators which act on End(#) by left or right multiplication with a fixed A € L(H) by A® 1
and 1 ® AT respectively. In this spirit, we occasionally write U @ U for the Adjoint representation

of unitaries.

Pauli and Clifford groups

For the manipulation of one-qubit states, we can use the three Pauli-matrices

01 0 —i 1 0
Op =01 = , Oy =00 = , 0, = 0 ,
R ST A W) “lo -1

which correspond to the operations bitflip (o), phaseflip (¢.) and their combination (o). It
is important to observe that %O’I, %ay, %oz are cyclic generators of the (real) Lie algebra suy :
[%O'j, %O'k] = %ijlal. The Pauli matrices generate a discrete subgroup of U(2), called the Pauli
group. On n qubits the Pauli group is analogously defined to be the subgroup of U(2") generated

by 0., 0y, 0, acting locally on every site:
P, = {*26; @ ... @0 |k g1, 0 € {0,1,2,3}}.

However, the Pauli group P,, only provides very limited access to quantum operations. It only
maps the elements in the computational basis into each other (up to factors) and is therefore
insufficient to create entanglement. This can be accomlished by the Clifford group, which is the

normaliser of the Pauli group

C, :={UecU2"HUP U c P,}/U(1).
The Clifford group has the useful property, that with any other gate in SU(2"™) which is not already
contained in C,,, it forms a universal gate set (Thm. 5.6 in [32]).

Definition 1.3. A set of quantum gates D C SU(d) is called universal, if the set
{U1-+-Ug|Ux,...,U; € D, k € N} C SU(d)

is dense in SU(d).

We conclude this introduction with the remark that even though the Clifford group can create
highly entangled states, this does not result in a significant advantage over classical computers.
The remarkable Gottesman-Knill Theorem (Thm. 10.7 in [31]]) states that circuits involving state
preperation, Clifford gates and measurements can be simulated efficiently on classical computers.
It is not yet fully understood which fundamental principles allow for instance Shor’s factorisation

algorithm to provide a considerable speedup compared to known classical algorithms.



2. QUANTUM CONTROL SYSTEMS

Quantum control theory and more importantly quantum optimal control are two fields of research
that play a significant role in the development of efficiently operating quantum processors. In
order to simulate different unitary operations within a quantum algorithm, it is necessary to
manipulate the time-dependent Hamiltonian H (t) governing the evolution inside the quantum
system. The Hamiltonian H (¢) usually consists of a term Hy inherent to the underlying platform
(e.g. superconducting qubits or trapped ions to name a few) called the drift of the system, and
some Hamiltonians Hi(¢), ..., H,(¢) which can be tuned in strength and are referred to as the

controls, resulting in the unitary evolutio
—U(t) = iU H(t) = iU(t) | iHo+ >  H;(t) | . @2.1)
J

One major challenge of quantum control is linked to the fact that the dimension of the Hilbert
state space scales exponentially with increasing number of qubits. Therefore it is not feasible
to have control terms for all directions in the Hilbert space seperately, and we will usually find
situations where the number of available controls is comparatively small. In order to overcome
these degeneracies, we fundamentally rely on the non-commutativity of the control and drift
Hamiltonians. Of course, finding paths in such a setting and even more so optimal ones, is
significantly more challenging than in a non-degenerate case. Problems and methods related to
finding such optimal solutions are more widely addressed within the framework of optimal control
theory [33]]. The control theory of quantum dynamical system is just the special case of this more
general setting where we only consider left-invariant control systems on compact Lie groups. We
want to emphasize that although we are restricting ourselves to this particular setting, most of the
following definitions and result can be rephrased in a more general terms. For a detailed exposure
on invariant control systems on Lie groups consider for instance [34} 35]] and [36}/37,[38] for the
more general treatment. Also we point at Appendix [A|for a summary of the definitions and results

on Lie algebras which are used in this chapter.

Definition 2.1. Formally a left-invariant control system on a Lie group G is given by a collection
¥ = (X|Y3,...,Y,,) of left-invariant vector fields on G, together with a subset of locally bounded

1 Technically this defines the evolution in inverse time. We choose this convention since the vector fields U Ho, . . . are
left-invarian and becauset the commutator of matrices corresponds to the commutator induced by left-invariant vector
fields on the Lie group GL(C®), whereas we would get an additional factor —1 in the right-invariant case.
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and integrable control functions ' C L;, (R, R). This setup allows us to navigate along paths

~ : [0,00) — G which are subject to a differential equation
() = X(v(1) + Y e ()Y;(v(1),  7(0) =0 2.2
J

for some choice of control functions ¢y, ..., ¢, € F. For the obvious reasons X is called the
drift and Y7 ..., Y,, the controls. Further we define the controlled distribution ) C TG to be
the distributio spanned by the control vector fields Y7, . ..,Y;, and Lie(}) its closure under
the commutator. We occasionally write X + ) C T'G for the affine distribution generated by the

control system. Lastly, we also define
Ar(g) := {h € G| there is a path v with ¥ € X + Y and v(0) = g, ¥(T) = h},

which is called the attainable set of the control system at time 7' > 0 from the starting point
g€ aqG.

Remark 2.2. The notation ¥ = (X|Y7,...,Y},) does not have an intrinsic motivation, we just
use it to emphasize the distinction between the drift and the controls. If the left-invariant vector
fields of X are given by X = 2/, Y1 = ¢!, ... )Y, = yfé for some elements in the Lie algebra
T, Y1,.-.,Yx € g we also employ the notation ¥ = (z|yi,..., ym). Naturally, one can also
consider right-invariant control systems which effectively leads to the same theory. It is clear that
for a left-invariant system on a Lie group, the attainable sets for different starting points are related
by Ar(g) = g - Ar(lg) for all g € G, and we only consider A; := A;(1g) in the following.
We will not impose any restrictions on the control functions F' C L}, .(R>0, R), other then being
locally bounded and integrable. For many applications there might be restrictions, such as only
allowing ‘bang-bang controls’ (alternating between £1) or piecewise constant functions. Using
approximations if necessary, the latter turns out to be not much of an actual restriction. Since the
control functions are only assumed to be measurable, all appearing differential equations should

be understood to hold in the weak sense, i.e. under integration.

For a control system of interest, it is important to know which subset of the Lie group we can
hope to reach. In the next step, one can then analyse how to steer the system in order to reach a
given point in optimal time, usually under some restrictions on the available control functions.

Regarding the quality of control over a dynamical system, we introduce the following distinctions.
Definition 2.3. A control system X on a Lie group G is called

1. controllable if Ay, = UtZO A =G,

2 In geometry, a distribution on a manifold M is a choice of subspaces of T), M for every p € M, which is spanned by
a collection of smooth vector fields.
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2. finite-time controllable if A<y := (J,., A = G for some T > 0,
3. exactly controllably at time T if Ay = G,
4. strongly controllable it A<y = G for all times 0 < T < oo.

Assumption. In order to get controllability at all, we obviously need the respective Lie group to
be connected. Therefore we will only work with connected Lie groups in the following, without

further indication.

Any compact Lie group can be embedded into some unitary group U(d). Because quantum
measurements are generally unable to detect global phases of states, we can restrict ourselves
to analysing subgroups of SU(d). In particular, we say that a control system acting on a Hilbert
space C is fully controllable if A, = SU(d).

For an invariant control system (z|y1, ..., Y ) on a Lie group G, we can naturally identify three

subalgebras of g = Lie(G) which are of significance for our discussion.

Definition 2.4 (compare [34], section 3). Letz, y1, ...,y € gbe the generators of a left-invariant

control system on some Lie group G. Then we define

1. the dynamical Lie algebra gs; := (x, Y1, ..., Ym)Lic C 05

2. the zero-time ideal 3y := (yi, [yi,x],t = 1,...,m) e < gx generated by the controls
Yis- - -5 Yms and
3. the control subalgebra go := (Y1, - -, Ym) Lie C §5-

Further we define Gy, Gy C G to be the subgroups generated by the Lie algebras gy, and g,
respectively. Clearly, we have the inclusions gg C Jg C gy C g. Note that Jy is indeed an
ideal, since it contains all commutators of the controls ¥, . . ., 4, with the drift, and therefore
[yi, gx] C gx foralli = 1,..., m. By construction, the codimension of Jy C gy is at most 1,
since all (iterated) commutators of z with the other generators y; are automatically contained in

Jo and therefore gs, = spang{z, Jo}.

On compact Lie groups, invariant control systems have the great advantage, that questions related
to controllability can be answered completely in terms of these subalgebras, as the next proposition

shows.

Proposition 2.5. Let 3 = (x|y1, .. ., yx) be an invariant control system on a compact Lie group
G and H C G a subgroup with Lie algebra §.

1. The condition gy, = b is necessary and sufficient for the system to be controllable on H in

which case it is also finite-time controllable.

2. Under the stronger assumption go = 0, the system is also strongly controllable on H.
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We will primarily comprehend (strong) controllability in terms of these algebraic conditions. The
condition go = b in the second claim should also be necessary, despite some effort on my own

and an extensive search in the literature, I could not find a simple proof for this conjecture.

Proof. The first statement is a standard result - known as Chow’s Theorem - and can be found for
instance in Theorem 7.1 of [34].

Claim 2. should also be a standard result, but since I could not find a formal proof in the literature
we proceed to state it here. The second claim clearly holds if the system is homogenous, i.e.
we have z = 0. By rescaling the control functions if necessary, we can then always find a path
connecting two points in arbitrarily small time 7" > 0. Now consider the case where a drift is
present. Fix a time 7" > 0 and a point p € H that we want to reach from 1. Let ¢y, ..., ¢k
denote a choice of controls, which steer the homogenous system in time 1" from 1z to p over
a path ~. Consider the sequence p,, := *yn( ) with n € N, where ~,, is the unique solution to
Y (t) = X(a(t)) + 22, ncj(nt)Y;(ya(t)) with 7,,(0) = 1. In order to show that p,, — p,
consider H to be given in some faithful representation, such that we can exploit the surrounding
euclidean structure. Let C,, () > 0 denote the Lipshitz constant of the time-dependent vector field
>_;jnej(tn)Y; for 0 < ¢ < T'/n, and without loss of generality assume that diam(H), [|-X|| < 1.
We can then estimate

L) 1) = (r30nt) 30 (6), (1) — 7 (1)
< Ca(®)lly(nt) — @O + |1 X]| diam(H). 23)

Now we use an argument similar to the proof of Gronwall’s Lemma [39]]. Consider the functions
o(t) == efo O (s and u(t) == ||y(nt) — yn(t)]|%. With (Z3) we can estimate

d@m &zwm—@mw>

at \ o) ~ o(®) —1=0

for all t < T'/n. Therefore the function % — t is decreasing in ¢ and we have

T T
T/ T _ o
o(T/n) n
which is equivalent to
T n
u (> < (u(O) >efT/ Cr(s)ds
n n
Since fo s)ds = fo C1(s)ds is independent of n and we have u(0) = 0 this shows that

indeed p,, — p. In order to conclude the proof, we use the fact that the attainable set A; C H has
nonempty interior for all ¢ > 0 if gy = b holds (cf. Thm. 3.2 in [38])). L]

It is self-evident, that strong controllability is a significantly more refined property than just hav-
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ing controllability of the system. One major structural difference is the following: The controlled
distribution ) of a strongly controllable system > = (X|Y1,...,Y,,) satisfies Lie()), = T,Gsx,
which is the defining property of so called sub-Riemannian structures. In this case the control
distance on Gy, associated on by

dx(p, q) := inf {Length of all curves ~ which start at p, end in ¢, and satisfy ¥ € X + Y} .

is a proper metric, since the influence of the drift can be neglected following the arguments in the
proof of Prop. In general dy is not symmetric, because we need to compensate for the drift
when reversing the direction. For many applications however, strong controllability - in the sense
that go = gy holds - is not what we would usually encounter. As far as quantum control setups
are concerned, the control Hamiltonians are usually more local in nature, such as single-qubit
operations or nearest-neighbour interactions. The drift on the other hand is used to couple these
subsystems and therefore plays a decisive role in generating the dynamical Lie algebra.

The next proposition suggests that the ‘intermediate case’ in which Jg = gy, is satisfied can
serve as a substitute for strong controllability, at least to some extent. Specifically, we still get
some results related to exact controllability.

Proposition 2.6. Consider a left-invariant control system 3 = (X|Y7,...,Y}%) on a Lie group G.
Then the following are eqivalent:

1. The zero time-ideal is equal to the generated Lie algebra: Jy = gx.

2. 3 has the strong accessibility property, that is A has nonempty interior in Gy, for every
T >0.

If G5; is compact, 1. and 2. are also equivalent to:

3. There exists a time T > 0 such that 4; = G'x, holds forall ¢t > T.

Proof. The equivalence 1. < 2. is proved in more general terms in [38] (Thm. 3.2) and 1. & 3.
can be found for instance in [40] (Thm. 4). O]

Remark 2.7. At the core, the Propositions [2.5]and [2.6]do not actually require the setting of Lie
groups. All these assertions can be rephrased in more general terms on arbitrary manifolds using
the Lie subalgebras generated by the vector fields which are defined accordingly. The equalities
are then replaced by a spanning property, in the sense that the respective Lie algebras of vector
fields pointwise span the tangent space of the manifold considered. Only the converse implications
3. = 1.,2. of Prop.[2.6|are generally lost in this case, see [40].

With the second characterisation of Proposition [2.6] we see that the condition Jy = gs,

essentially informs us if we can influence the drift direction by varying the controlled parts.
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Consider for instance a control system ¥ = (z[yi, . .., ¥ ) generating a compact Lie group G
such that the center 3(gx) is non-trivial, satisfies 3(gs) N go = {0} and that « € 3(gx). Then the
attinable set at time ¢ > 0 is contained in A; C {exp(tz)} x5 G/Z(Gx) which is a submanifold
of Gy, with codimension greater or equal to one ﬂ Therefore we give the condition Jyp = gx a

proper name.

Definition 2.8. A left-invariant control system X = (z|y1, ..., ¥ ) on a Lie group G is called
regular, if it satisfies Jy = gx. Accordingly, we call the corresponding collection of generators

(z|y1,- .., ym) a regular generating seﬂ for gy in this case.

Remark 2.9. An invariant control system (x|y1, . . ., Y ) On g automatically satisfies the regularity
assumption if the generated algebra gy, is perfect, that is we have [gx, gs] = g=. This is because
the brackets between the generators satisfy [z, z], [x, yi], [vi, y;] € Jo forallé,j =1,...,n we
can then conclude gs; = [gx, 9] C Jo. In particular this holds if gy, is semisimple. At this point
it is worthwile to recall that a real compact Lie algebra is semisimple if and only if it is perfect,

see Prop.[A.30]

An example of generators which do not satisfy our regularity condition is the following.

Example 2.10. Consider the Lie algebra which is obtained by trivially extending sua:
g:=su BR 2.4)

with [ + A,y + u] = [z, y] forall z,y € suy and A, u € R. Let 2, y, z be cyclic generators of
suo. We observe the following:

1. There control system ¥ = (z + A|x) is non-regular.

For any A # 0 we have gy, = (z, 2 + A) ;e = g but Jg = [gx, 2] = sus # gs.

2. The definition depends decisively on the order of the generators.
Upon exchanging the roles of x and z + A, we do get Jg = [z + A, gs] = gx. Obviously
[gx, gx] = sus # gx, which shows that for regularity it is not necessary that gy, is perfect.

Example 2.11. A concrete representation of Example is for instance given on a two-qubit
system by

¢ : suy @ R — End(C?)®? P+ AN =201y +irAly®0,.

This corresponds to writing the Lie algebra (2.4) more suggestively as g = sus @ iR since the
trivial part exponentiates to a compact Lie group under this representation.

3 In fact it is exactly one, but that is not important here.
4 Technically, this is not a set, but rather a pointed set, that is a set with a special element which should be treated
differently than the others.
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Finally, the Lie algebra (2.4) also appears in an example from physics - specifically the
two-qubit Hubbard model we used in Example of Fig.[4D in our simulations.

Example 2.12. Consider the two-qubit Hubbard model with an Heisenberg XY -interaction and

transverse magnetic field, that is the drift of the control system is given by

_ 1.2 12 1 2
Hy=o0,0; +0,0,+0,+0,

and we choose H,. := aiai as single control. Let gy := (iHp,iH.)r;. be the dynamical
Lie algebra. If we substitute hy := —%olo2, h := —fojol. e := § (0102 + 0y02) and
f =% (ol +02), we get the commutation relations

[he,e] =xf, [he,fl=Fe, [h4,h_]=0, [e,f]=2(hy—h_). (2.5)

In particular iHo = —2(hy +h_ — f),iH. = —2h, therefore we have
1 ) ; .
Z[ZHC’ZHO} = _[h+7 h+ + h— - f] = [h+7 f] = —¢€, [ZHcae} = _2f7

and get (iH.,iHy)ric = spang{hy,e, f}. It is easy to see that the elements h, — h_,e, f
generate a Lie algebra isomorphic to suy and that Ay 4+ h_ € 3(gx). Therefore the dynamical Lie
algebra gy, is indeed isomorphic to suy & R. For our choice of generators, the regularity condition

Jo = J(hy) = gy is satisfied, which is easily seen from the commutation relations (2.5)).

How can we determine if we can control a subgroup H C SU(d) with a control system
Y = (2|y1--.,Ym) on GL(C?)? Determining the generated Lie subalgebra using computer
algebra systems becomes quite expensive pretty fast. One possible approach here is to analyse the

joint symmetries of the generators, i.e.
com(X) = com(z, Y1, ., Ym) = {z € End(Ch|[2, 20] = [2,:] = 0 forall i},

which can be handled a bit easier computationally. In order to have controllability on H it is nec-
essary that the spaces describing these symmetries coincide, i.e. com(X) = com(h) C End(C?).
It is not difficult to accept that this is not sufficient in general. Consider for instance the real or-
thogonal matrices SO(d) C SU(d) inside the unitaries. For both groups the only endomorphisms
that commute with all elements are multiples of the identity 14, but clearly SO(d) is a proper
subgroup of SU(d). In order to get a suffiicent criterion for controllability, we need to take the

symmetries of the tensor square of the standard representation into account as well.
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Theorem 2.13 (part of Thm. 15 in [26]). Let ) be a subalgebra of a compact semisimple Lie algebra

g and consider a faithful representation ¢ of g. Then the following statements are equivalent:
1.h=g,
2. comygg(h) = comyee(g).

For the complete results as well as more details on this, we refer to [41}26].

Remark 2.14. In the following chapters, we will always drop the subscript 3, by restricting
the surrounding Lie group if necessary. Specifically, if we have e.g. z,y1, ..., ym € suq which
generate a Lie subalgebra g C su,, we assume that the corresponding control system lives only

on g and the generated Lie subgroup G C SU(d) right away.



3. UNITARY DESIGNS AND K-HAAR MEASURES

Throughout the following, we are concerned with a compact, connected (non-abelian) Lie group
G. For a probability measure v on G and a finite-dimensional representation ¢ : G — GL(V),

we define the moment of v with respect to ® by
M2 ;:/ ®,dv(g). (3.1)
G

The respective moment of the Haar measure f1; will mostly be denoted as M&. For the moments
M? taken with respect to tensor powers of the standard Adjoint representation ® = ®** (see
Rem. we simply write M¥. Recall that we can turn any finite-dimensional representation of
® : G — GL(V) into a unitary representation via

@) = [ (@, 2gn)dcls),
G
starting with any scalar product (-, -) on V. In particular we get

1
|M2op < sup —/H@gvndug 1. (3.2)
07#4veCd [[v]]

3.1 Unitary Designs

In mathematics the theory of combinatorial designs is dedicated to the study of finite sets that
satisfiy some requirements of symmetry and/or balance in various structures. For instance by
considering a regular polyeder with edges on the unit sphere in R3, an integration of polynomials
up to a certain degree over the sphere can be realised by averaging the polynomial over those
edges [42]]. This is an example for structures which are known as spherical designs. In the context
of quantum information, unitary designs were introduced in a thesis by C. Dankert [43] who
transferred the notion of such spherical designs to the setting of unitary groups. Formally a unitary
k-design[l]is a finite set D = {u; ..., u,} C SU(d) such that the ®*+*-th moments of the uniform

! In the literature, these are usually referred to as t-designs. To avoid any confusions with the time paramter ¢ we shall
stick to the term k-design throughout the remainder of this thesis.
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distribution over D and the Haar measure y coincide:

w1

Mp = ipm 2 U @ U = [ 0 0% duau) = M, (3.3)

UeD

Surprisingly such unitary designs exist for all Several discrete gate sets were subsequently identified
a unitary 2 and 3-designs, most prominently the Clifford group [16]. Beyond this however, the
involved discrete group structures become increasingly complicated. For many applications it
completely suffices to relax this definition by demanding the equality (3.3 only to hold up to a
small error € in a norm of choice, leading to the notion of approximate designs. Approximate
designs of arbitrary error and order £ € N can be for instance generated by considering finite
products of elements in a universal gate set (Def. up to a certain length.

The implementation of quantum gates is generally not trivial and it seems unnecessarily
complicated to exactly implement gates which are supposed to simulate a random distribution in
the first place. Since on a quantum computer discrete gate sets are generated analogously using
control systems, the idea to consider continuous analogues of unitary designs comes quite natural.
This approach has already been investigated in several publications, e.g. [[18} 19, 44| 13]. Since
the defining property of designs is to be finite subsets simulating the uniform distribution up to
some moment, naming such continuous distributions ‘designs’ is somewhat abusive. Therefore we
introduce a different naming and investigate which equivalent characterisations of unitary designs

(e.g. [29])) carry over to the continuous setting analogously.

3.2 k-Haar Measures

Definition 3.1. Let G be a compact (non-abelian) Lie group with a representation ¢ : G —
GL (V) on a Hilbert space V, and p the respective normalised Haar measure. A measure v on G
is called a ®-Haar measure if the respective moment coincides with the one of the Haar measure,
i.e.

M2 = Mg, (3.4)

If ® = ®**, we simply say that v is a k-Haar measure.

Again, we can relax this definition by considering Eq. (3.4) only to hold approximately in a
suitably chosen norm. We will mostly consider the operator norm, which is in some sense immune
to scaling of the dimensions both of G and the representation (3.2), and the 2-norm which is easier
to handle computationally. However there is some ambiguity in the choice here, as we already

discussed in the introduction.

Definition 3.2. A measure v on G as above is called an e-approximate ®-Haar measure if
1M = M |lop <&

In any case, it is useful to determine the moments of the Haar measure in the first place.
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Proposition 3.3. The moment M of the unitary representation ® : G — GL(V) is the orthogo-

nal projection from V" onto the subspace V' that invariant under the G-action.

Proof. Because M& o M& = M2, = Mg itis clear that M is a projection. Since Mgv =

/. o Pgvdug = vforallv € V¢ we have that the image of ME contains V@, Conversely,

d,0 MEv = / ®,®pvdug(h) = / @ pvduc(h) = / ®pvduc(h) = MEv. (3.5)

shows that V& contains the image of ME and therefore M2 is indeed a projection onto the
invariant subspace V. For the orthogonality, it suffices to check that M/, g is self-adjoint. Using

unimodularity of the Haar measure we compute

i
()" = [ ldncte) = [ @, 1ducle) = [ @sduato) =M,
which concludes the proof. O

The following theorem is inspired by various equivalent chracterisations of unitary 2-designs

from [[29]] (compare Def. 1, Prop. 1, Thm. 3 therein).

Theorem 3.4. Let & : G — GL(V) be a representation of a compact Lie group and ¢ the Haar

measure. Then for any probability measure v on G, the following are equivalent:
1. M2 =M%,
2. The 2-norms of M,? and M2 coincide, which is by Prop. the same as

1/2

M ]|z = (dim(VE)) (3.6)

For & = ®*+* these are also equivalent to
3. For every polynomial p of homogenous degree (k, k) in the coordinates of U € SU(d) and

their complex conjugates, p(U) = p(Ui;, U;;), we have

/G p(Uy)dv = | plU)dnc. 37)

G

Theorem 2 in [29] is really just the equivalence 1. < 2. in disguise by computing the squared

2-norms respectively.

Proof. (1) < (2)

:
1M — ME|I3 = Te((M — Mg) (M — Mg)')

= Tr (M) M2 — n? (M) = M (M) + (M) 1E).
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With the understanding that M is self-adjoint (it is an orthogonal projection) and that M, :LI’ M, =
M2 = MEG , this reduces to

[lexi%
M — ME|l5 = |M2]I5 — | ME]13- (3.8)

Clearly, if (1) holds, then the norms on the right hand side of (3.8) coincide, and vice versa.
(1) < (3): The Kronecker product of two matrices A, B is given by

a11B N alnB
Ae@B=| :
amB ... ann.B

Therefore every (k, k)-homogenous polynomial in the entries of U can be found as a linear

combination of the entries of U®* @ U®*, which proves the last equivalence. O

It really is the last statement of Thm. [3.4] that makes k-Haar measures useful for computations.
In particular 2-Haar measures on SU(d) already prove to be helpful in many cases, since we have
exact integration rules for (2, 2)-homogenous polynomials (Prop. 4.2.3 in [45])). The next result

shows that we can in some sense reduce the ‘order’ of a ®-Haar measure.

Proposition 3.5. Let ® : G — GL(V), ¥ : G — GL(W) be two representations of a compact
Lie group G. If v is a ® ® ¥-Haar measure on G and the invariant subspace W& is non-trivial,

then v is also a ®-Haar measure.

Proof. Take anon-zero w € W& and v € V. Because we have ¥, (w) = w for all g € G we get

MEH ) = |

[ @,(0) & 9,y (w) dvlg) = (/G @g(v)dl/(g)> 2w = M®(v) ® w.

Clearly, M*®Y = M, g Y then implies M® = M, 2, which concludes the proof. O

Corollary 3.6. In the special case where we consider the representation ® = ®** on V =
End(C%)®*, we have 1, € VG. Thus a k-Haar measure on G is also a (k — 1)-Haar measure

and inductively also forall 1 < m < k.

Remark 3.7. For our simulations in the introduction we rely on characterisation 2. of Thm. 3.4

In order to avoid memory issues when computing the 2-norm of the moments of the simulated
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distributions, we rely on the following computation

i = (( [ e o vptaen ) ([ oit o ot anen ) )

- //ﬁ (U & @Uf)**) dv(Ur)dv(Us)
://|Tr(U1U§)|2kdu(U1)dy(U2). (3.9)

The expression on the right is the continuous analogue of the frame potential, as defined in [[29].
Therefore we can determine the 2-norm error of the k-th moment by comparing the frame potential
of the distribution with the number of symmetries dim(V'¢) of the corresponding Lie algebra
representation ®:F.



Part II

STOCHASTIC ANALYSIS ON LIE GROUPS

In the context of quantum control, we are interested in studying systems that are
exposed to random control profiles. By considering idealised models, the resulting
differential equations are driven by Brownian motion and require special treatment.
Chapterdintroduces the two most important notions of stochastic integration and
stochastic differential equations (SDEs), which are due to It6 and Stratonovich. We
continue by discussing their properties, as well as their respective advantages and
inherent subtleties. Depending on the situation, generally one of the two is preferrable
over the other. However, we can relate 1t6 and Stratonovich integration in a large class
of cases, allowing us to exploit the advantages of both. In particular this is possible
when dealing with stochastic differential equations.

Chapter [5] continues by discussing properties of processes that arise as solutions to
left-invariant and time homogenous stochastic differential equations on Lie groups.
We a particularly focus on Markov properties, associated probability semigroups and

generators which allow to determine the long-term behaviour of such processes.



4. STOCHASTIC DIFFERENTIAL CALCULUS

We use the notations and conventions introduced in Appendix [B| In particular, (Q2, P, (%):>0)
always denotes the underlying filtered probability space on which we model all stochastic processes.
We assume basic familiarity with stochastic processes, Brownian motions, and martingales or
point at Appendix [B|for a short summary. Itd’s construction prominently involves the quadratic
variation process of square integrable martingales (Def. [B.28). Recall that the quadratic variation
of a square-integrable martingale (M;); is the unique increasing, right-continuous process ([M];):
such that M? — [M] is again a martingale. For a Brownian motion (B;); it is simply given by
[B]; = t, see the remark after Def. Because the quadratic variation is increasing and right-
continuous its sample paths [M](w) are the cumulative distribution function of a measure d[M|(w)
on R>, where we omit the dependence on w € €2 in the following. Similarly, the cross variationﬂ
[M,N] = ([M + N] = [M — NJ)/4 of two martingales M, N is the cumulative distribution
function of a signed measure d[M, N|, where we allow negative weights. Note that the cross
variation is zero if the processes are independent. All appearing martingales are supposed to be
square integrable in the following. For a comprehensive overview of stochastic integration and
SDE theory we point out [46, 47].

4.1 Stochastic Integration

In order to infinitesimally characterise stochastic processes which are driven by some noise process
(X4t)¢, we first try to find a way to integrate functions with respect to sample paths of X. The
naive approach here would be to take a sample path X (w) and a function f : R>¢ — R (which
also depends on w) and proceed in the spirit of the Riemann-Stieltjes construction. We consider a

sequence of approximating sums for every w € () seperately and define the integral as the limit

T n
/ F@)X @) 1= 3 fo (@)X (@)~ X, (@), @1
0 .
Jj=1
where IT are partitions {¢q,...,t,} of the interval [0, 7] with |[II|| = max; |t;41 — t;| and

Sk € [t;,tj4+1). In order for this limit to be well defined in the sense that it converges to the same

value for all choices s; € [tj,%;41), it is in general necessary that the function f is locally of

! The notation [-, -] is also employed for the Lie bracket in the later chapters. Whether [-, -] should be understood in this
sense or as the cross-variation is clear from the context in every case.
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bounded variation. This means that the limit

N

lim  sup Y |f(tin) = f(t;)] < oo (4.2)

N—oo o<ty <tp<t =

is finite for all times ¢ > 0. Therefore, if the sample paths of the process X have bounded first
variation almost surely, this approach works perfectly fine. Unfortunately for many interesting
processes such as martingales and in particular Brownian motion, the first variation is infinite
almost surely and therefore, the limit (4.T)) is not well-defined in this sense.

In order to circumvent this obstacle, we weaken the notion of convergence, by always evaluat-
ing the integrand at one specific point of the intervals in the approximation. As first discovered
and rigorously proven by Kyoshi It6 [48]], with a careful choice of this point, one can exploit the
fact that the quadratic variation of square-integrable martingales is finite. This is sufficient to show
that the limit (4.T)) then exists almost surely for sample paths of a Brownian motion, as long as the
integrand is well behaved enough. However, the construction now significantly depends on the

specific point of the intervals where we choose to evaluate the integrand.

From this ambiguity, two important notions of stochastic integration arise: the /¢6 integral which
evaluates the integrand at the lower end of the interval, and on the other hand the Stratonovich
integral - originally introduced by the Russian physicist Ruslan Stratonovich [49] - which uses the
value in the middle. Both have their advantages and subtleties which we are going to discuss in
the following. A detailed construction of the stochastic Itd integral can be found for instance in
[46] or in Chapter 5 of [47]. Chapter 8 of [47] also features a nice exposition of Stratonovichs

construction.

Both approaches provide methods to perform stochastic integration with respect to square-
integrable martingales. For procceses which have bounded first variation, the Riemann-Stieltjes
construction works as usual. Therefore the most general type of stochastic processes (X;); for

which we can make sense of stochastic integration are of the type
X =Xo+ Vi + M, 4.3)

where (V;):is an adapted process with bounded first variation and (M), a local square-intagrable
martingale, such that My = V = 0. Such processes are known as semimartingales. Similar to the
construction of the Riemann integral, we begin by looking at integrands which have piecewise

constant sample paths.

Definition 4.1. A stochastic process (A¢); is called simple if there is an increasing sequence

of times 0 = t3 < t; < ..., such that it can be written as a sum of characteristic functions
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Xitr,trs) © 10,00) — {0, 1} with random coefficients az, : @ — R, i.e.

o0

A(w) =D ar(@) Xt ) (5)- (4.4)

k=0

Definition 4.2 (It0 integral for simple integrands). Let (M), be a martingale, and (A;); a simple
process as in (4.4)) adapted to M. For ¢t > 0 we define the Itd integral to be the random variable

Ne—1

t
/ A dM, = ( > an(My,,, - Mtk)> +an, (M — Myy,) (4.5)
0

k=0
with Ny = max{k : t, <t}.

Definition 4.3 (Stratonovich integral for simple integrands). In the same situation, we define the

Stratonovich integral for a simple process by

t Ni—1
Ap+1 + ag ay + ay .
As ® dMs = ( § %(Mtki»l - Mfk)) =+ TN(Mf - MtNt)'
0 k=0

Remark 4.4. The notation A ©® dM has no particular intrinsic meaning, we just use it to make
a clear distinction between the two different constructions. In the integrals, the subscripts are
supposed to indicate that the parameter we are integrating against is essentially the time and the
process just alters the weight of time increments. We will usually omit them if it is not necessary
to emphasize the time dependence of the integrands explicitly. Whenever we write | AdM this is

just a short hand notation for the stochastic process ( fot ASdMS) .
t>0

Lemma 4.5 (Lemma 2.7 in [46]). Let (M;); be a martingale and consider a process (X;): €

L?(d[M)]), i.e. its sample paths are square integrable with respect to d[M]. Then there exists a
(n)

sequence (X, ); of bounded simple processes such that the pointwise limit X t(") — X, exists
almost surely and
t
lim E { / (X, — Xé"))Qd[M]S} =0, (4.6)
n—roo 0

which expresses that the convergence also holds in L?(P) for all t > 0

We are now able to transfer the construction of the stochastic It integration to more general
processes X with X € L?(d[M]).

Theorem and Definition 4.6 (compare Def. 2.9, Prop.2.10 in [46]] or Thm. 3.16 in [50]). Let
(M): be a continuous square-integrable martingale and consider an adapted process [see Def.
| (Xy): € L*(d[M]). Consider a sequence of simple processes (Xt(n))t approximating X
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such that (4.6) holds. By taking subsequences, we can achieve that

SIS

Y E [/Ot(xgm - Xs)Qd[M]s} < 00, 4.7

Under these assumptions, there exists a unique square-integrable local martingale ( fot X, dMs) s
t>0

called the 116 integral of X with respect to M, such that for all " > 0

t
lim  sup ( / (X™ — X,)dM,| =0 4.8)
0

n—o0 0<t<T
holds almost surely and in L?(P).

Because the It6 integral is a (local) martingale, the expectation of the stochastic It integral
is constant and thus identically zero. Therefore we can interpret the increment dM to have zero

expectation E[dM] = 0 in the Itd sense.

In order to define the Stratonovich integral we want to proceed analogously. However we need
to ensure that the limit exists in an appropriate sense almost surely, which ultimately requires

stronger assumptions on the integrand.

Theorem and Definition 4.7. Let (M;); be a local martingale and (X;); € L?(d[M]) an adapted
semimartingale. For a sequence (Xt(n) )¢ of simple processes approximating X in L?(P) satisfying
the summability condition (@.7), the limit of the simple Stratonovich integtrals fot XM o dM
exists almost surely and in L?(P). We then define the Stratonovich integral of X with respect to
M to be the limiting process

t t
/ X ©dM := lim [ X™ ©dM. (4.9)

Mathematicians remained rather sceptical about Stratonovich’s construction, until Itd managed
to connect this approach to his own work under the premise that the integrand is a semimartingale
[51]]. The reason for this restriction relies on the observation, that we can express Stratonovich’s

integral for a simple processes (X ); as

N, N,

NXp A+ X : X = X
Z %(Mtk - M, )= ZXk_l(Mtk - My, )+ %(Mt,@ - M, ).
k=0 k=0

The first summand on the right hand side clearly corresponds to the It6 integral. If we consider a
sequence of simple proccesses approximating a semimartingale, we see that the second summand

just becomes the crossvariation of X and M when passing to the limit. If the integrand is a
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semimartingale, we can therefore relate 1t6 and Stratonovich integration by
t t 1
/ X@dM:/ XdM+§[X,M}t. (4.10)
0 0

In particular, this shows that the Stratonovich integral is again an adapted process. Since the
expectation of the crossvariation term is not necessarily constant in time, the Stratonovich integral
is generally not a martingale. Nevertheless it is still a semimartingale, since the crossvariation
process has bounded first variation for all times ¢ > 0. More details, including a complete proof of
Thm. [4.7]and Eq. can be found on p. 224f in [47], or p. 132f in [52]).

Example 4.8. As an easy example, consider the case where we integrate a one-dimensional
Brownian motion (By); against itself. First we consider the Itd-integral. Let 7' > 0 and By, :=

B¢ in the following. We obtain

T N
B,dB, = lim Br_1(By— B
/ dim 3 B (B B

1 N 1 N

=5 Jim > (Bi + By1)(By — By1) — 5 lim » (By — Bi-1)’

k=1 k=1

1 N 11

=5 Jim > (Bf = Bi) - 5T =5(B} = T).

Because of Eq. (@.10) and the fact that [B, B]r = [B]r = T itis easy to see that the Stratonovich

integral is given by

T T 1 1
/ B, ®dB, = / B,dB, + =B, Bl = = B2.

Since the It6 integral is a square-integrable (local) martingale, it is interesting to see if its

quadratic variation can be related to the integrand and the driving martingale.

Proposition 4.9 (see Prop. 2.10 in [46]). The quadratic variation of the stochastic It integral

from Thm. [4.6is given by
t
{/Xdes} :/ X2d[M]s. (4.11)
¢ Jo

In particular, we have the following identity

t 2 t
(/ Xdes> ] :/ X2d[M]s, (4.12)
0 0

which is known as the 16 isometry.

E
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The groundbreaking work of Kiyoshi It6 laid the foundations for the mathematical discipline
that is known today as stochastic analysis and was highly influential on contemporary mathemati-
cians. Notably the work of Kunita and Watanabe [|53] approaches stochastic integration using
the theory of Hilbert spaces. We do not want to go into this much further and only hint at the
observation, that the It6 isometry @.T1)) can be considered within their framework as a special

case of the following identity.

Proposition 4.10 (see Prop. 2.17 in [46]). Let My, M5 be martingales on some filtered probability
space (Q, P, (Z#i):), and X; € L?(d[M;)) fori = 1,2. Then the cross variation process of the
stochatic integrals [ X;dMj, [ Xod M, can be computed as

|:/X1dM17/X2dM2:| :/XlXQd[Ml,Mg}. (4.13)

Despite having several properties which are desireable from a probabalistic point of view,
the Itd integral has one major drawback. As we can already tell by the earlier Example
the fundamental theorem of calculus does no longer apply. Essentially all other inconveniences
inherent to the Itd integral can be traced back to this. However, Itd noticed that only a slight
alteration involving derivatives of second order is required to derive a substitute. The result is the

celebrated It6 formula:

Theorem 4.11 (It6 formula, [47] Thm. 5.3.1). Consider a local semimartingale X = Xy + V +
M on R™ as in @3). Let f € C*!(R" x R>p), i.e. f is a function tht is twice continously

differentiable in the spatial component and continuously differentiable in time. Then the identity

F(Xot) = F(X0,0) + / (0u))(Xa5)ds + 3 / (0:f)(X,, 5)d X
=1

n

+% Z/O (81(9]]0) (XSvS)d[Miij]s 4.14)

i,j=1
holds almost surely and for all times ¢t > 0.

Heuristically it makes sense to expect that this formula involves second-order derivatives.
Because the variance of Brownian motion increases linearly in time E[B?] = t, the stochastic
increment can be interpreted to be of order dB; ~ /dt. A Taylor expansion of f (B¢) up to linear
order in dt then involves second derivatives of f as well.

The Stratonovich integral in Example 4.8 on the other hand, resembles what we would expect
from ordinary differential calculus. Indeed, with the additional the cross variation term of (.10),
we recover the ordinary chain rule.
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Theorem 4.12 (Chain rule for Stratonovich). Let X = Xy + V + M be an n-dimensional
continuous local semimartingale as before, and f € C*!(R", R). Then

100 = 500+ [ 0sXKonis+ Y [0 odxt @1y
=1

holds for all £ > 0 and almost surely.

Proof. In order to prove this, we actually need to take a detour via the Itd formula and the
correspondence (@.10). First we apply the Itd formula and convert the appearing Itd integration to
a Stratonovich integral using (4.10)

00 = [ 0ufXsids 3 [0 0es) ©axi = 53 [ a1

1 [ o
*y > /0 9;0; f(Xs,s)d[M", M7],. (4.16)

i,j=1

Combining the It6 formula with @.13), it is easy to show that the cross variation obeys
t n 4
PN = [ 3@ (X )M, N, (4.17)
0 =1

for all (semi-)martingales X = Xy + V + M on R", (real) martingales N and functions f :
R™ x R>¢ — R which are twice continuously differentiable in the spatial components. Therefore
we get

[0:f(X, ), M']s = / > 0;0:f (X, r)d[M', M],.. (4.18)

j=1

If we insert (#.18)) into (@.16)) the last two terms cancel and we arrive at (4.13)). The equation @.18)
is where we need the additional regularity f € C%!(R™ x Rx(), since applying (#.17) to the
left-hand side of {.I8)) requires 0; f to be twice continuously differentiable. O

When working with a Brownian motion, the assumption on the regularity of f can actually be
weakened [54]]. This improvement is still not sufficient to hide the fact that stochastic integration
and geometry are fundamentally incompatible, and only work together if forced. In particular the
chain rule we just derived for Stratonovich’s integral is not an intrinsic property of this construction,

but merely an imitation of the chain rule in standard analysis.

Remark 4.13. Note that the Stratonovich integral is technically not even an integral. In order
to call something an integral one would expect it to satisfy estimates in terms of the zero-order
information the integrand provides. It follows from (@.10) in combination with (@.17) that

t

oo = [0+ 30X M
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For any estimate of the integral we can come up with, we would need to take first order derivatives
of f into account as well, cf. p.225 [47]].

4.2  Stochastic Ditferential Equations

Now that we have developed a notion of stochastic integration, we can make sense of stochastic
differentiation as a inverse operation.

Definition 4.14. Let (B;); be a d-dimensional Brownian motion on a probability space (2, P, %)
and £ :  — R™ a random variable. We define a filtration of .7 by .%; := o (§; X for0 < s < t)
which we additionally enrich with all sets of measure zero. A stochastic process (X;); with values

in R™ is a strong solution to the It6 stochastic differential equation (SDE)
dXt = (Z(Xt, t)dt + b(Xt, t)dBt, Xo = g (419)

for some measurable coefficient functions a : R” x R>¢ — R™, b : R" x R>¢ — Mat,, x4(R),
if and only if

1. X is adapted to the filtration (%),
2. P(Xo=¢) =1,
3. P(fg la(Xs, s)|| + [|b(Xs, s)||ds < c0) =1 forall ¢ > 0,

4. the integral equation X; = X + fot a(Xy, t)dt + fot b(X;,t)dBy is satisfied for all times
t > 0 almost surely.

Similarly, we say that (X ); satisfies the Stratonovich SDE
dXt = G(Xt, t) + b(Xt, t) ® th (420)

if and only if 1.-4. hold, where we replace the It6 integral in 4. with the corresponding Stratonovich

integral.

Remark 4.15. Another important tool in stochastic analysis is the concept of a weak solution.
These are continuous processes (X ); such that only 3. and 4. are satisfied. The difference to
a strong solution is that one leaves the freedom to choose the underlying probability space, the
driving Brownian motion and the filtration, such that the driving Brownian motion and X are

adapted.

As for classical differential equations, linear growth and Lipshitz conditions on the parameter

functions guarantee existence and uniqueness of solutions to SDEs.
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Theorem 4.16 (Theorem 2.9. in [46]). Consider a d-dimensional Brownian motion (B;); on some
filtered probability space, and £ a random variable with finite second moment. Let a and b be
bounded measureable functions as in (.19)) which satisfy the linear growth and global Lipshitz
conditions

la(t,z)||> + [|b(t, 2)||* < K2(1 + ||z]|?), (linear growth condition) (4.21)
lla(t,z) — a(t,y)|| + ||b(t,z) — b(t,y)|| < K|z —y|  (global Lipshitz condition) (4.22)

forall t > 0, x,y € R™ and some constant ' > 0. Then the 1t6 SDE
dXt = a(Xt, t)dt + b(Xt, t)dBt, Xo = g (423)

admits a unique strong solution (X;); which is defined for all times ¢ > 0.

Since we know how to relate It6 and Stratonovich integration, we can convert Stratonovich
SDEs to Itd SDEs and vice versa if the coefficients are sufficiently nice. If the driving processes

are independent one-dimensional Brownian motions, this conversion takes the following form:

Proposition 4.17. Let B, ..., B™ be independent Brownian motions, B; := (B}, ..., B/") and
(Xt)¢ a stochastic process in R™. Let a : R™ x R>g — R™ and b : R™ x R>¢ — Maty, xm (R)
satisfy the Lipshitz and growth conditions of Thm.[d.16] We assume that the matrix coefficient
b= (b1,...,bn) = (bij)i<n,j<m is continuously differentiable in the spatial components. Then
the process (X;); satisfies the Itd SDE

dXt = CL(Xt, t)dt + b(Xt, t)dBt (424)
if and only if it satisfies the Stratonovich SDE
1
dXt = (G(Xt, t) — §C(Xt, t)) dt + b(Xt, t) © dBt, (425)

where the drift correction is given by

cj(z,t) = Z Z <ai_bjk(a:,t)) bik(z,1). (4.26)

Proof. The starting point to prove this claim is the identity @.10). Let X be the solution to the Itd

SDE {.24), i.e.
¢ ¢
X =Xo —|—/ a(Xs, s)ds —|—/ b(Xs,s)dBs forallt > 0.
0 0

With the understanding that stochastic integration is performed in each coordinate seperately and
that b(X,, s)dBs = Y, b;(Xs, s)dBL, we can convert the second integral into a Stratonovich
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integral using Eq. @.10) and get
t t 1
X =Xo Jr/ a(Xs, s)ds Jr/ b(Xs,s) ©®dBs — Ec(Xt,t). (4.27)
0 0

forall t > 0 where ¢ = (ci,. .., ¢,) with ¢; (X, 8) == >, [bjr(X,), B¥]5. With Itd’s formula
(4.11)), the identity (4.13)), and the fact that the crossvariation with terms of bounded variation
vanishes, we can compute the correction term explicitly as
(X0 t) = 3 [bu(X, ), BY] Z /Za bir(Xs, s)dX!, BF
k
_Z/ 8b]k 595 Xl Z/ 8b]k 595 |:/bll ry T dBl Bk

k,l,i

—Z/ (Dibjr(Xs, 5)) bud[B', B Z/ (Dibjr(Xs, 5)) bixds

a0,k

which is exactly as claimed in Eq. #.26). Starting with a Stratonovich SDE, we can work the

argumentation backwards analogously, which concludes the proof. O

4.3 Itb versus Stratonovich

In the following, we compare how the two notions of stochastic integration behave under different
aspects. As far as stochastic properties are concerened, we already saw that the It6 integral is a

(local) martingale and therefore very much suited for the framework of stochastic analysis.

Underlying Geometry

Another question of interest is concerned with the geometry of the underlying space: Assuming
that the stochastic increment is locally tangent to a submanifold of the euclidean space, does the
process stay on this submanifold? This is fundamentally relevant for our purposes, as we ultimately
want to model SDEs on Lie groups. For Stratonovich’s integral the answer is generally affirmative,

since the chain rule is satisfied.

Proposition 4.18. Consider an embedded m-dimensional submanifold M C R¢ (without bound-
ary). Let V, Wy, ..., W}, be vector fields on R? which satisfy the growth and Lipshitz conditions,

and restrict to vector fields on the submanifold M. For real-valued Brownian motions B!, ..., B*,
the process defined as the solution of the Stratonovich SDE
dX, =V (X;)dt + > Wi(X,) © dBj. (4.28)

i

stays on M for all times if initially Xy, € M.
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Proof. Note that it suffices to check the statement locally. Since M is an embedded submanifold
we can choose a local chart ¢ on an open neighbourhood U C M around p := Xy € M. Because
the vector fields are tangent to M, we can consider the localised SDE

dX; = Ve(X)dt + > WF(Xy) ©dB}, Xo=o(p) (4.29)

where V¥ (z) := DpV (o1 (z)) denotes the vector field corresponding to V' in the coordinate
representation, similarly for the ;. The vector fields V#, WY’,..., W7 satisfy Lipshitz and
growth conditions at least on some small precompact neighbourhood around ¢ (p). Therefore there
exists a stopping time 7" with T" > 0 almost surely such that the solution ()?t)th to (4.29) with
Xo = ¢(p) is defined and stays inside o(U). If we map the solution (Xt)tg back to M and
apply the chain rule once more, we see that X; := ¢! ()Z' +) € M solves the SDE (@.28) fort < T..

Because our assumptions gurantee the uniqueness of the solution, this concludes the proof. [

In general this procedure will fail when working with Ité6 SDEs. This does not come as a sur-
prise, considering the behaviour of the It6 increment under non-linear coordinate transformations.

The following simple example supports this intuition:

Example 4.19. Consider the 1t6 SDE
(dX;,dY;) = (Y, X,)dB,, (4.30)

where B; is a one-dimensional Brownian motion. The stochastic increment (—Y;, X;) € T tht)Sl
is tangent to the unit sphere. Let f(x,y) = 2% + y? and assume that initially (X, Yy) € S. If the
process stays on S! we would nececcarily have df (X;,Y;) = 0. Because the mixed derivatives

0,0y f = 0 vanish, using both It6’s formula and isometry, we compute

1
df (X, Y;) = 2X,dX, 4 2Y,dY; +§ (92 f(Xy, Yy)d[X], + 8§f(Xt7Yt)d[Y]t)

=0

= d[X]; +d[Y]; = d U —stBs} At [/ Xsst]

¢
t
= d/ Y24 X2ds = (X7 4 Y2)dt.
0
In particular, f(X;,Y;) is monotonically increasing and df (X¢, Y;) is non-zero for all times if
initially (Xo, Yy) € S'. Therefore the process will not stay on S! for any ¢ > 0.

This example is nicely demonstrated in Fig. [d.1|by a simulation using the Euler-Maruyama
scheme, which we will briefly discuss at the end of this chapter in Proposition[4.24]
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Fig. 4.1: Sample path (black) of an Ito-solution to d(X;,Y;) = 0.4(Y;, —X;)dB; starting at (1,0) €
S* (grey) with 10000 iterations and time-step At = 0.001 using the Euler-Maruyama scheme,
Prop.[£.24] The choice of the factor 0.4 is purely for aesthetical purposes. We clearly see that the
plotted sample path is contantly moving away from the unit circle even though the increment is
tangent to it.

Approximations

Another major concern is the validity of different kinds of approximations. Assume that we have a
Brownian motion B and that we want to physically reproduce an evolution that is simulated by
the formal Langevin equation

%Xt = a(Xp,t) + b(Xp, )&, (4.31)

where ¢ is distributed according to the white noise measure. A priori it is not clear if we should
understand the formal increment £, = dB;/dt in the It6 or Stratonovich sense. Since we cannot
physically simulate distributional pulses, we need to rely on approximations to the increment
d By /dt in one way or another. In order to produce meaningful results, the solution to the idealised
equation (4.3T) needs to resemble the solution of the approximated equation. Here again, Ité and

Stratonovich increments behave rather differently.
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Example 4.20. Consider a smooth function f € C*°(R>¢ x R) for which the second spatial

derivative 92 f is not identically zero and consider the Itd increment
dXy = (0uf)(t, Be)dt + (0 f)(t, By)dBy,  Xo = f(0,0) (4.32)

for a Brownian motion B. In order to solve this, we could naively approximate the driving
Brownian motion locally uniformly via (piecewise) smooth processes (By'); satisfying Bj = 0,

compute the solutions X" to the equations
dXi =0, f(t, BY') + 0-f(t, B )dB{',  Xg = f(0,0), (4.33)

and obtain the solution to (4.32)) via the limit X, := lim,,_,~, X{'. Because the B} are differen-

tiable, we can rewrite
dX] = 8,f(t, B}) + 9, f(t, BM) Bldt. (4.34)

Using the chain rule of ordinary calculus, we see that is solved by X}* = f(¢, Bf*) which
converges to f(t, B;) asn — oo. But if we compute df (¢, B;) using the Itd formula, we addi-
tionally get the It correction term %8% f(t, By)dt! That is, the Itd integral is in general unstable
under approximations of the noise process, and the described procedure will in general fail to
solve the SDE considered! The problem with this procedure is that the quadratic variation is
not stable under approximations. For piecewise smooth processes approximating the Brownian
motion, the quadratic variation will be identically zero, whereas it grows linearly in time for a

Brownian motion.

This of course has consequences for how we need to model physical systems. In any experi-
mental setup, the driving white noise is only approximated by piecewise constant random pulses.
Interpreting as an It6 SDE would therefore produce results not in accordance to what is
observed in the system. Luckily, the Stratonovich integral behaves much better in this regard, as

the following two theorems due to Stroock and Varadhan show.

Theorem 4.21 (Theorem 4.1 in [55]). Let b : R>¢ x R™ — Mat,,4(R) a smooth map and
a:R>p x R™ — R™ a time-dependent vector field. Consider a standard Brownian motion (B;),
on R¢, which we approximate by a sequence of piecewise affine linear functions

t— ™ (
n

M (t) = B(t™) + B) - BE™))

with tgf ) e LN such that "<t < tf). Let g € R™ and consider the family of solutions

(X t(n))t to the regular random integral equations

+ t
XM = o+ / a(X{™, s)ds + / b(X(™, 5)e(Mds (4.35)
0 0
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and the Stratonovich solution (X;); to
¢
X =20+ / a(Xs, s)ds + b(Xs, s) © dBs. (4.36)
0

Then P(™) = Law(X (™) converges weakly to P = Law(X) as n goes to co.

The expression b(x, t) © d By is just a compact way of writing Y, b;(x, t) © d B; for some time-
dependent vector fields by (z,t), ..., bg(x,t) and independent Brownian motions B, ..., B In
the language of control systems, the theorem implies that the law u; = Law(X;) of the solution

is supported in the set attainable by the control system (a|by, ..., bq) at time ¢ from z, i.e.

supp(pt) C At(2o)-

Another major accomplishment of Stroock and Varadhan was to show that the converse inclusion

also holds, which is implied by the next theorem.

Theorem 4.22 (Theorem 5.1 in [55]], related to Theorem 9 in [56]]). Consider a, b, B as in the
previous Theorem[4.21]and a process (7);) adapted to (B;), with twice continuously differentiable
sample paths. Let X be a solution to the Stratanovich SDE #.36) and X" a solution to the random
integral equation

¢ ¢
X=Xy + / a(Xs, s)ds + / b(Xs, s)dns.
0 0

Then the probability that the solutions X and X7 differ at most by £ > 0 is controlled by the
difference n — B in the sense that the conditional probability satisfies

lim P ( sup ||X; — X/|| <e
604 0<t<T

sup |[n; — Bl| < 6) =1. (4.37)
0<t<T

Corollary 4.23 (part of Theorem 8.3.5 in [47]]). Let V, W7, ..., W,, be vector fields on R¢ and
B',..., B™ independent real-valued Brownian motions. Consider the solution to the Stratonovich
SDE
dX; = V(Xe) + > W;(X:) ©dBi, Xo = 0.
J
Then the support of p; = Law(X;) is equal to the set which is attainable by the control system
(V|W1,...,Wy,) from x, at time .

Thanks to this this corollary, Thm. #.22]is usually referred to as the Support Theorem.
It is important to note that in both cases the somewhat restricted form of approximation to the

noise is required. This is linked to the fact that linear maps are generally non-commutative if we

consider more than one dimension, which can cause severe problems in such approximations. An
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example of an ODE where the solutions of the approximation do not converge to the true solution

can be found for instance on p. 38 of [56].

When numerically solving stochastic differential equations, one can come up with another concep-
tually different type of approximation. In the spirit of the Euler method for ordinary differential
equations, we want to solve a SDE using Taylor expansion and extrapolate the solution over small

time intervals by
Xt+At = Xt + a(Xt, t)At + b(Xt, t) (Bt+At — Bt) (438)

This procedure is known as the Euler-Maruyama scheme. By default this procedure favours Itd’s
integral over Stratonovich’s. This is because we extrapolate using the currently known value,
which corresponds to the lower boundary of the interval we consider. Formally, this is captured by

the following theorem.

Proposition 4.24 (see Theorem 10.2.2 of [57[]). Consider an Itd stochastic differential equation
dXt = G(Xt, t)dt + b(Xt, t)dBt, XO = Xg-

where the coefficients satisfy the Lipshitz and growth condition of Thm. .16]and assume addi-
tionally that

1. E[||X0|?] < oo,

2. [la(t, x) — a(t, y)|| + 16, z) = b(t, y)|| < Cillz —yl,

3. [la(t, 2)[| + [[b(t, 2)]| < Callz —yll,

4. |la(s, x) = alt, )| + [[b(s, 2) = b(t, 2) || < C3(1+ ||zl)|s —¢]'/2,
hold for suitable constants C7, Cy, C3 > 0. For § > 0, we consider the discrete approximation
X constructed iteratively by

th

tet1

= Xii + G(Xti,tkﬁ + b(Xtéwtk)BzS

with ¢, = k6 and linearly interpolating between the anchor points. Then for every 7' > 0, there
exists a constant C' > 0 such that the difference between the true solution X and the approximation

X9 at T can be bounded in expectation by
E[| X7 — Xg] < €62,

It is evident that such a procedure must fail for the Stratonovich integration. In order to

obtain a Stratonovich solution we would need to replace b( Xy, t) in the extrapolation (4.38)) by
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b (X k46/25 M) But of course at time ¢, we cannot determine the distribution of X? for
(tk +trr1)/2 yet.
Conclusion

We conclude this capter by summarsing how Itd and Stratonovich integrals behave differently

under several aspects.

It6 Calculus Stratonovich Calculus

+ Stochastic increment has expectation zero - Expectation of stochastic increment

+ It6 Isometry (Prop is nonzero in general

- Unstable under approximation of + Stable under approximations of
the noise term (Ex. the noise (Thm.

- Ordinary chain rule does not apply (Thm. | + Chain rule holds as usual, (Prop

- Does not respect underlying geometry (Ex. D + Preserves geometry of underlying

+ Euler-Mayurama scheme for solving submanifolds (Prop

SDEs (Prop

The Itd calculus is designed to behave well for probabalistic computations and mathematical
models, while Stratonovich’s notion of stochastic integration features properties which are more
desireable from a physical perspective. In particular it is the adequate notion to interpret formal
Langevin-type equations

%Xt = G(Xt7 t) + b(Xt, t)gt (439)

which are driven by white noise &, the distributional derivative of Brownian motion. Most impor-
tantly, the two developed notions of stochastic integration complement each other nicely, and as
we may convert them back and forth for sufficiently nice integrands, we can exploit the respective

advantages of both and avoid the involved difficulties.



5. LEVY PROCESSES ON LIE GROUPS

In this chapter we discuss properties of stochastic processes on Lie groups that naturally arise
by geometric integration of Lévy processes in (matrix) Lie algebras. We use the results of the
previous discussion about stochastic integration in order to give a proper infinitesimal descriptions
of such processes. As a preperation for Part III, we are primarily concerned with their Markov
properties and the generators of their semigroups. From now on, G is always a connected Lie group
with identity element 15 and g = 73, G its Lie algebra, unless indicated differently. We write
X = 2! for the left invariant vector field corresponding to = € g. In order to avoid the treatment
of stochastic calculus on manifolds, we usually assume G to be a matrix Lie group, i.e. given
by some faithful unitary representation such that G C GL(d), and consequently g C gl;. The
left-invariant vector field X corresponding to € g is simply given by X (U) = Uz € End(C?)
in this case.

As usual, (2, P, (%#;)i>0) denotes the filtered probability space on which we model all stochastic
processes. In particular, we consider all occuring processes to be adapted to the filtration (%)
(Def. [B.19). All densities and the occuring LP-spaces are to be understood with respect to the
Haar measure. As general references of this chapter, we refer to |58, |59, 20, |60].

5.1 Stochastically Controlled Systems

The obvious procedure to generate random distributions on a (matrix) Lie group G using an invari-
ant control system (z|y1, . .., ¥m) is to apply random pulses to the controlled parts. Specifically,

we assume that the random control functions are simple processes of the form

C(t) = Z AiX[ti,tiv1) (t)v

i>0

with t; = AT and independent random coefficients a; ~ N'(0, AT~!) for some time step
AT > 0. As usual, x denotes the characteristing function of the respective time intervals. We
choose such processes c; for each control y; independently and steer the system via the random

differential equation

d
%Ut = Ut(’I + ;Cj(t)yj), UO = lG- (51)
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The control parameters c; are chosen such that they are the derivatives of piecewise linear
approximations to independent Brownian motions B!, ..., B™ in the spirit of Prop. This
proposition implies that the process (Uy); in corresponds in the limit of AT — 0 to the
solution of the Stratonovich stochastic differential equation

dU; = Updt + > Uwy; @ dBi, Uy = 1. (5.2)
J

The SDE (5.2) indeed describes an evolution on a Lie group since, the Stratonovich integration
respects the underlying geometry. We also see that defines a continuous process, since
both the driving noise as well as the coefficient vector fields are continuous. For a probabalistic
treatment the Itd form of an SDE is preferrable over the Stratonovich version, following the
discussion of Chapter If we consider G C SU(d) in its standard representation, we can use the
[t6-Stratonovich conversion (Prop. to derive the corresponding Itd SDE

1 .
Uy = U | w0+ zj:yjz dt + ; Uw;dBl, Uy =1g, (5.3)

where we understand the muliplication y?. in terms of endomorphisms on C?. Both the linear
growth and the Lipshitz condition of Thm. are satisfied, which ensures uniqueness and
existence of the solution to (5.3)) (and thereby also for (5.2))) for all times ¢ > 0. Because of the
underlying group structure, solving the Stratonovich SDE (5.2)) amounts to a geometric integration

of the process (Z;); on g defined by Z; = xt + 3, y; B, since we can rewrite (5.2)) as
dU; = U; © dZ;. 5.4

Since the Hamiltonian is constant over small time intervals, the solution (Ut(n))t to the random

differential equation (3.1) with timestep At = % can be explicitly stated as
U =TT exp (Zijn = Zg—1ypn) | exp(Ze = Zn ) (5.5)
j=1

with N; = max{j € N: j/n < t}. Here we consider the terms in the product to be multiplied
from the left to the right. Because Ut(n) converges to U; in distribution, we can express the

distribution of U; as the weak limit

Ny
D ..
U = nlgrolo H exp (Zk/n — Zik—1)/n) - (5.6)
k=1

Recall that a Lévy process in euclidean space is a process with independent and stationary

increments. In particular this is the case for the process Z above, which is essentially a Brownian
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motion with an additional drift in the Lie algebra g. It is straightforward to see that the stationarity
and independence of the increments of Z carry over to the right increments of (U ), in accordance
to the order of multiplication in (5.3). Therefore it seems adequate to develop a corresponding

notion of Lévy processes on Lie groups.

5.2 Lévy Processes on Lie Groups

Before we actually start, recall that we define the convolution of two measures y, v on G by

pxv(A) = / xa(gh)du(g)dv(h).

Similarly we define the convolution of measurable functions fi, fo with respect to the Haar

measure via

frx fa(h) = / f1(hg™) falg)dpcs

Definition 5.1. Let G be a Lie group. A stochastic process (g:):>0 on G is called a left Lévy

process if

1. (g¢): has cadlag sample paths (see Def.[B.20),

2. the right increments g, Yon, ., ggilgn are independent foralln € Nand ¢; < --- < t,,
3. the right increments are stationary, i.e. g; 'g; ~ gg ! g¢_ have the same law for t > s.

Similarly, we can define right-Lévy processes using the left-increments. At first it seems
somewhat counterintuitive to call the process above left Lévy process if the right increments are
stationary and vice versa, the reason for this is becomes clearer when looking at their Markov
properties. In the following, Lévy processes should always to be understood as left Lévy processes
unless indicated otherwise. The competing notations (g ) and (U;);, which we are employing for
Lévy processes, are supposed to indicate whether results are of a general nature or refer to the
setting we defined in Eq. (5.2)) respectively.

For a Lévy process (g;):, we will denote its law at time ¢ by p1; and write 410 = Law(gg ' g¢)

for the law of the process starting at the identity. We begin with two important observations.

1. Since the paths of a Lévy process are cadlag, they are right continuous and therefore we

have lim;_,o u?(U) = 1 for every open neighbourhood U around 1.

2. The independence and stationarity of the increments manifest themselves in the observation

that f1y1 s = g * 8 = ps * 1 holds for all s,¢ > 0.

With the initial condition gy = 15 we therefore have ;s = p; * ps for every s,¢ > 0 and
lim;_,¢ 4 = 91, weakly which gives the family {1, };>0 the structure of a continuous convolution

semigroup.
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5.3 Markov Properties and Generators

As in the euclidean case, Lévy processes on Lie groups are a special instance of time-homogenous
Markov processes. This is important, because Markov processes are ‘memoryless’, and in order
to get a uniform distribution after always starting at the same point, we need to ‘forget’ this
information. The Markov property of a Lévy process (g;); follows directly from the fact that
the increment g; 'g; for t > s is independent of .%;, and the time homogenity corresponds to
the increments being stationary. Therefore the transition operators F; ¢, which are defined on

measureable functions by

Py o f(h) :==E[f(g:)|gs)(h) = E[f (9595 ' 9¢)|9s = h] = E[f (hgg " ge—s)],

depend only on the difference ¢ — s. In particular we have Py o = 1 and the family { P;}; with
Py := P, inherits the structure of an operator semigroup, according to the Chapman-Kolmogorov
equations (cf. Def. . With the earlier observation that pi;4 s = puy * ,ug for all s,z > 0 we see
that the transition kernels {r; }; of the process simply act on probability measures v € M!(G)
by convolutions, v™ = v x u?. It is a standard result in the theory of Markov processes, that
(g¢)¢ is probabalistically completely determined by each of the structures { P }+, {7 }+ up to an
initial condition gg ~ g, cf. Chapter 1 in [[20]. In the remainder of this section we will be mostly
concerned with discussing the transition operator semigroup { P, }; acting on the Banach space
Co(G) of continuous functions vanishing at co. We continue by collecting some more properties
of {P}.

Proposition 5.2. The operator semigroup {P;}; of a left-Lévy process acting on Cy(G) is a
probability semigroup. That is, additionally to the semigroup properties, it satisfies the following
conditions for all times ¢ > 0 and f € Cy(G) (compare Def. 3.4 in [61]):

1. P.f > 0if f is nonnegative (positivity).
2. limy—y o0 [|Pof — flloo = O strong continuity.

3. P11 =1forallt > 0, if G is compact. (mass-preserving)
Otherwise, there exists a sequence f,, such that sup || f,||cc < 00 and P, f,, — 1 pointwise

as n — oo.
4. |Piflloo < |Iflloo (contracitvity).
Besides, we also have that P, commutes with left-multiplication maps I, : G — G
5. Py f =1 P f forall f € Co(G) (left-invariance),
which is the particular reason we call the process a left Lévy process.

Proof. Because P, f(g) = [ f(hg)du(h), Claims 4, 1 and the compact case of 3 follow imme-
diately. For the non-compact case in 3, we choose a sequence of functions f,, € Cy(G) with values
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in [0, 1] such that f,, — 1 pointwise and f,, 1({1}) C f,,*({1}) for n < m. Left-invariance is
esily verified by
P;.f(g) = E[f(hggo '90)] = Pof (hg) = L, Pf (9).

We are only left to show strong continuity in co-norm. Fix € > 0 and assume that GG is compact.
Because f is continuous, we find a neighbourhood U, around 1¢ such that | f(g) — f(gh)| < €
forall h € U, and g € G. Because the convolution semigroup {u?}; is continuous, there exists a
time ¢ > 0 such that p5(G \ Uc) < € for all s < ¢. This allows to derive the estimate

[P = Sl < sup /U F(gh) — F(9)ldpa(R) + sup /G (o) = 1o )

g

< (1 +[[flloo)e- (5.7)

If G is not compact, we can still find a compact K C G such that | f| < /2 outside K. Consider
another compact set K’ containing K such that there is an intermediate open set V with K C
V' C K’ and replace G by K’ in the argument above. The intermediate open set ensures that we
can shrink U, to achieve g - U. N K = () for all ¢ € G\ K’ if necessary. Then the estimate
holds analogously. O

Combining the semigroup property with the strong continuity, we can completely recover
the semigroup only by knowing the operators for a sequence of times converging to zero. Thus
the semigroup is completely determined by its ininitesimal behaviour at ¢ = 0. The best way to

capture this properly is to consider its infinitesimal generator, which is the operator £ defined by
1

Lf:=lm—(P.f—f) (5.8)
t—0 ¢

forall f € Cy(G) where the limit exists. The limit in fact exists on a dense subset of C(G)
as the next proposition shows.

Proposition 5.3 (cf. Thm. 13.35 in [62], and p. 304f in [63]]). For a semigroup of the probability
operators { P; }; acting on Cy(G), the infinitesimal generator £ defined in Eq. has a dense
domain of definition Dom(£) C Cy(G). Additionally, the semigroup preserves the domain in the
sense that P, f € Dom(L£) for all f € Dom(L£) and ¢ > 0.

Using the definition of the infinitesimal generator, we can easily derive a differential equation

describing the operator semigroup { P; }; in terms of the generator £ by
0P f =1lim s~ (Piys = P) f = P lim s (Pof — f) = PiLS. (5.9)

This is a special case of the more general Kolmogorov forward equation. The respective backwards-
equation is 0y P, f = LP; f (also known as the Heat equation). In order to appreciate this choice

of naming properly one needs to look at the corrsponding equations in the time-inhomogenous



Chapter 5 55

case, where L is time-dependent and locally characterises the changes of P, see for instance in
[61]. In view of (5.9), one is tempted to express the semigroup { P, }; via the operator exponentials
P, = exp(tL). The problem here is that the operator £ is unbounded and in general nor self-
adjoint, thus we cannot make sense of this exponential. This can be circumvented by considering
the defining approximation to £ by the bounded operators £. := ¢~ (P.f — f). With this trick
we can recover the semigroup from the generator via the assignment P; f := lim._,q exp(tL) f
forall ¢ > 0 and f € Dom(L). A formal proof of this is given in Thm. 13.35 of [62], thereby
showing that the probability semigroup and its generator determine each other uniquely.

Of course such generators can be defined for more general Markov processes whenever the
transition operators are strongly continuous. For the particular case of Lévy processes they are
very well understood. In the euclidean setting, this is accomplished by the Lévy-Khinchin formula,
see for instance Chapter 2 in [47]]. The result of Hunt [|64]] generalises this to the setting of Lie

groups.

Theorem 5.4 (Hunts formula, Thm. 5.1 in [64]], Thm .1.1 in [59]). Let (g¢); be a Lévy process
on a Lie group G and z1, ..., z, a basis for its Lie algebra g. As ususal let X1, ... X,, denote
the respective left-invariant vector fields. Consider a collection of compactly supported functions
Y1, ..., Yn defining a local chart around 15 which satisfy «;(y;) = J;;. Then the generator £ of

(g¢+)¢ acting on smooth functions f € C*°(G) can expressed as

L) =5 3 ayXiX;f(9) + D biXief(9)
=1

i,j=1

+/G <f(gh) - flg) — Zyi(h)quf(g)> dIl(h), (5.10)

where A = (a;;);,; is a positive semidefinite matrix, b = (b1, ...,b,) are constants and IT a
measure on G satisfying II({1¢}) = 0, [ >, y2dIl < oo, and II(G \ U) < oo for every open
neighbourhood U around 1. The measure II is called the Lévy measure of the process. Conversely,
every generator of the form for such a triple (A, b, IT) defines a Lévy process on G.

Remark 5.5. The Lévy measure II is the intensity of a pure jump process resembling the occuring
discontinuities of the Lévy process. In particular, it is identically zero if the process is continuous,
which significantly simplifies the expression (5.10). Since this is the case we are eventually in-
terested in, we assume all Lévy processes to be continuous from now on. Even though we only
state the formula for f € C§°(G), which is strictly smaller than the domain of L, this
determines £ completely. Here we rely on the fact (Theorem 13.35.8, Chapter II in [[65]]) that
C§° is a core for L, i.e. the domain of £ is the closure of C§°(G) with respect to the graph norm

Iflle = 1A+ ILA1-

If we go back to the process (9.2)) from the beginning, we expect that the infinitesimal generator
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L of the generated Lévy process can be expressed in terms of the control and drift vector fields of

the underlying control system. Consider the solution (Uy); to the Stratonovich SDE

AUy = X (Up)dt + »_Y;(Uy) ©dB!, Uy =1g (5.11)
J

for some left-invariant vector fields X, Y1, . . ., Y;,, and independent Brownian motions B*, ..., B™.
Pick f € C*°(@). Then the Stratonovich differential of f(Uy;) is given by

df (Uy) = Df(dUy) = DfX (Up)dt + Y DfY;(U) © dB. (5.12)

J
In order to avoid notational overload, we implicitly assume all involved functions defined on G
to be depending on Uy, whenever this is oppurtune and simply write e.g. f; = f(U,) instead.

With the understanding that D f(X (U;)) = Xy, (f)(= X(f)+), we convert (5.12) into an Itd
differential in order to simplify its treatment

dfy = X(f)e+ Y Y5(/1dBl + % > dlY;(f), B (5.13)
J J

We extend f and the vector fields X, Y7, ..., Y, onto some open neighbourhood of G C C%*?,
and conduct our calculations in euclidean coordinates. Since U; stays on G and X, Y7, ...,Y,, are
tangent to G, the specific choices for the extensions do not affect the following computations. We
can express the vector fields Y} in terms of the standard differentials 0; on C4xd yia Y, = > YJ’ 0;
for some smooth Y/ € C*(C**%). With the aid of the identity Eq. and the SDEs for the
coordinate processes (U}); of (Uy); we obtain from (5.11)), we compute the summands of the drift

correction seperately, exemplary for Y = Y; and B = B!

Bl =Y _0Y(f1d[U',B], =Y 0:Y(f)d U dUi,B}
) i t
=Yooy (| [ xids+ [ S0, 0 dBLB
i !
We apply the Ito-Stratonovich conversion one more time, and end up with
B}t:ZBiY /de+2/ dU*, B /ZY} ).dB., B

—Zay / e dlBLBl, = SO0, (fedt = Y2(f)edt.

%

t

t

:611d8

In the equality (), we use that the cross variations of the first two summands with the Brownian

motion vanish, since these integrals have bounded first variation. Thus the It6 differential in (3.13)
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is explicitly given by

do= | Xt 5 S VP | dt+ S Vi), (5.14)
J J

This allows us to compute the infinitesimal changes of the expectation of f; = f(U;). Because the
SDE (5.17) is left-invariant, the constant left shift {,(U;) = gU, satisifes the the same stochastic

differential equation as Uy, only with the initial condition replaced by Uy = g. Therefore we get

6—0

£f(g) = lim 5 (Ewgw - f(g)> ~ 15 (10 [ 4. 10))

1 0 1 J _
=t 2B | [ XU+ 5 SN+ [ D05 av.)05

6—0 -
J

, 1 /0 1 )
= im= |5 [+ URITRE
where we use that the expectation of the It6 integral vanishes in the last step. By dominated

convergence, we can take the limit inside the expectation and are left with

_4d _ 1 2
Lf=— tZOPtf_Xf+2zj:ij. (5.15)

We have just proven the following proposition.

Proposition 5.6. For the left Lévy process (Uy); defined as the solution to the Stratanovich SDE
(5.11]), the infinitesimal generator is given by the left-invariant differential operator

1 2
£:X+§ZYJ.. (5.16)
J

Remark 5.7. Since the assignment x — X € Der(C°(G)) essentially defines a faithful
representation of the Lie algebra g on C°°(G), we can view £ in as the action of the

element )
_ 2
E—x+§Zyj (5.17)
J

in the universal envelopping algebra U (g) under this representation. Given an ad-invariant inner
product (-, -) on g, we can characterise Brownian motion on G as processes generated by the
associated Laplacian A of the corresponding metric on G. The Laplacian A is just the action
of the Casimir element Cy with respect to (-, -) under the above representation. Because the Cy

lies in the center of U(g), A commutes with all left-invariant differential operators on G, which
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expresses the highly symmetrical nature of Brownian motion.

Because the diffusion matrix A in Thm. is symmetric, we can always find a basis in
which it is diagonal so that the generator of a continuous Lévy process takes the form (5.16)).
In particular, with the converse statement of Thm. [5.4] this shows that every continuous Lévy
processes can be modelled as a weak solution to a Stratonovich SDE as in (5.11)). The generator of
a continuous Lévy process is a second-order differential operator with dense domain of definition
Dom(L£) C L?(G). It is well known that such differential operators are closeable i.e. the closure
of its graph in L?(G) @ L?(G) is the graph of some operator with larger domain (c.f. p. 78 in
[66])). This condition ensures the existence of a densely defined L2-adjoint yal (Chapter 13 in [62])
sothat [, L(f1)f2dpc = [ 1L (f2)dpe holds forall f; € Dom(L), fo € Dom(LT). In order
to explicitly determine the action of £, we observe that the left-invariant vector fields X = z
inside L?(G) are formally skew-adjoint That is we have

(f; X(9)) 2 = =(X(f), g) > forall f,g € C=(G),

one of which we assume to have compact support. Consequently the Yj2 are formally self adjoint

and we arrive at 1
o 1 2
L= =Xt 5> V7
J

In particular we see that C2° C Dom(L") C £2(G) and that the second order part of the generator
L is always negative semi-definite. What do we gain by studying the generator of a transition
semigroup? In the framework of Markov processes it is a central task to analyse the long-terms
dynamics of a process, the existence of stationary distributions as well as the convergence to those
distributions. It turns out that in the time-homogenous case, these questions entirely traced back
to the generator L. Specifically, the forward equation allows to infinitesimally characterise
the time-evolution of the probability distribution p, itself, as we explain in the following. Since
probabibility measures are distributions in a functional analytic sense, it indeed makes sense
to apply differential operators to probability measures. We begin with the observation that the
mapping ¢ — u¢, R>g — MY(G) C D'(G) is continuous in the weak topology, i.e.

}%(Ptuo—uoyﬁ =}%<M07Ptf—f> =0

for every f € Co(G). A priori it is not clear if or why it also should be strongly continuous or

1 For those familiar with geometry, let w be the left-invariant n-form corresponding to the Haar measure and £ the Lie
derivative. Since both X and w are left invariant, £ xw = 0, and

X(h)w = £x(hw) — hf xw = dighw + tx dhw = dvx hw.
If we now choose a submanifold with boundary N which contains the support of X (fg), we get

/G (X(Fg+ FX(0))dug = /N X(fg)c = /8 faxw=0

by Stoke’s Theorem.
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even differentiable. Therefore, we consider the pairing (which is realised by integration) with a
fixed, rapidly decaying function f € C'*°(G) first. According to the forward equation we get

Oilpe, f) = O Py f = P.Lf = (e, Lf),

and with another iteration

81:2</1't’f> = <:ut7['2f>v

so the map is twice weakly continuously differentiable. With the aid of the result on weak-to-strong
differentiability (see Lemma|B.3]) we can conclude that the map ¢ — 1 is strongly differentiable,
and therefore

(Opies f) = O ) = (LT, f).

As this holds for all rapidly decaying functions f € C*°(G), we can conclude that the map ¢ — i,
satisfies the differential equation
e = L pur. (5.18)

It is clear that a measure v is a stationary distribution of the process if and only if LT = 0. If the
distribution p; of the Levy process (g:): admits a density p; with respect to the invariant Haar

measure (i, we are therefore left with the partial differential equation
dipr = LTp;. (5.19)

This version of the forward equation sometimes appears under the name Fokker-Planck equation

in the physics literature.

Conclusion

We have seen that Lévy processes on Lie groups give rise to strongly continuous probability oper-
ator semigroups which are completely characterised by their left-invariant infinitesimal generator
L. Proposition [5.6] clarifies how these generators look for the processes we are interested in. Most
importantly, the generator determines the local spread of the induced probability distribution on
the state space via the Fokker-Planck equation. Therefore it plays an important role in the analysis

of the convergence to equilibrium.
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CONVERGENCE OF LEFT-INVARIANT DIFFUSION
PROCESSES ON COMPACT LIE GROUPS

In this part we analyse under which assumptions we can conclude convergence of
continuous Lévy processes to the Haar measure on compact Lie groups. We begin
our discussion in Chapter [6] by analysing total variation and Wasserstein distances,
which are standard analytical tools to characterise convergence. The approach of
Chapter [7)is more algebraic, where we discusses convergence of the moments in view
of Chapter 3] building on [19].. In turns out that we need the same condition in both
cases, specifically the regularity of the control system in the sense of Def. which

can be exploited in very different manners.



6. CONVERGENCE IN TOTAL VARIATION DISTANCE

Diffusion processes on manifolds are continuous time-homogenous Markov processes which
describe, how an initial probability distribution spreads over the state space under the influence of
a second-order differential operator with negative semidefinite second order part. The first order
component defines a non-random flow on the manifold, whereas the second-order is responsible
for the ‘stochasticness’ and the spreading of probability. The driving differential operator is just the
infinitesimal generator £ of the process which we introduced in the previous chapter. Continuous
Lévy processes on Lie groups are the special case of such diffusions where the generator L is
left-invariant and the Markov kernels act by convolutions. The central problem in the theory
of diffusion processes is to determine if and how fast a diffusion converges to its stationary
distribution, provided it exists. It is clear that the Haar measure on a compact group is invariant
under convolutions and therefore stationary. If on the other hand the support of a Lévy process is a
non-compact Lie group G, it is not difficult to show that such an invariant distribution ceases to
exist. From now on we consider Lévy processes on compact Lie groups which start at the identity

1, unless explicitly indicated differently.

6.1 Hypoellipticity

The long time behaviour of diffusion processes is strongly linked to functional analytic properties of
its infinitesimal generator. In this context, different notions of ellipticity, in particular hypoellipticity
play an important role. Recall that a differential operator P acting on distributions u € D’ is
called hypoelliptic, if it holds that Pu is smooth only if « is alread given by a smooth function.
The central tool in order to determine hypoellipticity of a second-order differential operator is the

celebrated Hormander condition.
Theorem 6.1 (Hérmander 1967, [67]). Let (P, Dom(P)) be a second order differential operator

on a Riemannian manifold (M, ¢), which can be written as

P:c—l-W—FZVf

for some vector fields W, Vy,...,V,, and ¢ € C*®°(M). Then P is hypoelliptic if and only if
W, Vi ..., V, satisfy the Hormander condition i.e. the Lie closure of the vector fields W, V1, ..., V,
pointwise spans the tangent space of M.
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For a Lévy process starting at a single point, it is always possible to achieve hypoellipticity
of its generator by considering the smallest submanifold on which the process is supported. In
particular, this can be achieved for the process (U ) defined earlier (or again in if we restrict
ourselves to the subgroup G = G that can be controlled by the system (z|y1, . .., Ym)-

Remark 6.2. In several situations one demands for a slightly stronger property. For vector fields
W, Vi, ..., V, on M consider

Vo = {V; e=1,... ,n} and inductively Vj+1 = {[Z, Vj],Z S {VV, Vi,.. ,Vn}}

The vector fields (W |V, ..., V,) satisfy the parabolic Hormander condition if

IO = UVJ

Jj=0

spans T, M for every p € M. In the language of control systems, Zy is just the general appearance

of the zero-time ideal J, we defined for left invariant systems (Def. [2.4).
With this in mind, we introduce the following distinctions.

Definition 6.3. Let (g;); be a Lévy process on a Lie group G with generator £. We say that (g; )¢

18

1. non-degenerate/elliptic if L is elliptic, i.e. the matrix A in Thm. is strictly positive
definite.

2. strongly hypoelliptic if the diffusive part ), Y2 of L is hypoelliptic.

3. weakly hypoelliptic if the operator £ — 0; is hypoelliptic on G x R~ .

It is clear that
elliptic = strongly hypoelliptic = weakly hypoelliptic

and the inclusions are generally strict.

Remark 6.4. Hypoelliptic Lévy processes in the sense of what we call strongly hypoelliptic, are
investigated for example in [[59]|. Translated into the language of control theory this assumption
essentially means, that the underlying control system is assumed to be strongly controllable. From
the point of view of a physicists (or quantum engineer for that sake), the requirement of strong
controllability is ultimately unsatisfactory. In applications, the drift is normally used to couple
different subsystems, and therefore essential to generate the dynamical Lie algebra. Fortunately,
strong hypoellipticity of (g:); is slightly too restrictive to analyse convergence properties in
general. In the following we show that weak hypoellipticity is the most general case under which
convergence to equilibrium in total variation is guaranteed. In Chapter|[7] we show that this is also

necessary by providing abstract counterexamples.
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We just discussed that strongly hypoelliptic Lévy processes arise in strongly controllable
systems. What is the condition we need to impose on the system to arrive at a weakly hypoelliptic

diffusion?

Proposition 6.5. For a left-invariant controllable system (X|Y; ...,Y;,) on a Lie group G, the
Lévy process subject to the stochastic differential equation

AUy = X(Up)dt + Y V() © B, Uy =1a (6.1)
J

with independent Brownian motions B*, ..., B™, is weakly hypoelliptic if and only if the zero-

time ideal satisfies Jyp = g, i.e. the control system is regular in the sense of Def.

Proof. The Lie algebra of G x R is given by the trivial extension Lie(G x R) = g ® R where @
denotes the sum of vector spaces. Let 7 denote a generator of the R component, such that J; is the

corresponding invariant vector field. By Hérmanders Theorem [6.1] the operator

L—0=X-0+) Y}

J

is hypoelliptic if and only if b := (7 + =, 1, ..., Ym ) Lie = § D R. Since 7 commutes with all

the other generators, we have immediately
h = T @ spang (T + x)
If we now assume the control system to be regular, we have Jy = g and hence
h = g @ spang (7 + x) = Lie(G x R).

Conversely, if the system is not regular, Jo C g has codimension one, therefore h C g @& R and
L — 0; cannot be hypoelliptic. O

As we discussed in Remark [2.9] every controllable system on a semisimple Lie group is also
regular. In particular, on semisimple Lie groups we have that £ — 9, is hypoellipctic if and only if
L is hypoelliptic.

Why is this type of hypoellipticity benefitial for us? As we have seen already, the adjoint of
the generator £ with respect to the L?(G) inner product is given by simply changing the sign of
the degree one part. In particular, £ — 9; is hypoelliptic if and only if £T — 9, is hypoelliptic. The
law 114 of a diffusion process obeys the Fokker-Planck equation £1i; = 0 p1; which we derived in
end of Chapter If now LT — 9; is hypoelliptic, 1; has empty singular support for all £ > 0 and

therefore admits a smooth density with respect to the Haar measure.
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Corollary 6.6. The law p; of a Lévy process (U;); on a Lie group G induced by a regular
stochastic control system via the SDE (6.1)), admits a smooth density p; with respect to the Haar
measure for all times ¢ > 0.

Despite the fact that we derived this result borrowing from the theory of partial differential
equations, the result is entirely probabalistic in nature. Today’s standard proof of Hérmanders
Theorem is conducted via the stocastic variational calculus which is also known as Malliavin
calculus, [68}169]. In this sense, the smoothness of the density is substantially a consequence of

the following theorem.

Theorem 6.7 (Theorem 3.2 in [[69]). Let (W|V4, ..., V,,) be a control system on R? such that
the smooth vector fields W, V1, ..., V,, satisfy the parabolic Hsrmander condition in Rem.[6.2]
Then any solution (Z;); to the Stratonovich SDE

dZ, = W(Zy)dt + Y Vi(Z) © dBi, Zo = 2 6.2)
J

admits a smooth density with respect to the Lebesgue measure on R¢ for all times ¢ > 0.

Since the statement is local in nature and Stratonovich integration is compatible with smooth
coordinate transformations, the result transfers to smooth manifolds and in particular Lie groups

analogously.

Remark 6.8. Consider again an invariant control system Y on a compact Lie group, which
we assume to be regular or equivalently that the vector fields satisfy the parabolic Hormander
condition. The support Theorem implies that at time £ > 0 the support of the law p; of
the solution to (6.1)) is given by the attainable set .A;. Following Prop. [2.6|we can conclude that
there exists a time 7' > 0 such that the support of y, is equal to G for all ¢ > T'. Therefore
the density p; of p; not only exists for all times ¢ > 0, but we can also find a time 7" > 0
such that pr vanishes only on a set of measure zero. This is already sufficient to conclude that
infycq p(g)t > 0 holds for all £ > T. Exploiting the fact that the law of a Lévy process forms a
continuous convolution semigroup, such lower bounds on the density provide a minimum spread
of the probability distribution. This can be regarded as the driving force behind convergence to the

equilibrium in our setting, which we formally use in Prop.

Deriving lower bounds on the density after a sufficiently long time actually does not require
smoothness or even continuity of the density. In fact, already the existence of a density is sufficient
for this.

Lemma 6.9 (Strongly inspired by Prop. 23 in [70]). Assume that a measure v on a compact Lie
group G admits a density o € L?(G). Then we find a number n € N and constant ¢ > 0 such that
the lower bound ¢*"(g) > ¢ on the density of *" holds for almost all g € G.
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Proof. In the following, all estimates should be interpreted to hold up to a set of measure zero. We
fix a bi-invariant metric d(-, -) on G. Let ¢ > 0 and choose gy € G such that the L?-density of v
satisfies ¢ > ¢ > 0 on an e-ball around go. The properties of the metric d(, -) enable us to derive a
lower bound of the density 0*? of y1; * ¢ on the ball of radius 3r/2 around g3. For h € Bs, /2(g3)

we can estimate
0" (h) = /Q(Q)Q(hg’l)dg > a*pe ({9 € Br(90) : hg™" € Br(90)}) -

Observe that hg~! € B,.(go) if and only if g € B,.(gy 'h). We therefore only need to show that the
Haar measure of the intersection B,-(go) N B (gg 1h) is strictly positive. Because the exponential
flow corresponds to geodesic curves, we find 2 € g with [|z|| < 27 such that h = g exp(z). We

now show that
B,/4(g0 exp(x/2)) C B,(g0) N Br(gg 'h). (6.3)

Lett g € B, /4(go exp(x/2)). Then we get the estimates
roo.r
d(g, 90) < d(g, 9o exp(z/2)) + d(go exp(z/2), go) < 7 + 3, =,

and since h = g2 exp(x) also

d(g, g5 ") < d(g, go exp(x/2)) + d(go exp(x/2), go exp())

<T41E)<
- - r
4 2 =7

so (63) follows. Alltogether, for h € Bs,./2(g3), we obtain the lower bound
0**(h) > &®pu (B, /a(gy "h)) > 0.

Iteratively, we can proceed until 3r/2 > diam(G) and we obtain a global bound after another

iteration. O]

Contrary to the preceeding discussion, this Lemma is applicable only to Lévy processes. This is
simply due to the fact, that the transition kernels of general diffusions do not necessarily act by

convolutions.

6.2 Convergence via Relative Entropy

We proceed by showing that as soon a distribution v on a compact group admits a p-density, the
convolution sequence v*™ converges exponentially to the Haar measure in total variation. The key
idea is to estimate the total variation distance of v and u against the relative entropy of v with

respect to ug and exploit monotonicity of the latter under convolutions. Let us briefly recall the
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definition of the relative entropy:

Definition 6.10. Let ., v be probability measures on some measureable space (S, «7). If p is
absolutely continuous with respect to v (u < v), we define the Kullback Leibler divergence, or

relative entropy to be

d
D (pillv) = /S log (dﬁ> du. (6.4)

In case such a density does not exist, we set Dy 1, (p]|v) := 0.

The relative entropy has several useful properties such as convexity and monotonicity under
the application of probability kernels, and provides bounds on the total variation distance. A
summary of these results can be found in the Appendix, Lemma [B.14] Prop and Prop[B.T6

For the special case of convolution kernels monotonicity means that

Drr(u*nllv+n) < Drr(pl|v) (6.5)

holds for all , v, € M*(G). The key observation to conclude convergence is, that this inequality
actually needs to be strict, if we have a lower bound on the density of 1 with respect to the Haar

measure.

Proposition 6.11 (See [70], Lemma 22). Let v be a probability measure on a compact Lie group
G, which is absolutely continuous with respect to the Haar measure p. Assume that we can
minorise the density of v by d‘i—”g > c for some positive constant ¢, up to a set of measure zero.
Then there exist constants C,« > 0 such that we can estimate the total variation distance of

vy, = v*" to the Haar measure by
drv(pg, vn) < Ce ", (6.6)

and therefore the convolution sequence v,, converges to the Haar measure in total variation

distance.

Proof. With the aid of Pinsker’s inequality (see Proposition|B.16)), we estimate

1
drv (v 16) <\ S vl lc).

Next we consider 7 := (v—cug)(1—c)~! which defines a probability measure by our minorisation
assumption. This allows to write v as a convex combination of measures v = cug + (1 — ¢)n.
Using the convexity of Dy, (Lemma. we get for every n:

Drr(v*vnlluc) < cDrr(pc * vallpc) + (1 — ¢)Drr(n * vallpc)
= D r(pclpe) + (1 —c)Drr(n* valln * pc)
< (1= )Drr(vnluc),
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where we use monotonicity of the entropy (Prop. [B.T3) in the last step. Inductively, we arrive at

Drr(Untillee) < (1 —¢)"Drr(v|pea), and therefore

1
drv (Vni1, pa) < (1—0)"/? 5 Prr(vllne) (6.7)
for all n. Clearly (6:6) holds with C := (D1 (v|||nc)/2)"/? and a := log(1 — ¢)/2. O

Combining this proposition with Lemma[6.9] we arrive at the following theorem.

Theorem 6.12. For a weakly hypoelliptic Lévy process (gt)tzo on a compact Lie group G, the
associated convolution semigroup { i }; of its law converges exponentially to the Haar measure in

total variation, i.e. we find contants C, o > 0 with
dry (pe, pg) < Ce™ " — 0ast — oo. (6.8)

Since G is compact, we can estimate Wy < dry, (see remark after Prop.[B.11)) therefore
implies exponential convergence in the L!-Wasserstein distance as well.

Proof. Because (g;), is weakly hypoelliptic, the density of ;1; = Law(g,) exists for all times
t > 0. With the semi_group property fii4s = pi * jts and Lemma [6.9] we find a time 7" > 0
such that the density of p7 meets the requirements of Proposition [6.11] The relative entropy
D r.(1t]|ppc) is monotonically decreasing in ¢, and therefore the exponential convergence of the

sequence (u, 1)y carries over to the complete semigroup {14 }>0. O

Although this result looks nice, explicitly determining the convergence rate is rather challeng-

ing, even though we are working with Lie groups which are comparatively rich in structure.

6.3 Some Remarks on Convergence Rates

Since the following only contains an overview of unsuccessful approaches, we will not explicitly
state all definitions and results mentioned and just give references where these can be found. The
aim of this section is to show that despite several available methods for deriving bounds on the
convergence of hypoelliptic diffusion proceses, none of them actually quite fits the setting we are

interested in.

Non-degenerate case

If the considered process is non-degenerate it is not difficult to obtain bounds on the convergence.
In this case, Bakry and Eméry [25] devised a method determining explicit convergence rates

using log-Sobolev inequalities. The central objects in their analysis are the square-field operator
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I' (‘carree du champ’), which serves as a generalisation of the Dirichlet form ¢(V f, Vg) and is
defined by

L(f,g) = L(fg) — fL(g) — gL(f), (6.9)

and its iteration

Lo(f,9) := LT(f,9)) — FL(g) — 9L£(f)- (6.10)

With these tools, they managed to show that the transition operators P, of the diffusion associated

to £ are L2-Wasserstein contractive, i.e.
WP}, Pfv) < e KWy (u, v) for all p, v € MY (M). (6.11)

holds if and only if for some K > 0 the gradient bound Ty (f, f) > K T'(f, f) is satisfied for all
smooth f. For the special case of Brownian motion, £ = A is just the Laplacian associated to the
Riemannian metric q. Here, as shown for instance in [[71], the gradient bound is equivalent to a
lower bound on the Ricci curvature:

Ric, > Kq.

In particular, on a compact Lie group G with a bi-invariant metric we can relate the Ricci curvature
to the Killing form Ric, = —%IC (cf. [[72]) and therefore find such a constant K > 0 without

difficulties if G is semisimple.

General gradient estimates

The problem with the methods above, is that they generally require ellipticity of £ in one way or
another as noted in [21]], which does not apply to the case we are ultimately interested in. Slightly
altering the definition of the square field operator, Baudoin [21] managed to provide conditions that
can be applied to properly hypoelliptic diffusion operators L. Instead of the square field operator,
he considered the bilinear form T'(f, g) := > a;;0; f0,¢ for some positive definite matrix A and

its iteration with respect to the generator £ which is given by

To(f) = L(T(f, f)) — T(f, Lf). (6.12)

Together with some technical assumptions, the gradient bound T5(f) > KT(f, f) then leads to
the same Wasserstein-contraction properties as before

Wa(P 1, Prv) < e Ko (1, v). (6.13)

Checking the condition T>(f) > K T(f, f) is not exactly trivial. Several approaches to derive
such estimates are discussed in [21, [22]]. We briefly sketch the ones which appeared to be the most

promising for our scenario.
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Attempt 1:

For the Haar measure on a semisimple compact Lie group, it is not difficult to derive a Poincaré

[ rana - ( / fduc)2 <c [ v sPdue. (6.14)

for some constant C' > 0 which again depends on the curvature, see for instance [73]]. As argued
in [21]], the gradient bound T5(f) > KT(f, f) can then be relaxed to a similar estimate under

integration

inequality

/ To(f)dpc > K, / T(f, f)dpc — K / I(f)dpc, (6.15)

where I' again denotes the square-field operator of £. With this assumption (6.13), [21]] shows
the convergence of the density p; — 1 in L? with an exponential rate K := 2min{ Ky, K»/C}.
Again it is not clear how to check (6.13). Even in the simplest example where we choose G =
SU(2) with cyclic generators x1,To, 23 € sug, and £ = X; + X2 neither of canonical choices
T(f.9) =a(Vf,Vg),orT(f,g) =3, X;(f)X;(g) has produced any results of value.

Attempt 2:

If the system is strongly controllable, the diffusive part of the generator L is the sub-Laplacian
associated to the sub-Riemannian structure that arises in strongly controlled systems. In order to
analyse the diffusion semigroups generated by such sub-Laplacians, Baudoin et al [23] introduced
so called generalised curavture dimension inequalities. These are in general not easy to derive,
but for instance if G = SU(2) and £ = X2 + Y? (2,9, z € suy cyclic generators as usual) their

methods in [21, 23] ultimately yield L2-Wasserstein contractivity
Wa(P} p, Prv) < e *Way(u,v) (6.16)
with exponential rate %

Attempt 3:

One can also apply the sub-Riemannian setting in a different fashion. Specifically, we assume that
the controls form a basis for the control algebra g (e.g the Examples A, D, E of our simulations
in the introduction). In this situation, the controlled distribution ) C T'G is closed under the
commutator and has the same dimension everywhere. Then it follows from Frobenius Theore
that ) determines a foliation, that is a disjoint collection of submanifolds {G;};c; (here copies
of the subgroup generated by the controls) such that TG; = ))|¢,. Geometrically this amounts
to having a fiber bundle 7 : G — G /Gy =: M. We proceed by assuming that the orthogonal
complement H C T'G contains the drift X and that H is bracket-generating, that is Lie(H)(g) =

I see for instance [74], Theorem 19.12
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T,G for all g € G. Because geodesics on G have the form ¢ — gexp(tz) for some z € g, any
geodesic tangent to a fiber will completely stay in this fiber, thus the foliation {G;}; is fotally
geodesic, and fits into the setting of [22]]. We can write the diffusion operator L as

L=Ay+X,

where Ay is the vertical Laplacian on the G is the (horizontal) drift X. If V4, Vy denote the
projections of the gradient V onto the respective subspaces, following the computations of [22]]

we can write
To(f) = [Vy VS + V3 f1* + Riey(Vf, V) + DX(Vf, V). (6.17)

The last term DX (V, W) := ¢ (VEC X, W), which involves the Levi-Civita connection V€,
vanishes because X is left-invariant (follows from Prop.2.26 in [72]]). The Ricci-curvature Ricy
is zero as well, because the leaves are abelian Lie groups. In particular Thm. 7.3. in [22] is not
helpful in this case, and in order to derive estimates T (f) = |V f|?, we would need bounds of
the type |Vy V. f| 2 |V f|. This cannot be expected, as one can infer from functions where the
first-order horizontal derivatives are constant on the leaves of the foliation at least on some open

neighbourhood. Functions exhibiting these properties can be constructed in local coordinates.

Another remark - Ergodicity

Remark 6.13. While for many applications it may suffice to simulate the uniform distribution
using ergodicity of the Markov process, this is not the case for randomised benchmarking. Recall
that a continuous time markov process X : {2 — S on a measureable state space S with invariant

measure /. is ergodic if it satisfies the following law of large numbers

T
%/0 F(X,)ds — Eulf] as T = o0 6.18)

for all measureable f : S — R and every initial distribution of X,. A sufficient criterion to
determine if a Markov process is ergodic is that its generator £ is hypoelliptic (Prop. 3.1.13 in
[20]), which is certainly the case for the situations we are interested in. The problem we encounter
when trying to use this (or rather a discrete version of (6.18)) in randomised benchmarking
protocols such as in Tab. |l|is the following: When we measure the survival probability of the
initial state under the noisy implementation and inversion of the gate U, for some s > 0 (which
amounts to determining f(X;) in (6.18)), the system is expected to collapse back to the ground
state in most of the cases. In particular, the effective evolution starts again at the identity 15 and
not at Uy, therefore is not applicable.



7. CONVERGENCE OF THE MOMENT SEMIGROUP

This section continues the discussion of diffusion processes on compact Lie groups, where we
combine the results of Chapter [5] with the framework introduced in Chapter 3] Specifically we
consider the moments of such diffusions in order to show that they provide a natural source for
exponentially converging approximate k-Haar measures. The situation will be similar to the one we
found before. The assumption of weak hypoellipticity allows us to prove exponential convergence
to the Haar measure in all moments. Unless the diffusion is non-degenerate, it is generally hard to
computationally determine the convergence rate, even though it is much clearer what quantities
we need to look at compared to convergence in total variation/Wasserstein distances. A detailed
discussion of the non-degenerate case is presented in [18]], where the authors prove that for mixing
times of order O (poly(k),log(d),log(1/e)), a Brownian motion (with an optional drift) produces
an e-approximate k-Haar measure on SU(d), see Theorem 9 therein. Their analysis of the conver-
gence rate relies fundamentally on the fact that for non-degenerate diffusions, the infinitesimal
generator £ can be linked to the Casimir element of su, in analogy to Remark [5.7] Exploiting the
distinct role the Casimir element plays in the representation theory of Lie algebras one can then de-
termine the convergence rates under different representations. Unfortunately this approach cannot

be adapted to the degenerate case, leaving us with a greater applicability but overall weaker results.

The situation with a degenerate control system on SU(d) is already discussed in [[19]]. Specif-
ically, the authors analyse probability distributions on SU(d), generated by applying stationary
(which is called ‘harmonic’ in [19]) and normally distributed stochastic processes c; independently

to the controls of the system, resulting in the random evolution of a mixed state p(t)

(0) = ~ilH, p(0)] = i Y[V, o0y 0. a1

The processes c¢; can for instance be modelled by Ornstein-Uhlenbeck—processesﬂ which have
undergone a sufficiently long mixing time. Subsequently [[19] presents an outline to show that
the qulitative result on exponential convergence of [18]] still holds in this setting. In some point
of their computations, the authors assume that the autocorrelation of the noise terms is close to

the Dirac delta distribution. This is one of the chracteristic features of white noise, therefore it is

! Ornstein-Uhlenbeck processes are solutions to It6-SDEs of the type dZ; = 0(a — Zt) + Bd Bz, Zo = 2z for some
constants 6, 5 > 0 and o, 20 € R.
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reasonable to expect that the setup we introduced in the opening of Chapter [5] qualitatively leads
to the same results, although the structure of the noise is a little different. In order to rigorously
justify all arguments, we prefer the setup we introduced earlier. We will see that the restriction
of G = SU(d) is actually not needed, even though this is explicitly used in the discussion in
[[19], we comment on this in Remark. Asin ChapterE], we denote the drift as © = iH, the
controls by y; = iV; and with X = 2!, Y} = ¢/’ the respective left-invariant vector fields, which
are simply given by X (U;) = #!(U;) = iU H in the standard representation. Throughout, we
will be concerned with a diffusion process over a subgroup G C SU(d), modelled as the solution

to the left-invariant Stratonovich differential equation

AUy = X (Up)dt + Y Y;(Uy) ©dB, Uy =1g. (7.2)
J

As a corollary to the convergence result Thm. we immediately see that all moments of the
induced distribution converge exponentially fast to the respective moments of the Haar measure
for a weakly hypoelliptic diffusion.

Corollary 7.1. Let (U;); a weakly hypoelliptic diffusion process over G C SU(d), given as
solution to (7.2) and let 4y = Law(U;) the associated convolution semigroup. Then for any
(finite-dimensional) representation ® of GG, the ®-moment of xi; converges exponentially fast to

the respective moment of the Haar measure as ¢t — co.

Proof. Since a representation ® : G — GL(V') is Lipshitz with Lipshitz constant ||¢||,p, we can

estimate the difference of the moments in norm for a suitable Cg > 0 by

M7 — MG = H/ @(U)dut—/ () dpc|| < CoW (e, pnc)- (7.3)
G G

With the assumption on weak hypoellipticity, we can invoke Thm. [6.12]and conclude that there
exists > 0 such that
M7 — M2 || < Coe™"™ (7.4)

holds for all ¢ > 0 and representations @, possibly after adapting Cs > 0. Because we are working

only in finite dimensions, (7.3) is valid in all norms up to a modification of the constant Cy. [

The task to explicitly determine the rate of convergence in this method is rather daunting,
which is evident from the concluding discussion of Chapter[6] We therefore present an alternative
approach to derive convergence of the moments, relying on properties of unitary representations.
The obtained rates depend on the spectral gaps of ceratin operators. Computing these gaps is rather
difficult, however these can in principle be computed, therefore we believe that the following

discussion still serves a purpose.
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7.2 Infinitesimal Generators

We know that the distribution y; := Law(g;) of a Lévy process (g;); forms a continuous
convolution semigroup if initially ;10 = d1,. It is easy to see that the moments taken with respect
to any G-representation ® then form a matrix semigroup M = My, = M7 M7 . As we

are only considering finite-dimensional representations, it is immediate that such a semigroup
admits a generator Lg in the sense that M ;ft = exp(tLy) for all t > 0. Recall that the probability
operators P associated to the convolution semigroup p; are defined by P f(g) = E,, [I;; f] where
l4 denotes the left-multiplication with g € G as usual. The moments M, ;}’t are obtained by applying
the probability operator P; to the coordinate functions of the representation: M i = P,®. Itis
reasonable to expect that we can canonically derive the generator Lg from the infinitesimal
generator £ of the Lévy process. This is formally shown in the following proposition, thereby also

proving equation (6) in [19]] in a more general setting.

Proposition 7.2. Consider a Lévy process (U;); on a Lie group G with left-invariant infinitesimal
generator L = X + % > j Yj?, or equivalently the solution to the left-invariant Stratonovich

differential equation

dU; = X(Uy)dt + Y Y;(Uy) © dB], Up = 1 (1.5)
J

for some independent Brownian motions B!, ..., B™. Let y; denote the law of U;. Consider a
finite-dimensional G-representation ® : G — GI(V') and let ¢ : g — End(V) be the induced
representation of the Lie algebra. Then the generator of the semigroup E,,, [®] = M, ® s given by

Mt

1
Loi=tat 5D 0y, (7.6)
J

in the sense that M/ i = exp(tLy) holds for all times ¢ > 0.

Proof. Since ® is smooth, we have ® € Dom(£) in the sense that this holds for all component
functions. It is clear that My = K, [®] = P,®(1¢). Using the Kolmogorov forward equation

(5.9) for the transition semigroup P;, we obtain the differential equation

d d
—_— = — @ = @ 1 .
g M = g 1® = PiLe(lo)
We can compute £& and use the left-invariance of X, Y7, ..., Y, to arrive at

L) = X(@)+ 33 VE®) = (645D 67,

Because ¢, + % > j yj2 acts linearly on the coordinates of ®, it commutes with the expectation,
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and we have J
%M:ﬁ =B, [Ls®] = LB, [] = Lo M7 . (1.7)

Observing that initially M :fo =M in o= 1y, we clearly see that

M7 = exp(tLy), (7.8)
which concludes the proof. O
Let us consider the special case where we have a control system (i H |iVi,...,iV,,) on sugy

and the representation ® = ®** Here the generator L}, takes the form

Lulp) = ilH=", g — 5 SUVEHVEE, ] for p € B (€, (7.9)
J

where the tensor product H @ H = 1, ® H + H ® 14 is to be understood in the Lie algebra
sense. This generator is a special case of a Lindblad operator. In quantum dynamics, Lindblad
operators generally refer to generators of quantum dynamical semigroups [[75,76], i.e. semigroups
of quantum channels. In order to get an intuition as to why taking the expectation results in a
quantum channel, we can approximate the expectation E[p;] = E,,, [UpUT] for t > 0 by finite
sampling of Uy, ..., U, ~ p¢, so that

Elpt] ~

S|

> U;pU;.
j=1

This corresponds to a measurement determined by the operators {1/y/nUy,...,1/y/nU,} and
therefore defines a quantum channel A;, following Kraus Theorem|[I.1] By taking the limit n — co
we can heuristically argue that the operators A; form a semigroup, and therefore equations along
the lines of can be expected. Treating the generators £, within the framework of such
quantum dynamical semigroups as in (7.9), adds no mathematically relevant structure for us, and

rather distractes from the key arguments, therefore we leave it at this remark.

We continue with the observation that the generator L is just the action of the generator
t € U(g) in the universal envelopping algebra (see Rem. [5.7) under the representation ¢. In order

to clarify the relation between the different incarnations £, we consider the commutative diagram:

tev -2 UE(@) s L

y lm (7.10)

L= e € End(V) — s C(Gy, End(V)) 3 £(D)

The horizontal maps are the representations of the Lie algebras by left-invariant derivations acting
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on C*° (@) and C*°(®(Q)) respectively. Since ® is a group representation and therefore compati-
ble with the group action, the vertical map on the right side is just the G-equivariant version of the

Lie algebra representation on the left vertical.

The convergence of the ®-moment semigroup is now encoded in the projected generator L.
In this context the spectral gap of L4 plays an important role. Recall that for self-adjoint operators,
the spectral gap is the modulus of the smallest non-zero eigenvalue. Since for us £ is in general

not self-adjoint, we define the spectral gap ALy of L by

ALy = sup |R(N), (7.11)
0#NEA,

where Ay denotes the set of eigenvalues of L4. With this definition AL, can in principle be zero!

We continue our discussion by collecting some basic algebraic properties of L.

Lemma 7.3. Let g be a compact Lie algebra and ¢ : ¢ — End (%) a representation on a complex
Hilbert space H which we assume to be unitary without loss of generality. Let x,y1, ..., Ym
generate g as a Lie algebra and consider the generator Ly = ¢, + % > j (;%j as above. Then the

following statements hold:
1. R(X) <0 for all eigenvalues A of L.
2. We have ker(Ly) = ker(ﬁL) =H9 = {v € H|p,v =)0 forall z € g}.
3. Zero is a non-degenerate eigenvalue, i.e. if £35w = 0 we already have Lyw = 0.

Proof. First of all, because the representation is unitary - i.e. ' = —¢ - we can write
1 9 1 i
Lo=dat5) by =0a— 5 by (7.12)
J J

In particular, > j ngLj ¢y, a positive self adjoint operator.

Claim (1): For any eigenvalue )\ and a corresponding normalised eigenvector w we have:

1
A= <w, £¢W> = <w, ¢mw> _5 Z <¢)ij’ ¢y.7’w>’

€iR J cR

since ¢, is skew-adjoint. Therefore we get
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Claim (2): For w € ker(Ly) we immediately see

0= R((w, Lyw)) = %Zw)yjm Py, W)

J

Therefore we have w € ker(¢,,) for all j, and Lyw = ¢,w = 0 follows. Since x,y1, ..., Ym
generate g as a Lie algebra, we then have ker(L4) = H9. For LT = —¢, + 3 > gsz , We can use
the same arguments after replacing = by —zx.

Claim (3): Take w € ker(L3). As we just saw, ker(Ly) = ker(ﬁL) and hence £L£¢w =0.1It
is then straightforward to see

ILow|? = (L Lyw,w) =0,

and we have indeed w € ker(L). O
Claims (2) and (3) lead to the following result.

Corollary 7.4. In the situation of the previous Lemma, let w € ker(Ly) N im(Ly). Then
w = Lyv forsomev € Hand 0 = Ly(w) = Li(v). Following Claim (3) of Lemma we get
w = L4v = 0. Since H is finite dimensional, we deduce that there is a direct sum decomposition

M =ker(Ly) @im(Ly). (7.13)

With Claim (2), and the well-known relations between kernels and images of adjoint linear
maps, we see that ker(Ly4) = ker(ﬁjb) = im(Ly)"*, and thus the decomposition (7.13) is even

orthogonal.

Given some G-representation @, the first claim of Prop. essentially confirms what we
already know, namely that the moments are bounded and non-increasing. In order to show conver-
gence of convolution semigroups p; = Law(g;) with respect to the ®-moment, we additionally
need to ensure that L4 has no imaginary eigenvalues, as these will cause oscillating orbits of
M ;i = exp(tLy), and therefore destroy convergence. This is accomplished by the following
proposition, which implicitly assumes weak hypoellipticity of the process (U;);, more precisely

the equivalent Lie-theoretic characterisation in terms of regular control systems [6.5]

Proposition 7.5. Let (z|y1,. .., ym) be regular generating set (see Def. of a compact Lie
algebra g and ¢ : g — End(#) a unitary (¢ = —¢') Lie algebra representation on a Hilbert space
H. Then apart from A = 0, the generator

1 2
£¢=¢x+§zjj¢>yj

has no imaginary eigenvalues. In particular, the spectral gap of L is strictly positive ALy > 0.
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Proof. Recall that the regularity condition expresses that the zero-time ideal Jy derived from the
left-invariant control system (x|y1, . . ., ym,) satisfes Jyp = g. Assume that the generator L4 has a
purely imaginary eigenvalue A # 0 and let w € H be a corresponding normalised eigenvector.
Consider the Lie subalgebra of g defined by

Anng(w) ={z € g: ¢.(w) =0},

which we call the annihilator of w in g under the representation ¢. Our goal is to show that
Anng(w) = g. We have A = (w, pyw) + 3 2w, ¢§jw> where again the first summand is real
and the second imaginary. Since A is imaginary, and the ¢, . are skew-adjoint we conclude

D (w, ¢p w) ==Y [lgy,w]* =0.
J

J

Consequently we have ¢, w = --- = ¢, w = 0 and therefore ¢p,w = Aw. Because ¢ is

compatible with the Lie brackets [-, -] we see that ¢(, , jw = ¢y, ,,.jw = 0 holds for all 4, j and

Yi,Yj
iteratively for all nested commutators of =, y1, . . ., Y. Since g is generated as a Lie algebra by
T, Y1, - - -, Ym, Wwe conclude that w is an eigenvector of ¢, for all z € g. In particular, we get

[9,9] C Anngy(w), which shows that Anng(w) C g is actually an ideal:

[Anng(w), g] C [g,9] C Anng(w) < g. (7.14)
Because ¢y, w = - -+ = ¢, w =0, we have y1, ..., yn € Anng(w), and therefore
Jo C Anng(w) < g. (7.15)

With the assumption that the zero-time ideal satisfies Jo = g we can conclude indeed that

Anng(w) = g. In particular we have ¢,w = 0 and therefore A = 0. O
It is not difficult to provide a counterexample in case the generating set is non-regular:

Proposition 7.6. If a left-invariant control system (x|y1, - . ., Y ) controllable on G C SU(d)
does not satisfy the regularity assumption Jy = g, there exists a representation ® of G, such that

the induced action of ¢ = = + % > j y]2 € U(g) under ¢ has a non-zero imaginary eigenvalue.

Proof. Because the Lie algebra g is compact, it is reductive and therefore splits into a direct sum
of ideals

g=13(9)®lg 9l (7.16)

which are its center and the derived algebra respectively (Prop. . Because we have [g, g] C Jo,
this decomposition is nontrivial, if Jo C g. The assumption on (z|yi, ...,y ) violating the
condition Jy = g implies that at least one generator 7 of the center 3(g) is not contained in
Jo D [g, 9] by (7.16). Since (7) ;e = spang{7T} C g is an ideal which is complementary to Jg,
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we have another decomposition of g into ideals
9= (T)Lie ®Jo (7.17)

Let Gy := G, C Z(G) and G5 := G5 be the subgroups of G generated by 7 and J respectively.
Because the generating Lie subalgebras are ideals in g, we can write G as the direct product
G = G1 x G following Prop.[A.6] Consider the representation ® of G given by the projection on
the G1-component g = (g1, g2) — g1 € SU(d). Clearly the induced Lie algebra representation ¢
is then just the projection

¢:9={(T)Lic ®To = (T)Lic-

Note that we also have 7 ¢ go C Jp and since 7 ¢ [g, g], 7 must originate from the drift =
which therefore satisfies ¢, # 0. By construction we have ¢,; = 0 for all the other generators
Y1, - ., Ym. Since skew-adjoint endomorphism on C? are diagonalisable with purely imaginary
eigenvalues, L4 = ¢, then indeed has at least one imaginary eigenvalue which is non-zero. [

Remark 7.7. Together with Corollary this counterexample shows that in order to get conver-
gence of the process in total variation distance, weak hypoellipticity is also necessary, thereby

proving the converse direction statement of Thm. [6.12]

Example 7.8. We go back to example where we considered the Bose-Hubbard model on
two qubits. Recall that the drift Hamiltonian was

Hy = U;,Ui + 0';0’; + U}; + 03
in this case, and H. = 0102 is the control term. Then the generated Lie algebra g is contained in
st16 and we choose ® = ®2:2 to be the tensor square of the conjugate standard representation of

SU(16). A computation in Magma [28] shows that in this case the eigenvalues of the Lindbladian
Ly = ¢im, + %¢ng are indeed all non-imaginary {—2, —2 + 44, —8 4 8¢, 0}.

7.3 Convergence

Before we proceed to show convergence of the moment semigroups, we can easily derive a
monotonicity result similar to Eq. for the trace norm of M, /ft .Asususal let £L = X + % > j Yj2

denote the generator of the left-inavriant diffusion process in question. If ¢, # 0 holds for at
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least one j (compare with Prop. [7.6|and Prop.[7.5)), we have

d d
M3 = = T (exp(tc¢) exp(w;)) = Tr ((£¢ +£1) exp(tLy) exp(tc;))

-3 T (¢>;j by, exp(tLy) exp(tc;))
J

= " ll¢y, exp(tLy)]|3 < O, (7.18)

J

since exp(tL) is an isomorphism. With the properties of the generator L4 we previously dis-
cussed, we can proceed to give a refined version of the proof presented in section B of [19].
Specifically, we can replace the requirement of controllability on suy by regularity of the system
on g C sug, thereby becoming much more general. As already outlined earlier, this includes
all cases in which the generated Lie algebra g is semisimple. The proof also links the rate of
convergence to the spectral gap ALy which can in principle be computed, however scaling of

dimensions does become a problem here.

Theorem 7.9. Let (g;); be a weakly hypoelliptic diffusion process on a compact Lie group
G with generator £, described for instance by with a regular left-invariant control system
(x|y1;- -, Ym). Then for any complex, finite dimensional G-representation ®, the gap AL of
the projected generator generator is positive and there is a constant C' > 0 such that:

M7 — M&|lop < Ce "5/ forall ¢t > 0. (7.19)
In particular, i is an e-approximate ®-Haar measure for all times

t>T(e,®,C) log(1/e) +log(C)) . (7.20)

2

= m (
Proof. Fix arepresentation ® : G — GL(H) onto a d-dimensional Hilbert space #, which we
assume to be unitary without loss of generality. We will proceed as follows: first we show that the
invariant subspaces of M ,i = exp(tLy) and MZ coincides, and then prove that for any element
w in their orthogonal complement the difference vanishes in the limit ¢ — oc.

By Prop. M, g’ is the orthogonal projection operator onto the space H¢ invariant under the
G-action. Because G is connected, this coincides with the invariants H? of the Lie algebra
representation, which happens to be the kernel of £, by Prop In particular H® is invariant
under M Et = exp(tLy) as well. Let vl and v+ denote the parts of v € H parallel and orthogonal
to ker(L,) = M9 respectively. We then have that

(M;Dt — M&)v=exp(tLy)v — MEv = exp(tLy)v". (7.21)
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By Corollary|[7.4|we can decompose # into an orthogonal sum via
H =ker(Ly) &im(Ly). (7.22)

In particular £, restricts to an isomorphism im(L4) — im(L4) which we will denote by Ly in
the following. All that is left to do is to show that || exp(t,/:’d,) llop — 0 ast — oco. At the core this
relies on Prop.[7.5] -Which guarantees that we have L4 > 0 if we assume that the process is weakly
ypoelliptic. Let E¢ = ES + EN denote the Jordan-Chevalley decomposition (see Prop. of
L¢ into its commuting semisimple (diagonalisable) and nilpotent parts respectively. Since E and
Kg commute and £¢ and Eg have the same eigenvalues, we get

[ exp(tLo)llop < || eXp(tES)HOpH exp(t[,N)Hop < eTIAke [ exp(t£¢ Nlop- (7.23)
~ ~ n+1
Since £g is nilpotent, we find n € N such that (Lg ) = 0. Then we have
LY lop) anim n
| exp(tLY)]|op < Z 37 < |12} |5 max{1,¢"}. (7.24)
7=0

In order to control the growth of the right hand side, we sacrifice a part of the exponential decay in

(7.23). With some straightforward analysis we can bound

on \" n n
n —AL(i,t/Q b £ <
e <A£¢> c= <A£¢> ’ 723

which we assume to be > 1 without loss of generality. If we insert first (7.24) and then (7.23)) into

(7.23) we arrive at

~ n”EgH"P —tALy/2
[lexp(tLy)llop < AL, e ) (7.26)

Becasue AL, > 0, the right hand side vanishes in the limit ¢ — oo which finishes the proof. [

Remark 7.10. In order to compute the invariant space of the G-action, the authors of [19]] assumed
that everything is happening on some SU(d). In this case, the invariants of the representation
Ok are just permutations of tensor factors as a consequence of the Schur-Weyl duality, cf. [77].
Subsequently they identified the projection onto this subspace with the limit of exp(¢L,) drawing
from other sources such as [78} [79]]. Backtracking all the arguments it becomes clear that this

argumentation contains unnecessary identifications, which allows us to lift the restriction that
G = SU(d).

Remark 7.11. In the proof of the previous theorem we could also argue as follows: With weak
hypoellipticity we can conclude that the process has a density, using Prop. [6.3] Hence the support

of 11 becomes dense for sufficiently large times, as implicated by Lemma|[6.9] With Lemma 5.3 in
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[L7], the difference of the moments in operatornorm then satisfies
M7 — M&|op < 1 foranyt > 0. (7.27)
As before, we can conclude that
{ve ’H|Mftv =} Dker(Ly) = {v € H|MEv = v}.
With the decomposition H = ker(L) ® ker(L,)" it is easy to show that for any m € N:

(M5, = ME)™ = (M) = ME.

Kt

. o . . m .
Since the composition of the moments is (M Et ) =M ;Ilm, we can write
t

P P o\ P P
1My, = Mellop = Il (M, = MG) ™ llop < My, — M5,
which converges to zero as m — oo because of (7.27). The problem here is again, that we cannot
really determine the rate of decay more explicitly.

How does the spectral gap AL, behave in terms of the chosen representation, and more
importantly what happens in a setup that can be scaled, e.g. for the Hubbard-model on a chain,
which we discussed in the introduction? We basically already answered the first question with the

introductory corollary.

Corollary 7.12. For a weakly hypoelliptic Lévy process with generator £ we have

inf AL, > 0.

Proof. Let 24) denote the restriction of £, onto ker(L4)~ as in the proof of Thm. By Cor.

we know that there exists a constant & > 0 such that
lexp(tLy)llop = M, — ME|op < Cpe™* (7.28)

holds for all representations ¢ and ¢ > 0 with some suitably chosen Cs > 0. Fix a representation

® and let A, ..., A\, denote the eigenvalues of E¢. Then M, ... e!*m are the eigenvalues of

exp(t2¢) and therefore || exp(t/fd)) llop > e *A£4. In particular we have
e—tA,C¢ S C@e—at

for all ¢ > 0 which implies that ALy > a needs to hold for all G-representations ®. O

Naturally, the more interesting problem is the harder one to deal with. Clearly the answer to

the second question is depending on the structure of the chosen system, and we can give no general
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answer. It would be interesting however to investigate if one can connect the spectral gaps of the
operator L to the gaps of the control and drift Hamiltonians, even if only through crude estimates.
Because the groundstate of the quantum system state should exhibit certain inertia in order for the
quantum processor to work properly, the gaps of the drift and control Hamiltonians are required not
to become too small in applications. Due to the non-commutativity of the generators, finding such
estimates is expected to be rather difficult, if possible at all. Even if we cancontrol the exponential
rate in some way, Thm. [7.9]is again of limited practical applicability, since we have no control
over the operator norm of the nilpotent part [,Ag in general.

Interestingly, the convergence in distribution of a Lévy process on a compact semisimple Lie

group G C SU(d) to the Haar measure ¢ is completely encoded in second moment.

Proposition 7.13. Assume that we have a control system (z|y1, . .., ym) on a compact Lie group
G C SU(d) (no assumptions on controllability!) such that the diffusion (U;); generated by
L=X+ % > j Yj2 converges to the Haar measure fig in the ®22 moment. Then we also have
convergence to the Haar measure in total variation, and in particular with respect to all other

moments.

Proof. Let V := End(C%)®2 denote the complex Hilbert space on which ®2:2 acts and let h C g
be the Lie subalgebra generated by x,y1, ..., yn. The moment semigroup M, EH = exp(tLs)
of u; = Law(Uy) is invariant on the subspace ker(Ls) = VY = comyge(h) where ¢ denotes
the standard representation of SU(d). The moment M2 on the other hand is the orthogonal
projection onto the subspace V¢ = comyg4(g). In order to get convergence of M ;i to M2, we

must necessarily have
coMyee(h) = comyeqs (). (7.29)

Because g is semisimple and the standard representation ¢ is faithful, it follows from Thm. [2.13|
that is equivalent to having g = b. In particular, the system is already controllable on G
and therefore generates a weakly hypoelliptic Lévy process (since G is semisimple) for which we
proved convergence in total variation in Chapter 5

O

On more general groups, this observation is no longer true. In view of Corollary con-
vergence in the ®%2-moment is certainly necessary for convergence in total variation. How-
ever one can find examples where the process is not weakly hypoelliptic but the generator of
the ® := ®22-moment semigroup still converges. This can happen if the center of the image
3(¢®%(g)) C End(C?)®? and the center 3(comyge(g)) C End(C?)®? of its commutant have
non-empty intersection, which allows to find generators where £, has no imaginary eigenvalues.
Such cases exist, finding them is somewhat uninstructive though, so we leave it at this remark.
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A. LIE GROUPS, LIE ALGEBRAS AND THEIR REPRESENTATIONS

In the following, we will provide a short summary of results and definitions related to Lie algebras
and their representation that are relevant to us.

A.1 Lie Groups and Algebras

We assume basic familiarity with Lie groups GG and Lie algebras g, how to derive Lie algebras
from Lie groups and construction of the exponential map exp : g — G. These can be found in
Chapter 11.8 of [[77].

For a Lie group G, here we denote the identity element by e and the induced Lie algebra by
g = T.G. In the main part of the thesis we use 1 instead in order to avoid confusion with
exponentials. The left and right multiplication with g € G are denoted by [, and r, respectively.
Recall that elements in g canonically induce left- and right-invariant vector fields X!, X" on
G by setting X'(g) = Dlyz, and X" (g) = Dryx respectively. If G C GL(V) is a matrix Lie
group, and g C End(V') the corresponding matrix Lie algebra, the invariant vector fields can be
expressed by

X'(g) =gz, X"(g9) =g

using the algebra structure of End (V). The first few result clarify the relation between homoor-
phisms of Lie groups and Lie algebras

Theorem A.1 (Thm 8.44 , Thm. 20.19 in [74]]). Let G, H be Lie groups with Lie algebras g, b
respectively.

1. Let ® : G — H be a Lie group homomorphism. Then the differential ¢ = D.® : T.G =
g — b = T.H is a Lie algebra homomorphism, that is ¢([z,y]) = [¢., ¢,] holds for all
z,y € g.

2. Assume that G is simply connected. Then for every Lie algebra homomorphism ¢ : g — b
there is a unique homomorphism of Lie groups ® : G — H with ¢, = D.®(x).

Proposition A.2 (Prop. 20.8 in [74]]). Let ® : G — H a homomorphism of Lie groups and
¢ = D.® : g — b its infinitesimal version. Then for x € g we have:

® o exp,y(z) = expy 0¢(x).

The next two theorems together show that every real Lie algebra can be realised as the Lie
algebra to some matrix Lie group G

Theorem A.3 (Ado’s Theorem, Thm. E.4 in [[77]). Every finite dimensional Lie algebra g admits
a faithful finite-dimensional representation, i.e. ¢ C End(V") for some finite-dimensional vector
space V.
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Theorem A.4 (Lie’s third fundamental Theorem, Thm. 20.22 in [74]]). For every every finite-
dimensional real Lie algebra there exists a uniquely determined simply connected Lie group the
Lie algebra of which is g.

Definition A.5. Let g be a Lie algebra. A Lie subalgebra h C g satisfying [, g] C b is called
an ideal in g, usually written h < g. This is the condition sufficient and necessary to obtain a
well-defined bracket on quotient g/h which is then again a Lie algebra.

Proposition A.6 (Follows from Thm. 20.28 in [74]). Let G be a Lie group and G1,G2 C G
Lie-subgroups. Denote their respective Lie algebras by g, g1 and go respectively. Then G can be
decomposed as a direct product G = G; x G if and only if g1, g> < g are ideals and satisfy

g=91Dgo.

Remark A.7. Every Lie algebra g has canonically two special ideals, the derived Lie algebra
[g, g, and the center 3(g) = {z € g|[z,y] = 0forall y € g}.

Definition A.8. A non-abelian Lie algebra g is called simple if it has only the tautological ideals
{0}, g < g. It is called semisimple if it admits a decomposition into pairwise commuting simple
subalgebras.

In particular, every semisimple Lie algebra satisfies g = [g, g] and 3(g) = {0}. A Lie algebra
satisfying [g,g] = g is called perfect. The converse conclusion that a perfect Lie algebra is
semisimple is in general not satisfied.

Every Lie algebra carries a canonical bilinear form, which encodes several interesting proper-
ties of the Lie algebra.

Definition A.9. We define the Killing form of g to be the bilinear form
K(z,y) = Tr(ad, ady),
where ad, € End(g) denotes the map y — [z, y].

Proposition A.10 (Prop. C.10 in [77]). A Lie algbera g is semisimple if and only if the Killing
form KCg4 is nondegenerate.

Definition A.11 (Universal Envelopping algebra). Let g be a Lie algebra over K = R, C. The
universal envelopping algebra is the algebra consisting of formal products z; ...z, obeying the
commutator relation xy — yx = [z, y|. Formally,

Ulg) =T(@)/{r®y -y @z —[z,y]}
where T'(g) = K ® g ® g®2 @ ... is the tensor algebra of g.

Definition A.12 (Casimir element). Let g be a Lie algebra with an ad-invariant, non-degenerate
bilinear form (-, -, ). Choose a basis x1, . .., x, of gand let z*, ... 2" the dual basis with respect
to (-, -). Then the Casimir element of (-, -) is the the element of the universal envelopping algebra
given by

Cy = Zmixi e U(g).

In case g is semisimple we always consider the Casimir element to be constructed with respect to
the Killing form. Any Casimir element constructed in this fashion is contained in the center of the
universal envelopping algebra U (g).
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A.2 Representation Theory

In everything that follows, vector spaces considered are considered to be complex and finite-
dimensional unless indicated differently. As a general reference for this section we refer to [[77,
74].

Definition A.13. Let V' be a finite dimensional complex vector space and G a Lie group. A
Lie group representation of G on V' is a smooth homomorphism of Lie groups G — GL(V).
Similarly, a Lie algebra representation of a Lie algebra g on V' is a homomorphism of Lie algebras
g — End(V). An injective representation is called faithful.

By ®,, ¢, and ®”, ¢” we denote the restriction of themaps @ : G XV =V, ¢ : gx V =V
to the second and first argument, respectively.
As a special case of Thm. representations of Lie groups and algebras are closely related:

Corollary A.14 (To Theorem|A.I). Let G be a Lie group with Lie algebra g. Then

1. every Lie group representation ® : G — GL(V) on a finite-dimensional vector space
differentiates to a Lie algebra representation ¢ : g — End(V),

2. if G is simply connected, every Lie algebra representation of ¢ : g — End (V') uniquely
integrates to a Lie group representation of G.

In the following, if we have representations ® : G — GL(V) and ¢ : g — End(V') on a Lie
group with Lie algebra g, we shall always understand them to be related in this particular fashion.
Because we will mostly be concerned with the standard representation of compact Lie groups,
this result allows us to focus entirely on the representation theory of Lie algebras which is very
well understood in the case where g is semisimple. Lie groups and their algebras admit natural
representations on the Lie algebra.

Example A.15. The Adjoint representation of G is the representation Ad : G — GL(g) defined
by

Adgz = gexp(tr)g~t = D, conj, x,
=0

d
dt It
where conj, : G — G h — ghg™' denote the conjugation with g € G. The induced representa-
tion D, Ad : g — End(g) is called the adjoint representation and is given by

ad, z = [z, 2].

In the special case, where we have G C GL(V) for some finite dimensional vector space V/,
we get

d

Adg : End(V) = End(V) z — pn foexp(tr)oft =0oxof ! = conj, .
t=0

Similarly, the adjoint representation of g C End(V) is the ordinary commutator of linear maps.

Example A.16. Consider a Lie group G and a Lie algebra g with representations ® : G — GI (V),
¢ : g — End (V). We can naturally construct representations on the r-fold tensor product V®" by

P g By ®... 0D, (A1)

%" x> Z 19 '@ ¢, @197, (A2)
j=1
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If ® differentiates to ¢, then ®®” differentiates to ¢®", heuristically one should think of the
Leibniz rule for differentiation here.

For Lie group and algebra representations, we can canonically identify the following subspaces.

Definition A.17. Let ® : G — GL(V) a Lie group representation, and ¢ : g — End(V') be
representations of a Lie group GG and Lie algebra g respectively. We define the invariant subspaces
V& V9 CViobe

Ve ={veV:du=uvforalgc G},

Vi={veV:¢,v=0forallz € g}.
Definition A.18. A Lie algebra representation ¢ : g — End(V') is called irreducible if it has
precisely two subspaces W7, Wy C V which are invariant under the action of g, that is ¢ restricts

to a representation g — End(W};), ¢ = 1,2. These are then of course {0} and V. In particular,
we do not consider {0} to be irreducible.

Definition A.19. A representation of a Lie algebra is called completely reducible if it admits a
direct sum decomposition into irreducible subrepresentations.

Theorem A.20 (Weyl, Thm. 9.19 in [77]]). Every finite dimensional representation of a semisimple
Lie algebra g is completely reducible.

Due to the close relationship between Lie groups and their Lie algebras, the following is not

surprising:
Proposition A.21. Let  : G — GL(V) be a representation of a Lie group and ¢ : g — End(V)
the induced Lie algebra representation. If G is connected, then V& = V'8,
Proof. Assume that ®,v = v for all g: Then ¢ v = D, Pz = 0. Conversely, if ¢p,v = 0 for all
x, then

o

n!

Ly=nw,

O (exp(x))v = exp(pz)v = »
according to the previous theorem. Because the image of g under the exponential map exp(g) C G
generates G as a Lie group, the claim follows. O

Definition A.22. Let ¢ : ¢ — V a Lie algebra representation on some vector space V. ¢ naturally
induces a Lie algebra representation on End(V) by z.ac = [, ] for & € End(V'). We then
define the commutant of g to be the invariant subspace

comg(V) :=End(V)? = {a € End(V)|[¢s, ] =0 forall z € g}.
For a Lie group representation ® : G — GL(V'), we similarly define the commutant by
comg (V) :=End(V)% = {a € End(V)|®,a®,' = aforallg € G}.

These spaces are also referred to as the symmetries of the given representation. Of course,
if the Lie algebra belongs to a connected Lie group, the two spaces coincide by the previous
Proposition.

Remark A.23. One special class of representations that will occur frequently, are the represen-
tations ®%% of G C SU(d) on End(C?)®* defined by ®13* : p — UPFpUT®k for k > 1. We
usually employ the Liouville space notation to write ;" = U®* @ U®*. Since ®** s just the



Appendix A 88

restriction of the k-th tensor power of the Adjoint representation of GL(C?), the induced Lie
algebra representation ¢ : g C suy — End(End(C%)®¥) is given by ¢, (p) = [z®F, p] where the
tensor product in the Lie algebra should be understood inthe sense x Rz = x ® 145+ 14 ® x.
Since we only consider subgroups of SL(C?), the representations ®*-* and ¢*+* are faithful for
all k > 1.

A.3 The Compact Cases

The representation theory of Lie algebras which are not semisimple but arise from a compact Lie
group can be essentially reduced to the semisimple case, as we will see in the following. The
starting point for this is the following theorem.

Theorem A.24 (Haar measure - various results from Chp IV, §15 in [80]). On a compact Lie
group G there is a unique probability measure u¢, called the Haar-measure which is both left
and right invariant, i.e. satisfies uq(gA) = pa(Ag) = pa(A) for all Borel sets A € A(G), and
g € G. Additionally it is also unimodular, that is we have g (A) = pug(A~1) forall A € B(G).

Proposition A.25. Every finite-dimensional complex representation ® : G — GL(V) of a
compact Lie group is unitary for a suitably chosen scalar product (-, -, ). In particular, the induced
representation ¢ : g — End(V) is skew-hermitian, i.e. ¢T = —¢ with resepct to (-, ).

Proof. Pick any scalar product (-, -) on V and average over the Haar measue:

(T,9)0 = /G<<I>g:v,<1>gy>dug.

O

This shows that every compact Lie group can be realised as a subgroup of some unitary
group U(d). In particular, using the Adjoint/adjoint representations, the Lie algebra of a compact
Lie group always carries an inner product, such that Ad, z, Ady y) = (z,y) and ([z,y],2) =
(x, [y, z]) hold for all z,y, z € g and g € G. Since the Adjoint representation can be decomposed
as Ad, = Dr, ! o DI, obtain the following corollary.

Corollary A.26. On a compact Lie group, there exists a bi-invariant Riemannian metric ¢g such
that the induced Riemannian volume measure coincides with the Haar measure.

Remark A.27. As one should expect from such a canonical construction, the metric qg has a
few properties which follow naturally, but nevertheless are important to observe. First of all, the
unique geodesic starting in g € G with velocity v € T,G is given by

v = exp(tDly-1v)g. (A3)
Moreover, the induced Riemannian distance function d(-, -) is bi-invariant, i.e.
d(ghi,gh2) = d(h1, ha) = d(h1g, hag)

for all g1, gs, h € G. If the minimising geodesic ~y : [0, 1] — G between g; and g5 is given by
Ve = exp(tx)g1, we have d(g1, g2) = [|z|.

A necessary condition that a Lie algebra arises from a compact Lie group is captured by the
next criterion and the following remark.
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Definition A.28. A Lie algebra is called compact if its Killing form K is negative semidefinite.

Remark A.29. A compact Lie group always has a compact Lie algebra. Without loss of generality
we can assume that the adjoint representation is skew-hermitian and therefore diagonalisable on
the complexification gc = g ® C with imaginary eigenvalues. Thus adi is a nonpositive operator
for all # € g and therefore K (x, z) = Tr(ad?) < 0 for all z € g. The converse statement is in
general false! For example the Heisenberg group, which consists of upper triangular real 3 x 3
matrices with ones on the diagonal, is not compact but the corresponding Heisenberg algebra
defined by the commutation relations [x,y] = z, [z, 2] = [y, 2] = 0 has negative semidefinite
Killing form. However, we can find a compact Lie group G the Lie algebra of which is g for every
compact real Lie algebra g.

If we additionally assume a compact Lie algebra to be semisimple, the negative Killing form
canonically provides us with an ad-invariant inner product on g. Due to the following result
the representation theory of compact Lie algebras can completely be understood in terms of the
semisimple case.

Proposition A.30. A compact real Lie algebra is reductive, that is its adjoint representation is
completely reducible. In particular we have a decmposition into the central and derived ideals

g=13(9) @ g 9, (A4)
and [g, g] is semisimple. In particular a compact Lie algebra is semisimple if and only if [g, g] = g.

Proof. Since g is the Lie algebra to some compact Lie group, it carries an invariant inner product
(,). Let a C g an invariant subspace, i.e. an ideal [g,a] C a. Then the orthogonal comple-
ment with respect to (., .)aq is invariant as well, since ([z,d'],a) = —(d/, [z, a]) = O for every
a’ € at and a € a. Therefore the adjoint representation is completely reducible. Consider the
decomposition

g=0 DDy D61 D--- Doy

of g into commuting, irreducible subalgebras where ¢; are the one-dimensional summands spanning
the center 3(g). Clearly the irreducibility of the s; implies that these summands are simple. Hence
the derived Lie algebra

9,8 = Ciy 6] D 55,55] -
9.0] = P [circi] @ P[5 55]
={0} =5
is semisimple, and we arrive at (A.4). O

For the lack of a better opportunity, we state the following result here, which is the coordinate
free version of the Theorem about Jordan normal forms.

Proposition A.31. Let A € End(C?). Then there exist uniquely determined S, N € End(C?%)
with A = S + N such that S is diagonalisable, N nilpotent, and [S, N] = 0. Additionally A
and S have the same eigenvalues up to multiplicities. This decomposition is usually called the
Jordan-Chevalley decomposition.



B. ANALYSIS, PROBABILITY THEORY AND STOCHASTIC ANALYSIS

B.1 Functional Analysis

Definition B.1 (Distributions). Consider an open set @ C R™ and let D := C2°(Q2) be the space
of compactly supported smooth functions. A distribution on €2 is an element of the dual space D’
taken with respect to the L2-inner product. This definition also transfers to Riemannian manifolds
without any issues. The Schwartz space . () is the space of rapidly decaying functions, that is
f € Z(Q) if for each pair of multiindices «, 3, we have

lim z%9° f(z) = 0.

Tr—r00

It is equipped with the topology induced by the family of seminorms

el = sup supla®d’p(z)].
jalIBI<N @

The topological dual ./ () is called the space of tempered distributions.
In general we will denote all pairings with dual objects and scalar products by (-, -).

Remark B.2. Since the inclusion C2°(§2) — C.(f2) is continuous with dense image, the dual
operator C..(2)" — C2°(Q)’ is also a continuous injection. C.(2)’ can be identified with the
space of Radon measures on (2, which therefore are distributions in the functional analytic sense.
In particular, probability measures are such Radon measures, thereby also justifying the commonly
used term ‘probability distribution’.

Lemma B.3. Let X be a Banach space and f : R — X a map. Assume that f is weakly C*,
that is the map ¢ — (o, f(¢)) is k times continuously differentiable for all dual elements « € X.
Then f is k — 1 times strongly continuously differentiable.

Proof. At the core, the statement relies on the uniform boundedness principle, which states that a
subset S C X is weakly bounded, i.e.

sup{a, ) < oo forall o € X',
zeS

if and only if it is strongly bounded, i.e.

sup ||z|| < C for some C < oo,
z€eS

cf. [62]], Theorem 3.18. First we consider the cases where k = 1, 2, all others follow inductively.
We start by considering a function f that is weakly C'*. We only show continuity around zero, all
other points follow analogously. Because the limit

lim s~ Ha, f(s) — £(0))

s—0
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exists for all @ € X', we can conclude that the map p,(s,t) = {(a, (s — )7L (f(t) — f(5)))
is continuous for every a € X' and therefore p,,([—¢,]?) is bounded. Applying the uniform
boundedness principle, we find C' > 0 such that || (s—¢) "1 (f(s)—f(¢))|| < C forall s,t € [—¢,¢].
In particular, this shows that f is strongly continuous. The next step is to conclude that if f is weakly
C? then it is strongly C'. Because the first weak derivative f’ is weakly C, it is continuous by the
previous case. In particular, we can write f(t) = f(to) + j;tg f'(s)dsforall t >ty € R, therefore
f is differentiable with continuous derivative f’ by the fundamental theorem of calculus. O

In order to show the same result for Frechét spaces - i.e. the topology originates from a family
of seminorms - the argument does not fundamentally change, we just proceed by checking the
claim seperately in the respective seminorms.

B.2 Basic Probability Theory

This part provides an overview of some results and definitions in probability theory and stochastic
analysis, where we assume familiarity with the most fundamental related notions, otherwise we
point at [|81]].

Miscellaneous

We will always denote probability measures either by the greek letters p, v, or P. General
measurable spaces are denoted by (S, &) and probability spaces by (2, P,.%). P denotes the
probability measure, €2 the space of outcomes and .# the o—algebra of events. The set of proba-
bility measures on a measurable space S is denoted by M!(S). If S is a topological space, we
always consider the o —algebra to be the respective Borel o-algebra o7 = %(S) of S.

For a random variable X : Q — S let PX = Law(X) = X, P denote the induced probability
measure on S given by PX(A) = P(X1(A)) forall A € o. We write X ~ p if PX = p.
For a random variable X : Q — S with X ~ y and a function f : S — R? we usually write
E.[f] = [ fdu =E[f(X)] = [ f(X(w))dP(w) for its expectation under z. An important tool
to estimate the expectation of random variables which iscentral to information theory is Jensen’s
inequality.

Proposition B.4 (Jensen’s inequality). For every random variable X : 2 — R and convex
measurable function f : R — R, we have f(E[X]) < E[f(X)]. If the function is concave, we get
the reverse estimate.

In many situations it is necessary to determine the expectation of a random variable with
respect to certain events which have measure zero, that are stochastically not independent.

Proposition B.5 (Def. 8.11 and Thm. 8.12 in [81]]). Consider a probability space (2, P, %) and
a o-subalgebra @ C .Z.Let X € L'(P) be an integrable random variable. Then there exists a
unique ¢-measurable random variable Y, such that

E[xsX] = E[xsY]

forall S € 4.Y is called the called the conditional expectation of X with respect to 4 and
denoted by E[X|¥4] := Y.

Proposition B.6 (Thms. 8.14 and 8.20 in [81])). Let (€2, P, .#) be a probability space and ¥ C .%
a o-subalgebra and X, Y real-valued random variables as above. Then the conditional expectation
satisfies the following properties:
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1. If X is ¥-measurable, then E[X |¥¢] =

2. We have E[XY'|¥4] = E[X]E[Y|¢] if X independent of the sigma algebra o(Y,¥) C .#
generated by Y and ¢.

3. Law of total expectation: E[E[X|¥¢]] = E[X].
4. Jensen’s inequality: f(E[X|¥]) < E[f(X)|¥] for any convex function f : R — R.

One possibility to characterise probability measures in vector spaces is to determine the
integrals of polynomials.

Definition B.7. Let ;. be a measure on an n-dimensional vector space V' and k € N. Consider the
inclusion map (¥ : V' — V®* defined by v + v®¥. If for all multiindices I € {1,...,n}" the
integral [|, |z, | ... |2, |du(x) is finite, we say that the measure is of order & and define the k-th
moment of p by

MZf ::/ Fx)du(x) € VO,
v

The following proposition shows that a probability measure on a compact set is completely
determined by its moments.

Proposition B.8. A probability measure on a compact subset K C R is completely determined
by its moments, i.e. for two measures u, v we have o = v if and only if M k — MP holds for all
k> 0.

Proof. Every monomial of order k in the coordinates 1, ..., x, corresponds to a component
of the tensor power $®k If we have M ,’j = MP for all orders k& > 0, we can conclude that
[ Q(z1,...,zn)du(z) = [ Q(z1,...,2,)dv(z) holds for all multivariate polynomials ). Be-
cause K is compact these polynomials are dense in the continuous functions C(K) by the
Stone-WeierstraB Theorem and therefore we have [ f(z)du(z) = [ f(z x) forall f € C(K).
This is sufficient to conclude that . = v, following Theorem 2 14 in [82] O

Definition B.9. For two probability measures 4, v on a (semi-)group G, we define the convolution
W * v by

(1 v)( //XA gh)du(g)dv(h)
for every Borel set A € B(G).

Essentially, the definition is such that for two GG-valued independent random variables X ~ p
and Y ~ v, p * v is just the law of their product XY . For a compact group, the Haar measure ji¢
is invariant under convolution, i.e. ug * ¥ = v * ug = pg for all measures v. It is easy to see that
if o and v are distributions of linear operators, the moments of their convolution p * v are given
by their composition

Mo M =MF,,. (B.1)

For many purposes it is useful to have a notion of distance between probability measures in

order to quantify how much two probability distributions differ from another.

Definition B.10 (Total variation and Wasserstein distance). Let (.5, <7) be a mesurable space. For
two measures 4, v on S, we define
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1. the total variation distance

dry (p,v) = sup [n(A) = v(A)].

2. If S is equipped with a metric d and &7 = %(.S), we can also define the LP-Wasserstein
distance:

Wy(p, v) = inf Enld(x, y)?]?
where the infimum is taken over all measures on S x S with marginal distributions p, v,

Proposition B.11 (Kantorovich-Rubinstein duality, Theorem 5.10 in [83]]). When two measures
i, v on the metric space (S, d) have bounded support, the L!-Wasserstein distance has the dual
representation

)

Wi(p,v) = sup ‘/fdu—/fdv

fELip,(S)

where the infimum is taken over all 1-Lipshitz functions from S to R.

If the metric space (S, d) is bounded, we can estimate the L'-Wasserstein distance against the
total variation by
Wi (u,v) < diam(S)dry (u, v)

where diam(S) < oo is the diameter of S. This can be easily shown using the Kantorovich-
Rubinstein duality.

Definition B.12. A probability (or Markov) kernel between two measurable spaces (S7, .27 ), (S2, o%)
isamap K : S1 X o/ — R such that

1. k(z1,-) : o — R defines a probability measure for all 1 € Si,
2. k(+,Ag) : S1 — R is measurable for all A; € &

For two probability kernels (S1, 9) — (S2, 9%) and kg : (S2, @%) — (S5, 9%4), we define
their composition by

(k2o k1)(z, A) = /mg(y,A)ml(Jc,dy),

where we write x(x, dy) in order to indicate integration with repsect to the probability measure
k(z, ). Probability kernels allow us to push probability measures from one measurable space
to another. With a probability kernel « : (S1, %4 ) — (S2, 9%) and a probability measure P on
(S1, 4%1), we can construct a probability measure P* on (S, @%) by

Pr(A) ::/S k(z, A)dP(x)

for all A € <. A measurable map between measurable spaces f : (Q21,4) — (Qa, %),
canonically defines a probability kernel between these spaces by

(e, ) = {1, f(w) € 4,

0, otherwise.
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Then for any probability measure P on {21, we have
PH(4) = / h(w, A)dP(w) = P({w : f(w) € A}) = PT(A).
(o1

This justifies the notation P* since it generalises the pushforward of measures along measurable
maps.

Divergences

It is often useful to determine how much ‘knowledge’ two probability distributions have about each
other. This can be measured for instance by the relative entropy, also known as the Kullback-Leibler
divergence.

Definition B.13. Let u, v be probability measures on a measurable space (S, 7). We define the
Kullback-Leibler divergence Dy 1 (14]|v) € [0, 00] by

E {log (d—‘;)} , if u admits a density with respect to v
Drr(pllv) = { 8 ¢

oo, otherwise.
Note that we can rewrite D, (u||v) = E, {log(‘;—’;)} =E, [log (j—’;) Z—‘Ij} using the density.
Since = — xlog(x) is convex, it follows from Jensen’s inequality that Dy, is nonnegative.

The relative entropy has several useful properties, the most important ones are discussed in the
following.

Lemma B.14. The Kullback-Leibler divergence is convex, i.e. for pq, o, v and 0 < A < 1:
Dir(Aur + (1 = MNpe||v) < ADkr(pllv) + (1 = A)Drr(pzllv) (B.2)

Proof. Without loss of generality let 1, po be absolutely continuous with respect to v (i.e. they
have densities). Using the density of the convex combination Ap; + (1 — \) o with respect to v,
we can express the relative entropy by

B dpy dpiz dp dpo
Dict O + (1= pally) =, [tog (V52 1= %2 (3204 1 ).

Since the map x — x log(z) is convex, the claim follows. O

Proposition B.15. The relative entropy is decreasing under probabilistic operations. That is, for
any pair of measurable spaces (51, .24 ), (S2, %%) and any probability kernel k : S1 x @4 — R,
we have

Dkr(P"[|Q%) < Dkr(P||Q) (B.3)

for all probability measures P, Q on (57, .2%).

Proof. In the following we will freely write expectations as integrals or vice versa whenever this
is opportune. Without loss of generality assume that 7 is absolutely continuous with respect to Q.
Let P denote the measure on S; x Ss defined by

P(Ax B) = /A /B (@, dy)dP (),
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analogously for Q. Let 71, m denote the respective projections. We observe that

~ dpP dP ~
P(Ax B) = /AXB k(z,dy)dP(z) = /AXB E(m)n(w,dy)dQ(m) = /AXB E(x)dQ(a:,y).

So the density of P with respect to Q exists and is given as the pullback 7} (%) along the
projection onto the first component. Its conditional expectation with respect to the o—subalgebra
{0, 81} x ol C o ® o which is induced by the projection 7o satisfies

dp dp _
[ s |2z m| a2 w = [ Bg |9 |m| ddlay)
B Sle
:/ P 45 = dP = P*(B)
S1xB dQ S1XB

for all B € o%. Therefore the density of P* with respect to Q" exists and it is given by

apr

dP
Froimil s

~ B.4
05 (B.4)

2

In particular, we have Dy 1, (P"||Q") < co. We can rewrite the Kullback-Leibler divergence as

P~
D P Q" =/ 1 ( )d”P":/ 1 Ex E~
xL(P"||Q%) 5 ¢ | o~ . og | Lg 5]

Next, we apply Jensen’s inequality to the convex function z — x log(z)

dpP\ dP dpP\ dP
< ]E" 1 —_—= —_—= d f = ]E" 1 —_—= —_—=
- /s . [Og (dQ) dQ 721 ° ~/Sl><52 = [Og (dQ) dQ

With the law of total expectation we can conclude

- /SIXSQ log (Zg) P = /Slxs? log <§Z(w)> k(z, dy)dP(x)

d
_ /S log (dg) 0P = D1 (P[|Q).

dp

P

dor.

T2 T2

7'('2‘| d@

O

For probability measures 4, v on some (semi)group, the convolution of measures with another
measure 7 is a special instance of a Markov kernel. Accordingly, the above estimate reads

Drr(p v *n) < Drr(pllv) (B.5)

in this case.

Proposition B.16 (Pinsker’s inequality, Lemma 2.5 in [|84]). Given two probability measures
i, v on a measurable space (.9, .<7), we can estimate their total variation distance against the
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Kullback-Leibler divergence by

1
drv(p,v) < \/ 5 Prr(ull). (B.6)

B.3 Stochastic Analysis

Definition B.17 (Stochastic process). A stochastic process on a probability space (2, P, %) with
values in a measurable space (.S, &) is a collection of random variables (X;);c; with X; : Q@ — S
for some index space I C R.

Remark B.18. Natural choices for the index set I are N or Z, but for us this will be almost
exclusively I = [0, 00). Whenever we are given a stochastic process X : Q@ x I — S ona
probability space (€2, P, .%#), we usually omit the dependence of X on w € €, and in most cases
also the indication of the index set. X; then refers to the random variable w — X (¢, w) and the
sample paths of X are the maps X (w) : R>¢ — S. In order to construct stochastic processes
through probability distributions of random variables X; which meet some compatibility criteria,
we can rely on Kolmogorovs Extension Theorem which is explained in Chapter 14.3 of [81].

Modelling a stochastic process on a probability space (2, P, %) adds additional structure to
the model which motivates the notion of filtered probability spaces.

Definition B.19.

1. A filtration of a probability space (€2, P, F) is a family of o-algebras (#;)c1cr., such
that

Fo =0 ||JF | =F and F, C F fors <t

>0

2. A stochastic process X on a filtered probability space (Q, P, (F;);) is called adapted if X,
is .%;-measurable for all ¢ > 0.

The condition on being adapted means that by collecting all information available up to time
t > 0, we can distinguish between all events in .%;. For a stochastic process X, we will always
understand the filtration to be generated by X, i.e. given by #; := o ((X)s<¢), unless specified
otherwise. By saying that a stochastic process X is adapted to another process Y, we mean that X
is adapted to the filtration generated by Y in this fashion.

Often one encounters processes which are not continuous in time, but have jumps. Because such
jumps happen suddenly and cannot be anticipated, the sample paths should meet the requirements
of the next definition.

Definition B.20. A function f : R — S into some metric space S is called cadlag (continue a
droite, limites a gouche) if its left limits exist and it is right continuous, i.e.

lim f(s)eR and lim f(s) = f(¢).

s—t_ s—ty

hold or all ¢ > 0.

An important class of stochastic processes are Markov processes. These are processes which
have no memory in the sense that their future development only depends on the current value, and
not on their entire history until to this point.
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Definition B.21 (Markov process, Def. 17.1,Thm. 17.8 in [81]]). A stochastic process (X;)icr
on a probability space (€2, P, .%#) with values in a measurable state space S is called a Markov
process if one of the two equivalent conditions is satisfied:

1. We have E[f(X,)|.#;] = E[f(X;)|o(X;)] for all bounded measurable f : S — R and
Jj > i, where (%;);er denotes the filtration generated by X.

2. There exists a family (7;;), < je1 Of probability kernels subject to the Chapman-Kolmogorov

equations that is 7; j o m; j, = m; j, forall ¢ > j > k, such that PpXi = 5 (PX3) holds for
allz > j.

We use the notation 7 instead of x to indicate probability kernels that belong to a Markov
process.

Brownian motion and white noise

The central type of process around which stochastic analysis evolves are Brownian motions:

Definition B.22. A real valued stochastic process (By)¢>o is called Brownian motion (sometimes
also called Wiener process) if

1. the increments By, — B, ,,..., B, — By,
stationary, i.e. By — By ~ By_, forallt > s,

are independent for all ¢,, > --- > t¢ and

2. B is Gaussian with mean zero and variance /1, i.e. By ~ N (0,t) for t > 0,
3. By =0.

Brownian motion is almost surely nowhere differentiable, as one can easily tell by looking at

its increments
Bt - Bs ~ Bt—s Bl

t—s t—s Vt—s
However it is possible to define a generalised derivative in terms of tempered distributions.

Theorem B.23 (Bochner-Minlos, Thm 2.1.1 in [85]). Let.#” (R?) be the Schwartz space, .7’ (R?)
the space of tempered distributions and let (-, -) denote the pairing between these spaces. Then
there exists a unique probability measure i on the Borel sets & (.#’), called white noise, such

that we have
i {ei<w,¢>} :/ ¢18) gy () = e~ 319132
Z1(RY)

for any ¢ € . (Rd) and w ~ p.

How is this linked to Brownian motion? The white noise measure y is the unique measure
on ./ such that, for w ~ p and any sequence of compactly supported functions ¢, € C2°(R)
approximating the characteristic funtion of the interval [0, ¢], the limit

n—oo

t
B, := lim w(¢y,) <—/ wgds, formally>
0

defines a Brownian motion. One more important characteristic feature of white noise is that
its autocorrelation in the distributional sense corresponds to the Dirac delta distribution. For w
distributed according to white noise, we have

Elw ® w] = d4iag,
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where dg4iqy € -7/ (R ® R) is the Dirac delta supported on the diagonal. Of course one could
extend the discussion about the correspondence between white noise and Brownian motion further
at this point, however it is not strictly necessary for us, so we shall leave it at that. More details on
this can be found for instance in [85]].

Martingales

Martingales are one of the most fundamental objects in modern probability theory and used to
model ‘fair gambling’ processes. We only introduce as much of the theory as is immediately
needed to introduce stochastic integration. This in principle includes a lot of powerful estimates
and convergence results, which can be derived for martingales. However these are more needed on
a technical level and not strictly necessary to get a general idea of the topic which is what we are
aiming at. Therefore, we will not included these into our summary here and hint at Chapter 11 in
[[81] instead.

Definition B.24 (Martingale). A stochastic process (M), on a filtered probability space (2, P, (%#:)+)
is called a martingale if

1. M is adapted to the filtration (%),
2. E[|M]] < oo forallt >0,
3. E[M|F;s] = M, forallt > s > 0.

In particular martingales have the property that their expectation remains constant. One could
also stop processes after some random time, leading to the concept of stopping times.

Definition B.25. A map T : Q2 — [0, oo] on a filtered probability space (€2, P, (:%);) is called a
F-stopping time if {T" < ¢} € %, forall t € [0, x0].

Doob’s optional sampling theorem shows that martingale properties are preserved under
stopping.

Proposition B.26 (Doob’s optional sampling theorem, Thm. 3.22 in [46]]). Let X be a continuous
martingale and 7" a stopping time. Then X/ := Xr,, is again a martingale, where we denote
T At :=min{T,t}.

There are two important classes of processes which are not martingales, but are closely related.
Definition B.27.

1. A stochastic process X is called a local martingale if there exists an increasing sequence of
stopping times 7}, such that X;* = X;.7, is a martingale for every n and 7;, — oo almost
surely.

2. A stochastic process X is called a semimartinagle if it admits a decomposition X; =
Xo + M; + V;, where M is a martingale and V' is a process with bounded first variation
(see below) such that My = V;; = 0.

For an adapted process X and a partition IT = {to, ..., ¢, } of the interval [0, {] we define the
p-variation (p > 0) of X with respect to II by

n

VD) =37 My, — My, P
k=1
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For a partition we write ||II|| := maxi<;j<p |t; — ¢;_1| for its mesh size and |II| = n for its size.

Theorem B.28 (Thm 5.8, Def. 5.3 in [46]). Let X = Xy + V + M a semimartimgale as above
such that M is square integrable. Then we have the following:

1. The limit )
(X := lim V,&)(I0)

exists almost surely and, even stronger, in probabilityﬂ The process ([X];); is called the
quadratic variation of X.

2. For a square integrable martingale M, the quadratic variation ([M];);>0 is the unique
increasing process such that M? — [M], is again a martingale (up to probabalistic indistigu-
ishability).

It is not difficult to show directly that the quadratic variation of a Brownian motion B is given
by [B]: = t. By aresult of Lévy, a square-integrable local martingale is a Brownian motion if and
only if its quadratic variation is of that form, see p. 157 in [46]]. This is a very well-behaved example
of a quadratic variation. We want to emphasize that in general the outcome is not necessarily a
deterministic function.

Definition B.29. Let X, Y be semi-martingales with square-integrable martingale parts. We define
their cross variation to be the process

X, V] = 3 (X + Y~ [X - Y. B.7)

It is immediate that we can express the cross variation via the limit

11|

[X,Y], = Hrl{i”nio > (X — X)) Yayy, — V). (B.8)
k=0

Remark B.30. Clearly the cross variation of a process X with itself gives back its quadractic
variation [X, X] = [X]. Of course [X, Y] is not increasing anymore as opposed to the quadratic
variation. However, we can write it as the difference of two increasing processes, and therefore
[X, Y] still has bounded first variation. It is not difficult to show that the cross variation (B-8)
vanishes if the processes are independent or if one of the processes has bounded first variation.
With polarisation, one can also easily show that M N — [M, N] is again a martingale if M and N
are martingales. When dealing with processes X, Y that take values in R™ we use the shorthand
notation [X,Y] = ([X1,Y1],...,[Xn, Ya])-

! X, — Y in probability if for every €, § > 0 there is N such that P(|X,, — Y| > §) < e foralln > N.



C. REMARKS ON SIMULATIONS

For our examples we want to simulate solutions to the random differential equation

d . . .
—Ur = —(zHO T zj:cj(t)H;‘)Ut, quadUy = 16 .1

where the c; are piecewise constant, and normally distributed ~ A/(0, AT 1) for a time step
AT > 0. Following the results of Stroock and Varadhan of Thm this corresponds to an
approximation to the solution of the Stratonovich-SDE

AU, = —(z’Hodt +iy Hfo dB{)Ut, Up = 1c (C.2)
J

for some independent Brownian motions B, ..., B™. Since the Hamiltonian in (C:I) is time
independent on the interval [0, AT| we can solve this random differential equation locally by
ordinary exponentiation. By multiplication of these increments we recover the expression (5.3))
from the introduction of Chapter 5] (up to multiplication order and signs). In order to ensure that
the evolution is not affected by roundoffs too much, we simulate the distribution at t = AT once
for 10° samples and compute the exponential with high precision. We will then use the uniform
distribution over this collection as a substitute for the original one. In order to compute the trace
norm of the k-th moments as memory-efficient as possible, we rely on Remark [3.7)and determine
the corresponding frame potential of the sampled distribution. In the programming language Julia
[[86]], the result is the following.

1 using LinearAlgebra;

2 using Random;

3

4 function Simulation ()

5 #HHFEFF AR HESHEES Auxiliary Functions ####4##44#44HFESHEES
6 function exp (A)
7
8

x = norm(A)
ind = 0
9 n = size(A) [1]
10 I_n = (140im)+Matrix (I, n, n)
11 while 2°ind < round (x)
12 ind += 1
13 end
14 aux = I_n
15 e =1I_n
16 A_new = A/ (27ind)
17 for i = 1:50
18 aux = A_newxaux/i
19 e = e + aux
20 end
21 for i = 1:ind

22 e = exe
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end
return e
end
#HA4HHHF A H AR H AR Initialising ###44#4H 44444 FHHHHHRHHSEE
qubits = # number of qubits
drift = # define a drift Hamiltonian
controls = # specify a list of control Hamiltonians
samples = # Number of samples
moment = # specify tensor power of \Phi“{1,1}
rate = # sampling rate of determining frame potential
time = # maximum evolution time (1 timestep = pi)
resolution = # number of iterations per time step (pi/Delta_t)
#AHHHAHHFHFHFFAFHSF Actual Programme ####FHFHFFFRFEFFHFHFRFHA
N = resolutionxtime
dim = 27qubits
delta_t = pi*time/N
Distribution = Vector{Matrix{ComplexF64}} (undef,100000)
Evolution = Vector{Matrix{ComplexF64}} (undef, Max)
rng = MersenneTwister (1234)
for j = 1:100000
Increment = (1+0im) xzeros (ComplexF64, dim,dim)
for i = 1:(size(controls) [1]
rdm = randn(rng, Float64)
Increment = Increment+rdm*controls([i]
end
Distribution[]j] = exp(-limxdelta_t*drift - limxsqgrt (delta_t)*Increment)
end
for j = l:samples
Evolution[j] = Matrix{ComplexF64} (I,dim,dim)
end
results = Vector{Float64} ()
append! (results,2” (2+qubits+moment) )
for t = 1:N
for j = l:samples
m = rand(1:100000)
Evolution[j] = Distribution[m]x*Evolution[j]
end
if round(ratex*t)%resolution ==
value = 0
for i = l:samples
for j = l:samples
aux = abs(tr(adjoint (Evolution[i]) = Evolution[]j])) "~ (2xmoment)
value += aux/ (samples”2)
end
end
append! (results,value)
end
end
return results
end
#output: list containing the squared trace norm of the second
# moments of the distribution at times (no. of entry xpi)/rate



D. NOTATIONS AND SYMBOLS

hermitian conjugate of a matrix/ adjoint of an operator
Stratonovich stochastic increment

convolution

complex conjugate

ideal

o-algebra

attainable ste by a control system at time ¢ starting at xg
Wiener process/Brownian motion

Borel o-algebra of a toplogical space S

k—times continuously differentiable functions on M
compactly supported functions

differential of f at = as a linear map

the space of test-functions (= C2°)

space of distributions

domain of a unbounded operator

Kullback-Leibler divergence

total variation distance

expectation of a random variable

conditional expectation of Z with respect to G C #
endomorphisms on a finite-dimesnional vector space V
o-algebra of a probability space

filtration of a sigma-algebra .#

Lévy process on a Lie group

group of invertible linear operators on finite-dimensional vetor space

Lie group

controlled Lie group

Lie algebra (mostly of the Lie group G)

Lie algebras

control algebra

Hilbert space

zero-time ideal

Killing form

probability kernel

quantum channel

p—integrable functions with respect to p

linear operators on a Hilbert space

infinitesimal generator of Feller processes

infinitesimal generator of moment-semigroup
measureable functions between two measureable spaces X', )
set of probability measures on measureable space (S, <)
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M ;f moment of a measure 1 on a Lie group with respect to representation ¢
Wy Vym measures on a measureable space
{1t e convolution semigroup associated to a Lévy process (g;): on Lie group
wa the Haar measure on a compact group G
M,N martingales
[M],[M, N] quadratic and crossvariation processes respectively
Q space of outcomes of a probability space
w outcomes on a probability space
R Lie group representations
ook representation on subgroups of SU(d) given by U +— U®* @ U®k
10) Lie algebra representations, mostly corresponding to ®
prok Lie algebra representation corresponding to ®*:%
P quantum state
{P: }+ probability operator semigroup of Markov process
P probability measure
Dt density of the Law p; of a Lévy process with respect to invariant measure
Tt,s transition kernels of a Markov process
q(,) Riemannian metric
R, real/imaginary part
p mixed state density operator of a quantum system
S (RY) Schwartz space
S (R%) tempered distributions
Oz, 0y, 0, Pauli Matrices
5Ug, 504 special unitary, special orthogonal and compact symplectic Lie algebras
| Zdm 1t6 integral
[ ZodM Stratonovich integral
T,M tangent space of M at
Tr trace
U(g) universal envelopping algebra
U, unitary evolution of control system
VF(M) Lie algebra of smooth vector fields on a smooth manifold M
V& ve invariant subspaces of a Lie group/algebra representation on a vector space V'
V,Ww general vector fields
Wh L'-Wasserstein/Kantorovich-Rubinstin distance
XA characteristic function of a set A
13 random variable with values .’ distributed according to white noise
(X|Y1,...,Yy) control system
xT,Y, 2 usually Elements of a Lie algebra
X, Y. 7 stochastic processes or vector fields,
on a Lie group X, Y, Z are always the left-invariant vector fieldsto z,y,z € g
Yy controlled distribition of a control system
3(9) center of the Lie algebra g

Z(@Q) center of a Lie group
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