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Chapter 1

Introduction

This thesis aims to present in a simple way the recent flow approach technique to
study singular stochastic partial differential equations originally developed by Pawel
Duch in [Duc21] and [Duc22].

As an example to showcase this technique, we will prove the local existence of
the one-dimensional stochastic Burgers equations

Of =Af+0, (f%) +0:&, (1.1)

on the space H := R x T where T = R/Z is the torus and & is a space-time white
noise, i.e. it is a centred Gaussian distribution such that for every test functions ¢
and 1 it holds

E € (0) € (1)] = / o

H

Actually, we will prove the existence in a subset of H of the form Hy := [0,7] x T
for a random 7" > 0.

One of the main difficulties in studying this equation, and all the singular equa-
tions in general, is the irregularity of the noise. Because of this, we expect the
solution to be a distribution rather than a regular function, so it is unclear what the
non-linear operation on the right-hand side means.

To solve this, we introduce a regularisation. We take a mollifier §(¢,x) in R?, we
set 0,.(t, z) = k=320 (ﬁ, Hf/z) for any « in (0, 1] and we use this to define the regular
function &, := 6, * £&. The choice of the scaling in the definition of 6, is to take
advantage of the parabolic one of the differential operator 0; — A. With this, we
can consider the regularised stochastic Burgers equation with an initial condition
constantly equal to 0

It is straightforward to prove that this equation is well-posed for every positive
value of k. However, we will not rely on this result, as we will construct a solution
independently. Now the hope is that, after proving some a priori estimates, one can
show that f. converges to some distribution fj in a suitable Holder norm, and so fy
can be seen as the solution of equation (|1.1)).

The Burgers equation and the related KPZ equation (first introduced in [KPZ86])
are classic test cases for all methods aiming to develop a pathwise theory of singular
SPDEs. We quickly note that the two main approaches are: regularity structures



[Hail4b], which allows us to obtain a local series expansion using singulars objects
as a basis, and paracontrolled distributions [GIP15], which imposes an Ansatz using
Bony’s paraproduct. Other than these two, we point out that a flow approach
method has already been developed by Kupiainen some years ago [Kupl6]. The
main difference is that Kupianien’s flow is discrete, while Duch’s is continuous in
the parameter p we will soon introduce.

A notion of solution to the KPZ equation has already been given using the Cole-
Hopf transform by Bertini and Giacomin in the seminal paper [BG97]. After that, a
solid pathwise solution has been studied in [Hail4a] using rough paths, an embryonic
form of regularity structure; in [GP17] using paracontrolled distributions and very
recently (while writing this thesis) in [CF24] using the flow approach, also based on
Duch’s approach.

Now, let us see how the flow approach works. First, let us consider the following
mild form of equation ([1.2))

fH:G*FH(fH)v (13)

where Fy(¢) := 120 (¢* + &) and G is the spatial derivative of the fundamental
solution of the parabolic differential operator 9, — A (see appendix |C)).

Now we introduce a further regularising parameter ;1 and define f,, with p €
[0, 1] such that f,.o = f.. Duch’s idea is to get a closed equation for f , by changing
the functional F} in equation (|1.3]).

To be more explicit, as in Duch’s articles, we introduce a scale decomposition
of G to define f.,. To do this, we fix a smooth non-negative cut-off function
X € C* (R>() which vanish in [0, 1] and is identically equal to 1 in [2, c0).

With this, we define G,(t,z) = x (t/p) G(t, ) for p > 0, Gy = G and

fn,u = Gu*Fn(f/@)- (14)

In order to get a closed equation for f, ,, one might look for some new functionals
F, . such that F, ,(fs,) = Fu(fs)-

Let us find out which condition guarantees the latter. First, we will derive in p,
so that

au (Fm,u(fmu)) =0
aﬂFH,#(fnﬂ + DFn,u(fH,u) [auf&u} =0,

where DF), ,(¢)[¢] is the Gateaux derivative of F,, , in ¢ in direction 1.
To find 0, f. ., we derive in p equation (|1.4]) obtaining

Outip = Gu * Fo(fe) = Gu * Fiop(fip)s

where Gu = 0,G .
Now we substitute this expression in the previous one obtaining

Ol (foy) + DEepu(fup) [Gu * Fn,u(fn,u)} =0.

If we set .
H,(9) = 0uF(9) + DFu(@) |G Fuy(0)]



we might impose H, ,(¢) = 0 for each ¢. This is essentially the flow equation.
This equation might be solvable in several cases (and it is in [Duc21] and [Duc22]).
But, as it is suggested in [DGR24], it might be possible to obtain the desired a priori
estimate even with an approximate version of the flow equation (see also [Duc23]).
This allows more flexibility in the approach and we think using this variation makes
the method even easier to understand.
With this generalization, we set

F&u(fmu) + Rﬁ,u = Fn(f,{)

for some reminder R, ,, which will be small in a suitable norm.
Now we can do similar computations as before.

a/'L (F’%N«(fli,p,) + Rnﬂu) =0
0uF () + DF (o) [0ufro] + 0uRsp = 0.

To calculate 0, f,, we derive (1.4))

O L = Gu * Fio(fi) = Gu * (Fop(fap) + Rip) -
So that

OuFsFis) + D P ) |G (P fu) + Roog) | + 0oy = 0
Hy (o) + Fop(fin) [Gu * wa} + Oy R =0,

where H, , is defined as before.
Using that R, = 0, we obtain the system of equations

{fw:_flé # (Fen(frn) + Bn) d + i,
fo < ] fli’l] +Dan(fnn> [G.n*R,{m])dT],

Since f,1 = 0 1in [0,1] x T, we will neglect it as we will restrict to a short time
interval. To conclude the study of the equation, we will do a fixed-point argument
in chapter [4, which will give us some a priori estimates and allow us to take the
limit as p and x which goes to 0.

It is time to choose the shape of F, ,.

We exploit the fact that F o(¢) is polynomial in ¢ imposing the following form
for the functional

r 21 m

Fou@)(2) =) / Fim(zida, . da) [ ] 6(2), (1.5)
i=0 m=0 Y M"™ j=1
where Ml = R?, 7 is a natural number that we will choose later and F ;Z”(z, dzi, ..., dzy)

are functions on H with values in the space of measures on M™. We also ask for the
symmetry of these measures under the permutation of their m components.
To understand where this form of the functional comes from, we rewrite it as

v m

F..(¢ ZZ/\’/ Fzmzdzl,...,dzm)Hgb(zj)

=0 m=0 J=1



for A = 1. In this way F, , is the truncated series expansion in X of the solution of
H, , =0, when in the stochastic Burgers equation the nonlinear term is tuned
by a factor A, that is:

With the above choice, we have Fjg (z;5d21,dz) = 15500,(dz1)0,(dzs), F,S”g(z) =
1:-0&k(2) where Z is the time component of z and F, ;81 = 0 for all the other choices of
the couple (i, m). However, to deal with a renormalisation type problem in section
, we add Fj(z) = Lisock(2) for 1 < i < 7 to the equation, where ¢, are some
functions on the time variable. This will not change the equation because only the
space derivatives of Fy(¢) play a role, so we can add arbitrary functions which are
constant in the space variable.

Now let us calculate the shape of H, ,. The first term is easy to find

0.F, => Z x/ O Fm(zidz, . dz) [ [ 6(2))-
j=1

i=0 m=0

The other requires some more computations. First, we observe that

DFI‘G,H(¢) W}] = 8TFH7M(¢ + T@/))\r:o

r 21 m
- Z Z )\iaﬂTo/ Fim(zidz, ... dzy) H (0(2) + TY(25))
i=0 m=0 M j=1
_ZZX/ Flmzdzl,...,dzm)z¢(zl) H P(z5).
i=0 m=1 =1 1<j<m
J#
Moreover
T k
Gu *FH/L Zz/\l/k+ )Flk(y? dyb' : dyk:)HCb(y])d?/
1=0 k=0 JMF! =1

This, combined with the previous equation, leads to

r

DF () |Gy % Feyl0)] (2) ZZAZ/ Fim(zida, ..., dzp)

=0 m=1
m T k
3OSy | G = P dn) [Totw) TT otz
r=1 1=0 k=0 M+ j=1 1§éﬁ§lm
j

This proves that H, , has a form similar to that of the functional F} ,. Indeed

ZZ)\’/ Him(z; dzl,...,dzm)H¢(zj), (1.6)

=0 m=0
with
Hi™(zidz, . dz) = 0,500+ Y (j+1)B (GH, Flitt, Fé;l’m‘j>

=0 j=0



if 4 <7 and
HE (2, o) = D0 G+ DB (G FEHL FLM9) (1)
1=0 j=0

if 2 > 7. Where the function B is defined as
B(G,W,U)(x;dys, . .., dym)

1
= Z /M2 Gy — )W (z;dy, dyxy, - - ., dYr U (2 dYry s - - - AYr,, )d 2,

" m€Pm

(1.8)

where P, is the set of the permutation of m elements. We remark that we have
averaged over P, to obtain a symmetric H;?

As we want H, ,, to be as small as possible, we impose H.;"' = 0 for each ¢ < 7. In
this way, we obtain the following flow equation for the coefficients of the functionals

g.Fm=-3"SN"(j+1)B (GM, FLit, F;:f’m*j> . (1.9)

1=0 j=0

Note that these equations together with the condition F ;Z‘ = 0 if m > 2i, define
inductively all the coefficients of the functional. In fact, we have assigned the values
of F/¢" and, if we know F}* for all | < ¢ and for all (I, k) such that [ =i and k > m,
then we have

; 7,1 . ;
Fn’,,u = Fn’,O + /0 a”]FnZn d77
, nd & : . . ‘
—EE = [ Y G 0B (G EEL ) dn (1.10)
0

1=0 j=0

and now all the terms on the right-hand side are given.

An important property to observe that follows from induction on the above rela-
tion is that F,i’,f](z; dzy,...,dzy,) is equal to zero on 2z < 0 and on 2; > 2 for any j
where Z; is the time component of z;.

We will analyse a regularised version of the system to take advantage of the esti-
mate we will prove in chapter 3] To do so, we first introduce the following notation.
Given a function f(xo, 1) defined on H, we set 1o 1 f (2o, 1) := 1o.17(20) f (z0, 21).
Now we set

FT (¢) - KM * 1O,TFN7M (Ku * ¢) ’
A (¢p) = K, * LorH, . (K, * ¢)

KH

for a suitable convolution kernel K, which is defined in (A.1]).
Using these new functionals, we can write two closed equations for

Rn,u =K, *R,, and f,w = Py feu
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where P, is defined in appendix [A]
Indeed, we have

feop=—P, /#1 G, * (Pn T <f,$7n) + Pnf%ﬁ,n> dn
1
= _/u PMPnGn * <FnTn <f'i77]) + émn) dn

1
- —/ PHKW * P’I72G77 * <F’3:77 (fn7n) + RK/”[’]) dn,
"

where in the last equality we used that P,k is the Dirac distribution.
Performing computations similar to those we have just done, we obtain the fol-
lowing regularised system

Fow == L Puly s G (BT, (in) + R )
By = = 3 Pyt (A2, (Fan) + DEL, (Fin) [ Gt o] ) .
where G, = PﬁGM.
To solve the regularised system ((1.11)) and to obtain some estimates, we firstly

prove some inequalities on F ,;,T .(¢). In particular, we will focus on the supremum
norm. Note that

(1.11)

EEMO ey = VB B Br e ) g

= ZZ Ku*107TF,i:L”(z;dzl,...,dzm)HK#*gb(zj)
— ey

Leo(H)
T2 m
- Z Z / m Kl(?l—i_m * 107TF/2’,ZL(Z7 Zlye s 7Zm) H¢(Z])d21 . dZm
=0 m=0 j=1 LoogE)
T 2
®R1+m i,m m
S Z HKM " * 107TF/£,M HL‘”(H;Ll(Mm)) ||¢||L°°(H) y (112)

=0 m=0
where the indicator function always acts on the first component of the first variable.
We set |||, = ||| poo (12,21 um)) Without specifying the m.
It will be the purpose of section [3| to prove some estimates on

®1+m i,m H
HK;L * 107TFN7M V

(see theorem [3.3). We will use these in section [4] to conclude the presentation
by proving the existence of the solution of the original equation. To achieve such
inequality, we will first introduce the cumulants of the coefficients F ;’: and we will
prove a version of the above inequality for these. After that, we will improve it to
the desired inequality.

We conclude this chapter emphasizing that thanks to the above argument we
have defined F>™ for every u € [0,1] and x € (0,1]. However, as we will see at the
end of chapter 3| we will define them for kK = 0 and p € (0,1]. Thanks to this, we
will solve the system for all k € [0,1] and get a good candidate for fo.



Chapter 2

Cumulants of the force coefficients

This chapter aims to study the cumulants of the coefficients of the force. As we have
seen in the introduction, we need to bound HKEHW * 10’TF,2:ZZHV. Here, we will
prove a version of the estimate that involves the cumulants instead of the coefficient
itself, in short, we will have an averaged version of the desired inequality (theorem

2.7). In the next chapter, we will use it to prove the pointwise one.

2.1 Bounds on the cumulants

We start by defining what cumulants are.

Definition 2.1. Given a vector ((i,...,(,) of p random variables, we define its
cumulant as

E (i 1G) o= (=0 - Oy OB E [exp (11 + 4 6,60y o
We will also indicate it with E (;),, where I ={1,...,p}.

The above definition can be extended by duality to the case where {(;}; are
distributions, as in [Duc21]. Tt is sufficient to impose

E(Cl;"' ;Cp) (¢1 ®"'®¢p) :E(C1(¢1);"' ;Cp(%))-

Thanks to the following proposition, the knowledge of some bounds on the cu-
mulants allows us to estimate the moments.

Proposition 2.2. Let X be a random variable with finite n—th moment. Then,

ExXY=> > JIE®X),,

=1 nLu-uh=n] j=1
1;#2 for each j

where the sum is taken over all partitions of [n] = {1,...,n}.

The proof of the above proposition can be found in [PT11] (Proposition 3.2.1).

Estimating cumulants instead of standard moments has several advantages. First,
they are easier to bound when studying a Gaussian field like white noise. Secondly,
they satisfy a simple inductive property stated in the following lemma. Thanks to
the latter and the flow equation for force coefficients, we can obtain a flow equation
for force cumulants.
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Lemma 2.3. Given a family of random variables (X,Y,(y,...,¢py), the following
holds

E(XYiGiiG) =E(GY G0+ D E(Xi(G)en ) B (Y5 (G)yer,)

LUl:={1,....p}

Like the previous proposition, this lemma is contained in Proposition 3.2.1 of
[PTT11] as it is the third point of the cited result, the only passage we have done is
to explicitly state, using the book’s notation, all the partitions 7 such that Vo = 1
where o = {{1,2},{3},...,{p + 2}}.

We now generalise the force coefficients for a technical reason that will be clear
in the localisation section 2.2l

Definition 2.4. Given m a natural numbers, we consider a = {a1,a1, ..., Qm, Gm}
a vector of 2m non-negative integers such that |a| = a1 +ay + -+ 4+ am + @ < 1
(i.e. a has only zeroes or one element is equal to 1 and all the others are equal to
0). Now let i be a natural number, p € [0,1] and x € (0,1]. Then we set

F,i:’;’a(z, dzi,...,dzy) = H 5— )4z —7)% . Fé:’f(z, dz1,...,dzp),
1=1
where z; and Z; (resp. z and Z) are the time and the space components of z; (resp.
z).

Moreover, given any such a, we set [a] = ay + % + -+ 4 ap + .

The asymmetric definition of [a] is justified by the parabolic scaling of the equa-
tion, where the time variable counts twice as much as the space variable.

Before going on, we note that even this generalisation of the force coefficients
satisfies a flow equation similar to . In fact, it holds

D MR CR C
=0 j=0 b,c,deF(a

where the third sum is over some family of triples of vectors (b, ¢, d) such that b and
d are two vectors of the form of the previous definition and ¢ € {(0,0), (0,1), (1,0)}
as in appendix |C| and such that [b] + [c] + [d] = [a]. We remark that the definition
of GfL is given in appendix .

We can now introduce the cumulants that we want to bound.

Definition 2.5. Let I be an index of the form
I = ((ir,m1,a",81,71), .., (in, M, @", 8, 7)),
where i;,m; are natural numbers, s; € {0,1}, r; € {0,1,2} and
al = {&{,6{, . ,ain],aﬁn } are such that |a’| < 1 for each j.
We define

n

Eé,u(m;dy%, . ,dy}nl; o apydyt, . dyy, )
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=E <8,’;1631F2;;m1’a1 (z1;dyl,. .. ,dy,lm); . ;82"83”Fémm"’“n (Tn;dy?, ... >d?/?nn)> )

Moreover, we set

i(I) =iy + -+ in;
m(l) =my+ -+ my;
la = la'] + -+ |a"];
[a] = [a'] + -+~ + [a"];
(I) =514+ sp;
r(I)=ri4+-+r.

In the sequel, we will have to use a generalisation of the norm V for these kinds
of objects. In general, consider V (z1;dyq;...;x,;dy,) where y; € R™ for some
naturals m; and x; € H. Then, without changing the notation, we set

VI, := sup / / |V (z1;dyq;. . .5 20 dy,)|des . .. dxy,
Hn—-1 m

x1€H

n
where m = Y m; and the integrals in H"! is taken with respect to the variables
j=1
X2, ..., T, and the integral in M is taken with respect to the variables (yj)j
We can now write the flow equation for the cumulants. In the following theorem,
we state the existence of two operators whose expressions are somewhat convoluted.
We think it is better not to focus on their specific form, but only on their existence

and estimates, which we will see in (2.2)) and ({2.3).

Theorem 2.6. There exist two operators A and B such that for every I index of
the form of the previous definition such that s; = 1, the term E,iu can be expressed

as a sum of terms A(G’Z, EE,) and B(Gi, EL,,EM) where K is such that

Ky L2

i(K) =1i(L);
m(K) =m(I)+ 1;
a(K) + [d] = a(]);
s(K)=s(I)—1;
r(K) =r(I)

and L and M are such that
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r(L)+r(M)=r(I).

. . 1 . K
Moreover, given K = ((i1,m1,a ,31,7“1),...,(zn(K),mn(K),a"( )

operator

s Sn(K)s Tn(K))), the

e n(K
A(GM,E,fM) (:Bl;dy%,...,dy}m,dyl( ),.. dym K),xg,dyl,...,dygm;...;

Tz dyy T Ayt )

(K)—1

18 given by
s n K) n

And, given L = ((i 1,mf,aL’1,31L,r{“),...,(iﬁ(L),mﬁ(L),aL’”(L),SL(L), L( )) and M =

((iM, m M1 §M p My, Mn(M) M

1 7m1 y @, 81, -':(i%M)am%M)ya ) Sn(M)? (M )) if we set

m = m¥ + mn(M) — 1, then the operator

B(G, B, By (ml;dy}’-.-dyin;xz;dyf,---dyfng;---;xn(m;dy?(”;---;dyfn(fi)m;

Ln(L)+15 dyl s ym{” 7oy Tn(L)4n(M)—15 dyl mA{]M)

()41 g n(L)+, n(L)+n(M)-1 dyn(L)+n(M)1)

18 given by

Z/ Gc — ) EL (xl;dy,dy}r(l),...,dy}r(mL1);x2;dyf,...,dyfné;...;
7r€73m M2 !

n(L) n(L)
xn(L>;dy1(- dy( )

n(M)

b
my

L n(L
Eg, (x;d?lflr(mf) oy Ty dyr T dy

()1 dyy PTG D 1) dydz.

n(]\{)

We remark that the operator B defined in the previous theorem is a generalisation
of the one defined in and present in the flow equations (1.9)) and .

The proof of the above important result consists only in a Cumbersome computa-
tion. In fact, it is sufficient to con81der the term 0,0, F, “ﬁml ' in the first component
of EI  expand it with relation and conclude Wlth lemma

Thlé previous theorem is cru01al in this strategy. Thanks to 1t, we Will be able to
prove the estimate by induction. To do this, we first need to see how the convolution
of the kernels and the norm ) behave with the operators defined in the previous
theorem. The former is easy to study. Indeed, directly from the definitions of A and

B, for any g > 0 we obtain

K*g’®n(K)+m 2,4 (Gc EM) —A (]SigGlcl’ R’;g,@n(K)er(K) * E,f“)



2.1. BOUNDS ON THE CUMULANTS 15

and

f(;g,@on(L)m(MHm( Hm(M)-2 B (GC Er EM)

Ky

= B (P2Cy, RypenWrnh) s Bl e @0man 5 gty

Ky

For the latter, consider in general a function G defined on M and two functions
Vi (xl,dyl, celd nl,dym) and V5 (;zzl,dy17 celd m,dym) where y € R™ for some
naturals m and x € H. Then, we immediately get from the deﬁnltlon of B that

L=l
1% LM

and from the definition of A, using the change of variable formula with translations,
we obtain

s (i)

Vil 1721l (2:2)

|4 (¢w)

where T is the periodisation operator in the space variable (see proposition .
The above special treatment of the operator A is needed as the variable which has
been called k) on his definition is integrated in M, while for our estimate we
would like to integrate it only over H. To solve this, we had to periodise one of
the terms in the integral. More details about the above estimates can be found in
[Duc21].

Now notice that for any smooth function h defined on M, we have

<|rlél] , 2
L < el it (23)

T o sy = HT <K“*puh>HL°°(H) = sup ZK « Ph(z + 1)
= sup Z/ K. (z +vy— 2)P,h(2)dz
zeH ye M
:sup/TK (z — 2)Puh(2)dz _H ( )
zel |JM oo (M)
73/2 ﬁ h

Loo (H) )

thanks to proposition (F).
Combining all of the above and using proposition (A), we obtain

Loy "~ L1 (M)

|Rpennemn=2 a6, BE) | < ||T|Proc|| | Reenorn o s B
y = Il oo ey 1170 mHly
< 2| g g | (2.4)
and
|fpemremonemereman-2 g (G, gL, £2) |
5 /L_l/2+[c] K:g,gm(L)—l-m(L) * EL HKZ%@TL( )+m(M) * E,i\/[# -
(2.5)

We can finally state and prove the main estimate.
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Theorem 2.7. Let € > 0 be a sufficiently small real number. Then, there exists an
integer g > 1 such that for every index I as before, we have

< e o)

kg, @n(1)+m(I) 1
HKMQ v E! ,

where o(I) = (3 —€e)n(I) + (2 + ) m(I) + (1 — 2¢)i(I) — 2 — s(I) + a(I).

The above ¢ is found by taking o (1) = byn(I)+bom(I)+bsi(l)+by—s(I) +a(l),
asking for the above inequality for some special values of I (in particular, for some
values that exploit our knowledge of some coefficients for © = 0) and lastly, by
imposing that the inequality can be carried on by recursion thanks to theorem

An important observation is that some cumulants converge to zero in the above
norm as i goes to zero, those such that o(/) > 0. If we restrict ourselves to the
case n(l) = 1 and |a| = 0, we can characterise the force coefficients such that
o((i,m,0,0,0)) > 0 and those such that o((i,m,0,0,0)) < 0. The former are called
irrelevant, the latter relevant. We will not do this in this remark, as it will be part
of the proof of the above theorem. Here, we only anticipate that we will see that the
only relevant force coefficients satisfy ¢+ < 3. In particular, since in our heuristic of
chapter [I| we can think of R, , as a small remainder for small values of p, we must
include all the relevant terms in the series expansion of F, ,. Given this, it makes
sense to take 7 = 3 so that the remainder contains only irrelevant terms.

Remark 2.8. Note that if the above bound holds for a couple (I1,g), it also holds
with the same I and any h > g. In fact, a simple explicit computation that just

K =1, yields ||Klo+Den@md) EL| < HKZg@n(IHm(I) Bl
b V b

L1(M) v
Thanks to this, we allow ourselves to change the value of g if necessary, taking a

higher value.

*
uses 1 L

Proof. Let us prove the theorem by induction.

First, consider i(I) = 0. In this case, to have a non-trivial term, we must have
m(I) =0 and s(I) = 0 as the only coefficient of the force appearing in this term is
F,S;g which does not depend on p. Finally, note that as the characteristic function
of a Gaussian vector is an exponential of a quadratic function, their cumulants of
order 3 or greater are equal to zero. This proves that the only interesting cases are
n =1 and n = 2. The first one of these is zero as the white noise is centred and so
we are left with only 7 = ((0,0,0,0,7),(0,0,0,0,73)).

Thanks to all these arguments, we can focus on the last term, which is

sup [ [B(R72 ¢ Lo 000, 62)) - KoL 0720, + )] ) |y
M

zeH

<

00, K77

020, + K77

L1 (M) ‘ LY(M)

It is enough to prove that

8;‘95 % f(:f 5 I{,(é_l)r[,b_€

LH(M)

for any r € {0,1,2}. If r = 0, it holds easily, as the left-hand side is bounded
uniformly in x and pu. Now let us study the case where r > 1.
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If u < K, the above follows from

Now consider the case k£ < p. In this part, let us use (¢,x) to indicate the com-
ponents of M. Let S, be the parabolic scaling operator defined by S,v(t,z) =
k%20 (t/k,z/K"?) . Then observe that

< kT < REDTTE

L (M)

T %2
00k * K, .

< areﬁ L HK*Q
M) — || K ||L (M)

0.0, = —0,S,. [t0] — 0.5, [20)

1
211/2
which, thanks to proposition (B) and (C), gives

Which solves the case r = 1. If » = 2, we have to do a similar expansion with the
scaling operator. In this case, the two derivatives that appear must be distributed
between the two kernels K . So that each has only one derivative.

For the inductive step, let I be an index of the form given in definition and
assume that the thesis of the theorem holds for all indices J such that i(J) < i(1)
or i(J) =i(I) and m(J) > m(I). We divide this into multiple cases.

First, assume s(I) # 0. We can use theorem to bound the term

00+ K7 0K

8l + 57 [0 N8l

Li(M) ‘
Su—l +I€_1/2,LL 1/2 < KE™ 1:u_6'

Hf(;g,@n([)+m([) . Eé

v

with terms of the form

|z 4 (G, EL,)

and || Km0 s (Ge, B

Ky

EM>
%

v

The first can be estimated using the inductive hypothesis and inequality (2.4). In-
deed

HK*g ,@n(I)+m(I * A (G EJ >HV 5 M—Q-&-[c]

rxg,Qn(J)+m(J) J
Kug * E,W

1%

o(J) _ le=D)r(D) D)

< =2+ (e=1)r(J) [

STk I

where we used the relations given in theorem [2.6| to infer o(1) = =2 + [c] + o(J).
Whereas for the second term, we have

M
E“’“) ’v

r-xg,@n(L)+m(L) L
K7 * By,

HK;g@n(I)er(I «B <Gc L

Ky

5 M_1/2+[C]

HK;g,é@n(M)—&-m( )>'< EM Hv

—1/2+[d] | (e=D)r(L) (L) | le=1)r(M) o (M) _ | (e=1)r(D)

S p,

where we have used inequality (2.5)) and the fact that from theorem , it holds
r(I)=r(L)+r(M)and o(I) =o(L) + o(M) — 1/2 + [c].
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We now consider the case where s(I) = 0 and divide it into two more subcases.
Suppose o(I) > 0, i.e. we assume that E , is irrelevant.

Let us first notice that, in this case, E o0 =0. In fact, if n(I) > 2, then at least
one term in the definition of the cumulant E, o is deterministic, and so it is equal
to zero. If n(I) = 1, the only terms with i(/) > 0 for which this can be non-zero,
are I = ((4,0,0,0,7)) and I = ((1,2,a,0,7)).

For the first one, we have ¢((i,0,0,s,7)) = 2—e+i (1 — 2¢) — 3, which is negative
for every 1 < 3 =1.

For the second one, if |a| = 0, we have 0((1,2,0,s,7)) <3 —e+2(3+¢€) + 1 —
2€ — % = —e < 0, while Flﬁa = 0 by direct inspection if |a| is non-zero as by (1.9 .
we have F2%(2;dzy, dzs) = 15500.(d21)d.(d2,).

To resume all of this, we have proved that if (1) > 0, then E/ ; = 0. Now, given
ge{1,...,n(I)} let I, be defined as equal to I except that s, = 1 in [, while s, =0
in /. In particular, we already have

< e Dolla) o) — oleDo(D) o()=1

"Kltg’@n(lq)""m(fq) * Ei:z i

So it is enough to consider

n(I)

—Eg0+2/ Efqdn—Z/ Bl d

and to take the norm to obtain
xg,@n(1)+m(I) I
| oot gL |

1%
n(I)

< =3 [ [
qg=1

17
_ Dy forrg.@n(D+m(I) . jrxg.@nI)+m(l) , pl
— Z / PIK"Y * K9 « Bl

dn

Rroenem() / Bl dn
0

dn
v

n([
Py 1o%g,Qn(I)+m(I) rxg,@n(l)+m(I) 1
D M R

dn
Vv

n(l) n(I) L
< Z / Ryper@ o gl |y <y /0 (=D o) g
q=1

I
_ Z / D)o (D=1 gy < el D)r(D) o)
g=1"0

where we used proposition (C).
Finally, we can consider the last case: (1) <0, i.e. El  is relevant.
Note that, if n(7) > 2, it holds

3 1 3 1
I)>2(-— 2| —-==-—-4
o(l) > (4 e)+(4 6) 5= 1 e>0,
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because (]

) > 1. So assume n(/) = 1.
If m(l)>3

we have

(I)Z(2—6)—1—3(}1—%6)—%(}1—26)—g:%>0.

We are left with 3 cases depending on m(7). Let us find out which are the cumulants
left to be analysed.
Ifm(l)=2:

0> o(l) = (2—6)—1—2(%1—1—6)+<i—2e)i(1)—;+a(1)

:_i+e+(i—%>MU+GU%

Q

which is true only if i(/) = 1 and |a(I)| = 0.
fm(l)=1:

0>0(l) = G—e) + <i+e) + (3—26) i([)—g—i—a(f)
= —%-F (zll —25) i) +a(1),

which is true only if |a(I)| = 0 and i(1) € {1, 2}.
If m(I)=0:

020(1):(——6) (-_2e> _gz_z_e+(}l_2e)i(1),

which is true only if 1 < i(/) < 7. So we are left with the terms with (i(1), m([))
such that (i(1),m(I)) € {(1,0),(2 O) (3,0),(1,1),(2,1),(1,2)}. Let us bound them.
The case m(I) = 2 is easy, as we have already seen that F»> = 1:.00.(dz)d.(dz)

and so
<1

~

Vv

kg, @3 1,2
Ku * F,W

that is less than p—¢ = (1,200,

If m(I) = 0, we have to exploit the arbitrariness of the functions c.. Note that

B =+ [ BOFS)ar

To solve the problem of the non-integrability in 0, we can take

C = _/ E (anFri(r)z) dn,

0

which is constant in space for the stationarity of the white noise. With this choice,

it holds i
E(FS) = [ E(0,F0) dn
2
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With this, we obtain

[ % r 1,0
| Ko<k (aF10) ’Lm(H)
< /# f{*g*]E(aT(() Fi’o)’ dn
= % I KZNT KN > (H)
w
Dg T *g [ %G r 4,0
< /2 PIR™ « K79« (010, 1) HLOO(H) dn
w
g 1% [ % T %,0
< / i H K29 % (0.0, F°) HLOO(H) dn
2
< : [N(*g +E (87“8 Fi,O) ‘ dn < HH(e—l)rna((i,O,O,l,T))dT/
— % n KN KN LOO(H) ~ %
_ /M K(e—l)rno((i,O,O,O,r))—ldn S K(e—l)r ‘Ma((i,O,O,O,r)) . 2—0((7L,0,0,0,r))|
1
2
< H(efl)Tlua'((i,O,O,O,r))’

where we used proposition (C).
We are left with m(/) = 1. The term with i(/) = 1 is easy to bound as, from
(11.9), we have

0, Fl = (G Fl2 o 0)

Ky

and therefore

F(z, dz) ——2/ /G = )6 (y)0.(dn)5. (A=) dydn,

which has zero average because the white noise is centred.
The last term to be estimated is Ej, (2 L0.0r)) , and as it requires some more technical
tools, we will study it in the followmg section. O]

2.2 Localisation

In this section, we will develop a part of the theory that justifies the need for the
generalisation introduced in definition [2.4]

We already know that we can bound EH(,Z’I’O’O’T)) multiplied by a linear polynomial
of the above type (as 0((2,1,a,0,7)) > 0 for both non-empty choices of a). So, it is
reasonable that some version of the Taylor expansion might do the job.

We start with a symmetry argument. First, let S be the reflection operator in the
space variable, i.e. given (z1,x2) € M we set S(x1,x2) = (21, —x2). Similarly, if x =
(2,21, ..., 2m) € HxM™, with an abuse of notation, we set Sz := (Sz, Sz1,...,S2p).
Then observe that using the flow equation, we can infer that

E(F2(-) = (—1)"E (F27(S-)) - (2.6)
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This is obvious for u = 0; therefore, we conclude by induction using equation
(1.10). This reflects the fact that equation is invariant under the transfor-
mation (f., &) — (—f. 05,8 0.5) and &, o S has the same law of &,.
Now we introduce the operator I defined as follows, given V(z;dz;), we set
= [, V(z;dy). Then, if we consider z = (x1,2,) € H, by the station-
arlty in the space variable of the white noise, we obtain
I (BOLF2)) (21, m2) = 1 (EOLF2)) (21,0).

K™ R, K™ K,

Given all this, we have the following easy computation

I (EOLF2)) (21,0) = /]EE)"FQI(xl,O; dz) = /EE)TFN(xl,O, Sdz)

KT R, K™ K, K™ Kyl
/ EOLF2) (21,0,dz) = —1 (ROLF2)) (31,0),

where we used the antisymmetry given by equation (2.6)) and the change of variable

formula. This argument implies I (EJLF2!) = 0. Let us now see that this, together

)
with the fact that we are already able to bound E((2 La,0r))

(2,1,00,7))

) with |a| = 1, gives the
desired estimate for E(
To do this, let L, Wlth be {1, 2} be the operator given by LV (z;dy) := (yp —
xp)V (x; dy). We moreover set [1] := 1 and [2]:=1/2 similarly to what we have done
in definition [2.5] Let us assume that I(V) = 0.
By the Taylor formula, for any ¢ function in M, we get

o(y) = () + /0 (y—2z)-V () (z+7(y — x))dr.

So that
/M o)V (3 dy) = / O(0)V (: dy) + / / V(s dy)(y — ) -V (8) (& + 7(y — 2))dr

e // (:dy)(y — 2) - V (8) (& + 7(y — 2))dr
(2.7)

1
WA EER O e
0
Using the above relation with the regularising kernels, we obtain

.f(:g“’@? *« V(z,21)

= f(;g“(z — :U)f(;gﬂ(zl — )V (z; dy)dx
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We use the substitution in the integral in dv given by w = z; —v + (1 — 7)(y — )

[ [ ez

XV (z; dy) (g — 1)K, (21 — w + (1 — 7)(y — 2))drdzdw
—> [ / B9z — 0~ )R (w — )V (23 dy) (g — )

be{1,2}

be{1,2}

x K, (u)0"K, (21 —w + (1-7)(y — z))drdzdwdu

// K*9®2*LV](z—uw) (W) K, (21 —w + (1 —7)(y — 2))drdwdu.

be{1,2}
Now if we take the norm and use proposition (A), (B), and (C), we obtain

Hf{;g+1,®2 * VH

Ssup K*g®2*LV}(2—uw)
#H pe 1,0y /M
x K, (u)0" Ku(z1 —w+ (1 —7)(y — x))) drdwdudz
1
= sup Z H@bKH / / ‘ [K;g@z * LbV] (z —u, w)K#(u)‘ drdwdu
zeH TV M2 Jo
be{1,2}
< sup Z p /2 |:[~<;g,®2 * LbV] (z — u,w)f(u(u)) dwdu
T M
_ —[0] g, ®2 o
= sup Z I / HK“ *LbV(z—u,-)‘ K, (u)du
zeH be{1,2} M L1(R?)
3 ] [ - 3 ]
be{1,2} be{1,2}
It is now sufficient to take V = EJ,F) to conclude that
xg+1,02 2,1,0,0,r —[b [ xg,R2 2,1,(0),0,r
HKMQ x E(2100:) ‘VS S HKMQ x EL2L®.00) ‘V
be{1,2}
< Z o [b] . (e=1)r a((21()0,0))
be{1,2}
_ Z (=D o (00O < oe=Dr o ((2,1.0,0.0))
be{1,2}

where (b) = (1,0) if b= 1 and (b) = (0,1) if b = 2.

Remark 2.9. Finally, we point out that we can take g = 3 in the above theorem
because we started with two kernels for the base case and added one more in the
localisation part.



Chapter 3

Bounds on the coeflicients

This chapter is divided into two parts. In the first one, we will use theorem to
obtain a bound on the moments of the coefficients of the functional. We will use
the latter in the second part to prove the desired pointwise estimate (theorem [3.3]).

3.1 Moments of the force coefficients

We let Fime(z) = I (Fjm) (z) for each (i, m, a) such that o(i,m, a,0,0) < 0 where
I is, as in definition [2.5] given by

m

Fopt(z) =1 (Fe) (2) = / Fiit(z dey, o di,).

Then we have the following proposition.

Proposition 3.1. In the above setting, for each n € Z* even, the following holds

E |:(K*4 " arasFZ ma( ))n:| 5 ﬁn(efl)rluno’(i,m,a)fns,

AT )
where o' (i,m,a) ;== =3 —e4+m (1 +¢€)+i (3 — 2€) +[a], s € {0,1} and r € {0, 1,2}.

Proof. We already know by [2.7] that a similar estimate holds for the cumulants of
the coefficients. At this point, it is sufficient to use the relation between cumulants
and moments given by proposition 2.2l Thanks to the latter, we have

E[(K*%@;@;F;fa )] Z 3 HE(K *K*3*a;a;F;;7a)I_.

I=1 LU--UL;=[n] j=1 /

Let us estimate the right-hand side.

E (K, +K;0« 000
;]
KY U Kyl

_]E(/K x— 2" K*g*a’"@stm“(h)dzh)

h=1

/| |HK <K*3*8283F;T“( ))hlilldzl~~d2|lj.
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Which, together with proposition (A) and the already cited theorem , gives

HE(K <K« Lo )
B3l oo )
< % R 1511 E ( *3 arast ma)
*
>~ 12 LI(R2) 14 L°°(R2) KYpP" Ky illy
> K I151-1 I E( *3®1+m arastma>
*
Fllovwey 17 H ]l oo (r2) R T )y
- RIS -
<&, K, B (K20 s opoFie)
L1(R2) Loo(R2) poml ), v
< 301D | elem ity 151§ =€) Fmil | (Ge) +ilLy1 (5 —2€) = § —sI I +all L
_ (e Dl \”u (=3 —e)+mlL| (f+e)+ilL] (5 —2¢) =l +1a 1]
_ H(e 1)r|I; ‘/'LII |(***E+m(4+€)+l<l726) s+[a})'

This allows us to conclude as

B[ (K sop0n P ()|

KW Ky

SN

llIlu uIl [n] 1

< Z Z HH\I jl(e=1)r |I| (=2 —et+m(f+e)+i(4—2¢)—s+[a])

l].IlU Ull [nj 1

(K*4*8rastma>I

KYpS Ky
J

Lo (H)

< Rn(e 1)rluncr (¢,m,a)—ns

~Y

3.2 Pointwise estimates

Let us fix B, := K;** 10,0, F2m* for an r € {0,1} and

= . (S - _ O 1%
Eep = Ky x 2, = K *101(97"F””“

KR,

for a fixed ©.
We will bound E (’

n
OLOSE,
K M Lo

( )) for any s,/ < 1. To shorten this part, we
H

set o’ 1= d'(i,m,a). i
First, observe that given a function v defined on Hi, if we let A = K, * v, then we
have
10’1]1 = k# * Pu(10’1h> = IN(H * [(/Latlo’l) (1 — IMA) h] + IN(H * 1071p‘uh
u(1 = pA)K, % [01(t)h] + K, * 191 P,h

and therefore

HKM*:LOJUH < H101K *UH

Lo (H) Loo(H)



3.2. POINTWISE ESTIMATES 25

Similarly, the previous holds with K .9 for any g > 1. Now we can bound the desired
term.
Let us start with s = 0. In this case, we have

(o)
Lo (H)

— LO"E (HKN £ OLZ,

=
a}{_‘H,[.L

L”(H)>

n _ ,,6n 2 l=
LOO(H)> —hE (HTKH O
< uo"E (HTK“HL&(H) ||8ZER,MHZn(H))

' LB (@2 @)

< ,u@n ) u73/2 ) Kn(efl)(lJrr),unU’ _ Kn(eq)(zw)un(aq@—%)

~Y

— Iu@n TK“

Y

where we used proposition (F), that  is the convolution on H and T is the
periodisation operator (see proposition [A.2)).
Now let us consider s = 1. In this case, it holds

0pZry = OO K P xLo 1 0L F M+ 5000, K K 1o 0L FLm 41 ® K51 1 00, Fm.

KT K, K&K,

As before, we have

E <H@u@1f(;5 « O

" > < En(e—1)(l+r)un(a'+@_1_%)
Lo (H)

and

' < O 32 I = n
LOO(H)> ~ M ,LL /H]E ((8M8/$‘—'H,;L(x)) )dl‘

S M@n—3/2 . Rn(e—l)(’/‘—l—l)uno'—n

_ Iin(e—l)(l—&—r)un(a’—i—@—l—%) .
Furthermore, we notice that

e % x4 r oim,a O P % %5 rohm,a % =
O Ky x K7 % 1010 F = 17 PO, Ky o+ K7 % 1010 F 00 = PO, K, * 2

Lw(H)) N ( L°°(H)>

§ lufn . an(efl)(lJrr)/JJn(a’—f—@—%)

So, using [A.2| (E), we obtain

puauf(u

=
aﬁ“'ﬁ#

-

TV

Ryl

E (H 1O B0, K,y K7 % 1,0 Fime

— 5”(6—1)(l+r)un(a’+e_1_%)'

To summarise, we have proved

=

al as&

KR, 1

" ) < Hn(s—l)(l—&-r)#n(a’—i-@—S—%)' (3‘1)
Leo(H)
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This easily implies a pointwise estimate. Indeed, if r = 0, we have

én,u - / au*—*u udV -

1 A
<51,1 - / 3n~1 ndn) / 0y (E / (9nul,ndn) dv
é11—/ 0y=1,dn — / ay_yldu—i-/ / 0,0y 2y dndv.

+ / dn + /
Lo (H) u Lo (H)

Taking the expected value, this will result in

n 1/n R n 1/n 1 n 1/n
E(sup ) ,SE( = ) +/ E(‘ ) dn
Kyl LOO(H) LOO(H) 0 LOO(H)
1 n 1/n 1 pl n 1/n
ﬁ/EO ) w+/ /EG ) dndy
0 L (H) o Jo Lee(H)

Using , we know that the right-hand side is finite if the two functions n”’*g’l’%
v~ are integrable near 0. The latter is because ¢ — 1 > —1. For the first one, we
take n big enough so that ;= < /2 and © = 2 + 2e —m (§ + 2¢) — i (1 — 4¢) — [a].
With this choice, we obtain o/ +© —1— 2 = e+ (2i—m)e—1— 2 >¢/2—1> —1
if 2¢ > m (but this is the only interesting regime because, in the other one, the
left-hand side is identically 0).

If r = 1, we have to repeat the last estimates with '~ E/QHH . instead of 2 ey to

That gives

n

A
—_

—
—kK,p

A
—_

=11

n

dv
Loo(H)

anEl,n 81151/ 1

Lem) "

77“1’77

- dnduv.

0,=1.

SR 1,1

A A
s -
0.,= =

w1 vOnZun

prove
R " 1/n
E ( sup ||' "=, ) < 00.
(W Hll oo (i)
To summarise, let us define o = —|— 2¢, B = 411 —4de, v = —% — 2¢ and p(i,m,a) =

am + i+ v + [a]. Then we have proved the following proposition.
Proposition 3.2. Let (i,m,a) such that o(i,m,a,0,0) <0 and r € {0,1}. Then

< KJ(E/Q—I)T
Le=(H)

HK*S % 10 187"Fz ,m,a p(i,m,a)

K R, U

I

holds uniformly in (u, ) € (0, 1]

We can finally state and prove the general theorem that gives a pointwise estimate
for any coefficients of the force.
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Theorem 3.3. There exists an integer g > 1 such that for any (i,m,a) with i,m
natural numbers and a as in definition and r € {0,1}, the following holds
uniformly in (u, k) € (0, 1]

kg, @1+ i, 2-1 M,
| oo s ag | ner s,

We remark that the indicator function in the above theorem acts only on the first
component of the coefficients of the force.

Proof. We will prove this by induction, similarly to the proof of theorem [2.7]

First, note that if m = 0, it holds F%.0 = F%9 and so we already have the thesis
by theorem [3.2] Now assume i > 0 and m > 0. As in the abovementioned proof, we
first treat the case p(i, m,a) > 0.

We notice that in this case Fi"* = 0 as otherwise, we would have (i,m) = (1,2)
but p(1,2,0) = —2¢ < 0 and if a 7& 0, it holds F,»* = 0 as in the proof of theorem
- Now, by the flow equation ({2.1]), we have

W DD G408 (G t0a P 20, ),

=0 7=0 b,c,deF(a

where we were able to bring the indicator functions inside the operator thanks to
the support property of F ;Z‘ remarked in chapter |1 after their inductive definition.
Now, using relation ([2.2)), proposition (A) and the induction hypothesis, we
obtain

[firerem sz,

K*9@1+2 4 1, FLI+L
H Ll(M) H ’ K,

‘V
=0 j=0 b,c,deF(a

[*g,@m—j+1 i—l,m—j,d
HKN ¥ 1o,

\

i m

< ZZ Z lfl/QHc L p(lgA1Lb) 'Iulp(ifl,mfj,d)

=0 j=0 b,c,deF(a

Z Z Iu—l/2+a m+1)+Bi+2v+(a] 5 Iup(i,m,a)—l7
=0 j=0 b,c,deF(a)

2

3

where we used o + v = —1/2.
Deriving equation (2.1)) in s, we obtain

0FT = -3 X 1) [B (G bt s ) ¢

=0 j=0 b,c,deF(a)

B (G, oa B, 10,0, Fm=54) |
Taking the norm and using inequality (2.2)), we have

g, Q1+m i,m,a
HKﬂg * 10,18,%8#F5”u .
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(I{(€/2_1)T p(l=.7+17b) . /le(l—l,m—],d)

SZXm: > | I

=0 j=0 b,c,deF(a)

Hlle v

_I_Mp(laj"‘l,b) . /{(6/2—1)7‘ p(z—l,m—gd))

I

5 ZZ Z e/2 1 —1/2+a(m+1)+,6’z+27+[a] < ,{/6/2 I,U/ o(i, m,a)—l‘
=0 j=0 b,c,deF(a)
To summarise

SJ ,i(e/2—1)rup(i,m,a)—1

o *g,@14+m r i,m,a
| Koo s 1o, 0,750 |

for any r € {0,1}. Using
H ~ .
Kpo@mm g 1o, L Fome = /0 K9S 5 101050, F 2 dn

and Fg"* = 0, we obtain

HK*g,®1+m * 1 aer ,m,a

K™ K,

“ .
/ K*g,®1+m % 1 lara F[z,:’n,a d77
0 ’ 1%

/ PgK*g ®1+m K;4,®1+m % 107182877F;’;7n’a § d77

O

IA

R1+m - *g,Q1+m T 1,m,a
/ i || et s 10,100, B2

dn
\%

o

IN

[ s waoponripe

dn
\%

O

A\

/ P (e/2—1)r, p(i, m,a)—ldn SJ R(e/2—1)rup(i,m,a)7

o

where we used proposition (D).

We are left with the case p(i,m,a) < 0. Again, as in the proof of theorem ,
we characterise all these (i, m,a).

If m > 3, we have

p(i,m,a) =am+ fi+vy+al >3a+ 5+
1 1 3 1
=3(>+2 S de) - —2=>>0.
3(4+ €)+(4 e) 1 € 4>O
As we already know the theorem for m = 0, we have to study only the cases m €
{1,2}.
Ifm=2:

0> p(i,m,a) = 2a + Bi + v+ [a]

1 1 3
—o( =42 ) +i>—de) -2
(4—|— e)+z(4 e) 1 €+ [a]

1 1
:2€+i<1—4€> _Z+[a]’
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which is true only if i = 1 and |a| = 0.
Ifm=1:

0> p(i,m,a) =a+ pi+vy+[a = —%—l—i (%—46) + [a],
which is true only if |a| = 0 and i € {1,2}.

So we just have to study all (i,m,a) in {(1,2,0),(1,1,0),(2,1,0)}. As F>2 is
deterministic, in this case the theorem follows from . We are now left with £}
and Fg; To estimate those two, we have to use the localisation strategy as in
section 2.2

Remember that it holds

/¢ (x;dy) = // (x;dy)(y — ) - V (¢) (x + 7(y — x))dT.

If we convolve with the regularising kernel, we obtain that Hf( RITLE2 VH can be
%

bounded by the sum of

H/ Kot (z = ) K3 (2 = 2) (V) (w)de

v

and
H/M /01 K9 (2 — 2)V(z;dy) (y — )V (f(;g“) (21— [& + 7y — 2)])drdz

v

As we have seen in section [2.2] the latter can be bounded up to a multiplicative

constant by Y pu~ HK 902 4 LbVH Whereas for the first one, we have
be{1,2}

H/ Rz = ) K (1 = ) T(V)@)da||

= sup/ ‘/ K*9+1 K*9+1(zl —x)[(V)(x)dx| dz

z€eT

= sup / ‘ / K9t (z — 2) K39 (w) (V) (2)da | dw

z€T

= sup = “KZQ+I*I(V)"

z€T v

/M R0 (2 — ) [(V)(2)de

Now, it is enough to take V = 19,07 F"! with » € {0,1} and i € {1,2} and to use

K™ R,

the inductive hypothesis together with theorem [2.7] to conclude that

K™ R, K™ K,

HK*g+1 ,®2 * 1 aer 1

5 HKZQ—FI (10 laerl)

—[8] || rr*g,2 7 17,1

‘v+ Z H HK#Q *101LbaHFnu
be{1,2}

Y | R g o R

be{1,2}

nnu

1%
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Sﬁ(e/Q—l)rﬂp(i,l,O)_i_ Z M_[b]H(€/2_1)TMp(i’l’b)
be{1,2}
5 K(e/?—l)rﬂp(i,l,O)‘

That concludes the last two cases. L]

Remark 3.4. We note that in the above theorem, we can choose g = 7 because we
started with 5 kernels to apply proposition|3.2, and we used the localisation arqument
to bound 2 terms, so we added 2 kernels.
Moreover, we point out that all the above arguments lead to a similar inequality
with Lo for any T € (0,1]. In particular, it holds
HKE?Ier * 10,T8TFi’m’a||v 5 Fu,(e/Qfl)r'up(i,m,a), (32)

K™ RK,l

where K, = f(;f has been defined in definition .

We conclude by noting that thanks to the last theorem, it is possible to define
K2 Lo p By (2;d2, ., dzy) for any p € (0, 1] integrating the above inequality
in k as it is integrable near 0. Moreover, the following holds uniformly in px € (0, 1]
and x € [0,1]

HKl(?ler % 10,TF22T’QHV 5 Np(i,m,a) (33)

and a similar consideration can be done with H,, ,.



Chapter 4

Fixed-point argument

This chapter is devoted to the proof of the existence of the solution of the stochastic
Burgers equation.
We will prove the following theorem, which is the main result of the thesis.

Theorem 4.1. Given any & € (3, 1), there exists a (random) time T > 0 such that
the reqularised Burgers equation has a solution f, € C~* (Hy) with the constant
0 as initial condition for every k > 0, and there exists a distribution fo € C~* (Hy)
such that f. converges to fo in C~ (Hy) for k that goes to 0.

We recall that we want to study the system (1.11)) defined as
- 1 - —r ([ .
fli,u = - f# PMK’V] * Gﬂ * (Fn,n fli,”]) + RHK’]) dn7
R == Jy Puus (A2, (Fan) + DEL, (Fin) |G Re| )

We will solve it using the contraction principle in a suitable Banach space. Let us
define the latter. First, let us fix § € (0, 3/2) small enough (recall that § = I — 4e).

Definition 4.2. Given {f, € C'(Hr)} o) and {9, € C (Hr)} (o, both continu-
ous in 1, we define

I, glll := ( sup p* prHLoo(HT)) Vv ( sup ucngHLm(HT)>
1€(0,1] 1€(0,1]

with ¢ < 0 that we will determine later.
We moreover define

Bron = {(for 9) € (C((0,1] x H))* | I £, 9ll < M}
To solve the system, we would like to define a contraction
Sk : @T,M — @T,M

such that

1

(Sulf9)y = = [ Py Gy v (FL, (1) + 90) dn

m
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(Se(f, 9))y = _/0“ Py, * (ﬁgn (fn) + Dﬁzn (fn) [én *977}) dn

to obtain a fixed point. Now we show this is the case for a suitable choice of T and

M. The proof relies heavily on inequality (3.3) and requires a lot of calculations,
although it is quite easy.
We start by proving a bound on the regularised force.

Lemma 4.3. Let (f,g9) € Bry with T <1 and M > 1. Then the following hold
uniformly in p € (0,1] and k € [0, 1]

A &7 H < IME
) | S 0N
B ﬁT < T5 —1-6+v+(B— 25)(L+1)M4L
( ) K,y (f#) Lo (Hr) %

() Dﬁg,ﬁ (fa) [Gn * gn}

5 TéluflfcMZZ.

‘LOO(HT)

Proof. This lemma is a straightforward application of inequality (3.3)).
For the first, we use ((1.12). Thanks to it, we have

il
’F”’“ (i) B
< 303 N+ Lo FE 1oy S 3 3 0 Ll
i=0 m=0 i=0 m=0
< M7M2LZM&ZM sm < MWMQLZMB 26)i < MVMQL
=0 m=0

where we used that f — 26 > 0.
Similarly, we just need to expand the coefficients of H, , and use that H, ;’Z} =
if i <7or¢> 20 to obtain

|z,

LOO(HT)

DI L (Gt FEE, Lo P | 1A

i=t+1 m=0[l=i—1 k=0

L) ||K§k+2 * 1 Fl kJrlHV

i,m,lk
X || KM 10,TF2,_J’m_k||v [

5 Z Télu—l/2—6 . Ma(k—i—l)—i—ﬁl—i—fy . Ma(m—k)—i—ﬁ(i—l)+'ylu—ozm—6mMm

i,m,lk
27 2 2r
< Taua—1/2—6+2~,M4z Z Iuﬁz Z 'u—ém 5 TJM—1—6+7M4E Z M(6—26)z
i=t+1 m=0 i=i+1

< Taﬂ—1—5+w+(ﬁ—25)(z+1)M4z’

where we used inequality (2.2)) and proposition (B).
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Finally
HKH & D1ogFy (K, % )[K, % G g] H
Lee(Hr)
r 21
SDID DN L el U0 e[ T Y (e I /P
=1 m=1
5 Zuam+,@i+'y . lu/f(aJrJ)(mfl)Mmfl . Télufl/Qfé . lufcM
r 21
_ T(Suflfc Z ILL,B@ . lufémMm < TéﬂflfcMZL Z’uﬁz Z quém

i=1 m=1

5 T(SluflfcM2Z Z M(,B*Q(S)i S TﬁluflfcMQZ'

i=1

We can now prove that the image of S, is contained in By ;.

Theorem 4.4. For every T < 1, M > 1 such that T°M*~" is sufficiently small,
Sk : By — Brou is well-defined for every k € [0, 1].

Before proving it, we stress that the choices of 7" and M are uniform in x. This
allows us to obtain an a priori estimate independent of the regularisation parameter.

Proof. We will estimate the two components independently. Let us start with the

first one.
L(Hy) <‘

1Sk (f, 9Dl Loe (rig)
< / 1 . Tén_1/2_6 . (n'yMQZ + T]_CM) dn
I

Fiy ()

o d
ety Il )

< [ 18 |G,

1
< T6M2Z/ n—1/2—6+vd7]
I
< T‘SM%/J‘SH/H'Y — T(SMZZlufozf&
where we used propositions [A.2] (D) and [C.1] (B) and lemma (A). So

sup 1N (Sk(fs )1l oo gy S TP M.

1e(0,1]

Whereas for the second component

1(Sk(f5 9))2l o~ @)

< [ ey (2,0

+ HD (fa) [én * gn}

d
‘LOO(]HIT)) g

Lo (Hr)
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< /u 1. [Tgn_1—6+«/+(ﬂ—25)(z+1)M4z + T67’]—1_CM2[] dn

~ 0
5 T(5 (M—c + M—5+7+(ﬁ—25)(3—&—1)) M4Z.

Now it makes sense to impose ¢ = § —v — (5 —29) (¢ + 1), which is negative if € and
9 are sufficiently small (because ¢ = 3).
This gives us

sup i1 (S5(F, 90l gy S TOMY,
1e(0,1]

and it allows us to conclude as
I15(f, )l S T°M*
can be made smaller than M if T9M*~1 is sufficiently small. O

Now that we have proved the well-posedness of the map S,, we want to show
that it is a contraction for a good choice of the two parameters. We stress once more
that even for this property the choices of T and M are independent of k.

Theorem 4.5. For every T <1 and M > 1 such that T° M*~' is sufficiently small,
the family {Sk : Brvr — Brov Frepo,1) 95 1/2-uniformly Lipschitz.

Proof. Let (f,g), ( f, g) € Br y. We start by proving a result similar to lemma
suitable for the Lipschitzianity.

~ -
) |FEE = FL () ||,
r 2
<D NEE " # Lo Pl = Full ey (1l ity v il i)
i=1 m=1
Szuam+ﬁi+'y —a— 5|Hf f g— gm —(a+6)(m— 1)Mm 1

<WME|f - fog - QIHZWZﬂ

=1

S M| f = Fo9—alll Zu(ﬁ_%)i SuMPH|f = fog =gl (41)
i=1

While for the difference of two H, we have

B) |k, (5 - A5, (5) | Lo (i)

5 S (et i)

i=t+1m=11=i—1 k=0
= Fullygany (1l v L Full by

®k+2 l,k+1H H @m—k+1 1fl,mfch
Hy) HKM * 107TFH»H v KM * 10»TFN7M v

L(H
i,m,l,k

= Full gy (1l V1 ey
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< Z T5 —1/2=8 _ a(k+1)+Bl+7 | Iua(m k)+8(i— )+7N—am om ) pm— 1H|f f.9- 9H|

i,m,l,k

2 2i
ST M= Fog =gl Yo wH Y um

i=i+1 m=0

2r
§ T6M7175+7M4271H|f o f;g o gm Z u(6726)i
i=t+1

< T5M—1—5+v+(6—26)(f+1)M4F—1H’f —f,q— §H| = T6M_1_CM4Z_1H|JC ~f.9— §|H
Lastly

) HDFT (f.) [G x gu} — DE" () [G . gu}

<SS K g

i=1 m=1

oy LU0 16 = Bl )

v (ufuuzé;(HT) (AP VAR A . |
S Zﬂam+ﬁi+7 . T6M_1/2_6 . M_(a+§)(m_1)ﬂ_cMm_1H}f . ]F,g _ gm

T 21
< uaJr'yfl/chTéMQZfl‘Hf _ f’ g— §H| Z ’uﬁl Z Iu,iém
i=1 m=1

< M—1—CT5M2Z—1|H]@ _Fg— ng Z“(ﬁ—%)i
i=1
SpterME||f - fog - gl

We now have all the tools to prove the theorem. Indeed, for the first component,
we have

1 (Sk(f9) = Sk (F9) o ey

1
< [ IRl ||C (
AL (< .

1
S [ 1 par g = Fg =gl +uells - oo~ gl dn
w

F;fn (fn) o Ff-eTn (ﬁ?)

— gl d
LN(HT)H!gn gnll, (]HIT)) Ui

1
< T‘SMQZ*lH}f - gm / 77’1/2*‘”%[77 < T5M2Z*1|Hf —Fg— g‘|’u75+1/2+'y
%

= 12 |f — Fog g
While for the second one

H (Sk(f.9) — Sk (£.9) )2HL°°(HT)
] - - _
< [ 1Py [ a7 (fy) — A7, (7))
0

+HD (f,) [én*gn] ~ DET (f,) [G *gn}

LOO(HT)
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lLL — — — —
5/0 1. [T5n—1—cM4L—1‘Hf o f,g _gm +n—1—cT5M2L—1’Hf . f7g _g”u dn

_ ) . p
— T5|Hf . f,g . gm (M4L71 + MZLI)/O‘ 7771706177
ST f = Fog =g (M + M) ST MY [f = fr9 = g]-
The last two together give us

15:(f,9) = Ss (F,9) || S T°M“H[|f = f.9— 3]
that concludes the proof. n

Now that we have the last two theorems, for each x we can define the fixed point
of S,.. But to get a solution to the original equation, we need a stability result: the
convergence of these fixed points as x goes to 0.

To do so, we will use the following easy lemma.

Lemma 4.6. Let X be a complete metric space, and for every k in [0,1] let T :
X — X be a L—Lipschitz function with L < 1. Assume that T, (¢) — To (¢) for k
that goes to 0 for each ¢ in X. Moreover, let {¢.}repo) be their unique fized point
given by the contraction principle. Then ¢, — ¢o for k that goes to 0.

Proof. Using the triangle inequality and the Lipschitz condition, we have

d(gbm gbO) < d(TH(¢H)7 TH(¢O)) + d(Tm(¢0)v TO(¢0))
< Ld(x, ¢o) + d(Ti(¢0), To(¢o)).

This concludes the proof as

d(T,(¢0), To(bo))

. —0

d<¢m ¢0> S

]

To use the latter, we still need to prove the stability of S, as k goes to 0. This
is exactly the content of the following theorem.

Theorem 4.7. For every T and M given by theorem it holds

SK(f? g) @T—M> SO(f7 g)

for K that goes to 0 and for every (f,g) in Br .

Like the previous results of this chapter, the proof of this theorem is quite easy,
but it requires some lengthy calculations.

Proof. First, we will find a relation between Frzu (fu) and F’({u (f.) - This is easy to
obtain as

r 2 m
FL(fu) = Z Z . KJWm s Lo B (zydz, . o dzy) H fu(zj)dz
i=0 m=0 /M™ j=1
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v 21 m
= Z Z Kff’l*m * Lo Foy (2dzy, .oy d2y) H fu(z)dz
i=0 m=0 Y M1 j=1
r 2 k A m
+ Z Z / KM « LorOlF) (25 d2s ooy dz) H fu(z;)dzdl.
i=0 m=0+/0 JMmH i1
Thanks to this, we have the following inequality
v 24 k
nil nil 1+m i,m
|72 0 = F ] S S [ s B U e
i=0 m=0
r 2 k
<Y / (/2 e
i=0 m=0"0
roo2i
N Z Z H€/2Mam+’&ﬂ HquTOO(HT)
i=0 m=0
P2
< K_/E/QM’Y Z Z 'uam+ﬂz . M—(a—&—é)mMm
i=0 m=0
r 2
< K5/2u7M2L Z M,Bz Z M—(Sm
1=0 m=0
5 KE/2M7M2Z Z M(ﬂ—?é)i S KE/QM’YMQ[’ (42)
i=0

where we used theorem [3.3]
This immediately gives us the convergence of the first component, in fact

1(Sk(fs9) — So (f; 9)ll Lo g

1
< [ IPK Hé ] FT (f,)) — ET d
< /u | [ n”TV M g1y 1175 (fn) 0,n (fn) Lo (Hy) Ui
1
,S / 1. n—l/? . /{e/Qn'yMQEdn 5 K6/2M1/2+"/M2Z’
m
which concludes because
Sl(]g)l] ,uoc—HS || (Sk(fa g) — So (f, g))1||L°°(]HIT) 5 Sl(lg)u M‘)‘+5lie/2ﬂl/2+7M2Z
,U«E 5 ,U'E 9
= sup M%e/2M2z — g2 )2 E20
ne(0,1]

We can now do similar computations for the second component.
First

2 29

ﬁg,u(fu): Z Z/M

i=i+1 m=0 Y M™+1

K,?Hm * 10,TH;2’$(Z; dzi,. .., dzm) Hf“(zj)dz
J=1
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2 28 "
- Z Z M+ Kl?l—i_m * 10,TH(Z):ZL(Z7 de s 7dzm) H fM(ZJ)dZ
i=1+1 m=0 v M™ ey
2r 2i k m
F [ Rt e, o) [z
i=t+1m=0"0 JMmH! o

Let us compute the term inside the integral. Deriving expression ((1.7) in x, we
obtain

0 = 30 320+ 1) |B (G orduFig Lar Pl ) +

I=1-7 =0

‘I’B (Gﬂ, 10’TF‘,£’1L+1, 107T6,€Fli;l’m_j>i| .

After convolving with Kff’”m, the last series can be bounded term by term using

inequality (i3.3]), proposition (A) and theorem to get

1 Lor 0 H

L1 (Hy) [HKSHQ s Loq O Rl || || B s Lo B, +
T

I s o [ 200,

< Z p 2 [,ie/%lua(jﬂ)wlﬂ,ua(mfj)w(ifl)ﬂ

I=1-7 j=0
_'_Iua(j—l-l)—i-ﬁl—i-’y . ,ie—llua(m—j)—l-ﬁ(i—l)-l-’y]
v m
< Z V221 e m B2y < /21 am Bty =1
I=1—7 j=0

Which finally brings us to an estimate on A7, (-) — H{ ,(+). Indeed the previous
results give

T = B,

‘LOO (Hr)

2% 2% .k
<323 [ S DB e
i=t+1m=0"0
2r 2t k
<3 Z/ s T
i=i+1m=0"0
o 2
SN R f P
i=t+1 m=0
% 2 2 2i

< k0t Z Z pomABe L latd)m y e < eef2) y=1 ) A Z P Z Lo

i=14+1m=0 i=1+1 m=0



39

2U
5 Ke/2,u'yflM4Z Z /L(5725)i 5 K6/2u771+(5726)(2+1)M4Z _ Kle/2luflfc+5M4Z.
i=r+1

Now we can repeat all these computations for the term with the Gateaux derivative.

K, % D1z Fy, (K, % f,) [KM*GM*gM]

_ ZZ / KO s 1y p B (s don, ) - G gu(20) [ fol2)d2
i=1 m=1 j=2
= Z Z K;?Hm s« Lop By (zdzy, ... dzg) - Gpox gu(21) Hfu(zj)dz
i=1 m=1 j=2
+ZZ / ’ K™ s Lo pO ) (21 dza, o dz) - Gx gu(21) [ fulzy)dedl,
i=1 m=1 m =2
so that
DE [G*} DFY, [G*H
H n (fn) |G * gy (fn) |Gn 9n| Lo (Hy)
355 / R A | (PR | L ey
i=1 m=1
<ZZ/ ”K®1+m*10Tal Hv N g 'HQuHLw(HT ”fN”LOO (Hr)
i=1 m=1
<ZZ/ le/2 1 am-&-b’z-&-’y Iu—l/2 M_CM m —(a+6)(m—1) Mm 1dl
i=1 m=1
7 1/2— c+a+522 Bi— 5mMm/ le/2—1dl
L
i=1 m=1
6/2 —1/2— C+a+5zzuﬂz (SmMm < Ke/Q[L_l c+5M2LZNﬁZ Z,u
i=1 m=1
< Fde/QluflchréMQZZ,u(ﬁf%)i 5 Fde/ZMflfc+§M2Z'
i=1

This finally proves the desired estimate on the second component.
1(Sk(f,9) = So (f,9))2l oo g
PK H .y
< [C1P sl | e .

+ HDF,Z;7 (1) G 00| = DEE, (1) [Go % 04

d
LOO(HT):| 1

~Y

n
</ [Ke/2n—1—c+6M4z_i_Re/2n—1—c+5M22] dn
0
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m
< H€/2/ n—l—c+6M4Zdn 5 RE/QM—C+5M4Z‘

~ 0
That concludes the proof of the theorem as

c € ; k=0
sup 4[| (Sk(f,9) = So (f: 9))all poe ) S sUp K72 M 2250,
ne(.1] ne(.1]

]

We are ready to prove the final theorem [4.1]

The strategy consists in repeating the argument clarified in the introduction, but
in reverse order, since by now, we have proved the existence of the solution of the
regularised system (|1.11]).

We start by considering for each x € [0, 1], ( f,@., RH> € By the unique fixed
point of S,.. Now, inspired by the starting computations, we define the following two

fn,u = Ku * .fn,/u Rn,u = PMRR,M'

Then those two solve the non-regularised system

{fw = — [ Gy (Fu(frn) + Rey) dn,
R = = i (Hen(Fan) + DFen(fn) [Go Rey] )

This proves that R, , is a function, not just a distribution.
The first equation of the last system can be simplified. In fact, by the easy
computation

Oy (Ffw (ffw) + wa) =0,

we obtain

fow = Gux (Foy (fan) + Rin) (4.3)

for any n € (0,1].
Finally, for each x € (0, 1] we define

fo =G (Foy (fan) + Rip) -

We want to prove that this is the solution of the regularised Burgers equation
and that f. converges to some f; in C~2*=2 for k that goes to 0.

Fix a € (0,1]. First, we will study the limit of (f, ., Rx,) as p goes to zero.
Note that

Vs = Fll oy < 1G = Gallagangy + 1B () + Recall ooy St/ £ 0
(4.4)
by proposition (C). This also proves that fixed £, || fuull oo (s, 15 uniformly
bounded in p € (0, 1].
Moreover

B

l’L .
imii < | W Gy + [P ) (G B

)LOO(HT)
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m
SH,T/ 7]—1/2 +77_1/2 ||Rn,n||Loo(HT) dn
0

I
< W2y / 02| B e ) (4.5)

by theorem and inequality (D.1]). This, together with Gronwall’s lemma, gives

—0
| Rl gy S 1 exp (Awpt?) 550
for some constant A, r that depends on ~ and on 7.
We now show that the expression F}, , (fx,.) + Rs,u, which is constant in y, con-

verges to Fy(f,) and so it is identically equal to it. We have already shown that

R, , #2% 0 and so the only thing missing is F. ,, (fi,.) milN F.(fx).

First observe that F. (f..) — Fx (fs) = f2, — f7 and so

1B (Fe) = P Gl ety = 12 = £ ey 225 0

by .

Let us prove that

||Fn,p, (fn,u) - FH (fmu)HLOO(HT) —0

for p that goes to 0.
To achieve this, we perform a computation similar to the ones in theorem [4.7]

r 2% m
P ) = S0 [ Figtteidan, i) [ ()

i=0 m=0“M"™ j=1

r 24 m
= Z Z / Fi"™(zydz, ... dzy) H frpu(z)dz

i=0 m=0YM™ =1

v 21 m ' m
+ Z Z / / O Ey (zidzy, .o d2y) H frou(25)dzdn,
i=0 m=070 JM™ j=1
so that
v 21 W A m
Fip (fr-c,u) — Fy (fmu) = Z Z / / 8,7]*—:’;]”(2; dzi, ..., dzy) H fmu(zj)dZd??-
i=0 m=070 JM™ j=1
Taking the norm and using theorem [D.I] we obtain
L2,
P ) = B ol 5o D2 D [ Wl 72
i=0 m=0
L2 g
SOD [t s 0, ()
i=0 m=0"0

where we used the fact that || fsull o, is Pounded uniformly in p.
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This concludes as
1 E% e (Foe) =Es (fio) | oo crar)
—0
< HFH,# (fn,u) - Iy (f&u)HLoo(HT) + ”Fn (fﬁ,u) — Iy (fn)HLoo(HT) — 0

and so Fy,, (fu,) + Rep = Fi (fc). This finally implies

fk:G*FN(f,{>.

We can now focus on the last part: the convergence as k goes to 0. Heuristically,
we know that j?,w is close to fg# for small x thanks to lemma . So we want
to understand how much f;’# is close to f. to conclude. To do this, observe the
following

fn - fﬁ,u = (G - Gu) * (Ffi,u (fm,,u) + Rm,u) .
This implies
Jo =Ky * fmu + (G = Gy) = (Puﬁg,u (fmu> + P.U»R’%H> (4.7)

for k = 0, we let the right-hand side be the definition of the left-hand side.
To prove the desired convergence, we must study K, * f, (recall definition [B.1)).
From the previous equation, this is

Ky % fo= K5 Ky % fop+ (G — G,) * (F,ZM (fﬁ,» + RW> .
We are now ready to conclude. Observe that

p Na+5 ”Ku * (fn - fO)HLoo

1 f — f0||0—2a—26(HT) < su
pne(0,1]

pe(0,1] Lee(Hr)
+ sup pote H G—-G,)* (R,i Ry, ) ‘
o ( ) u )| oo et

We bound the three terms separately.

(1) limsup sup ua+5"Ku * I, * fmu — K, * K, * fo,u

k=0 pe(0,1] Les (Hr)
< limsup su K |IP ‘ ~/§ — f H
T k—0 puG(OF)ﬂ : H MHLl(HT) / " fO,u Lee(Hr)
= limsup sup p®™? ‘ fw — fo,u“
k=0 pe(0,1] Lee(Hr)

< hmsup H JEH,O - fO,-v R'@O o RO’.H‘ =0

k—0
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by lemma [4.6,

(2) limsup sup ,ua+5H (G —Gy)* (Rnu RO,#) H

k=0 pe(0,1] Lee(Hr)
< limsup sup p*™||G -G HLl ‘Rﬁ,p — Ro
k=0 pe(0,1] Les (Hr)
< limsup sup ,ua+6+1/2 R,.W — Ro,“
k=0 pe(0,1] Leo(Hr)
PR
k=0 pe(0,1] . oo (Hr)
< limSélp H f:,i,o - foyo, R/@,O - RO,- =0
K—

by lemma [4.6] proposition [C.1] (C) and the relation 1/2 4+ a +4 > 0 > c.

To bound the last term, recall that in the proof of the Lipschitz condltlon of S,
and in the proof of the convergence of S, to Sy we proved relations and ( .
Namely

|

NH _FT <~ >H < ’YM2L1
i (f ’“) v (o Lo (Hr) ~H

22, (o) - 72,0

Given these inequalities, we have
T

[ () = B (o) e,

S ‘ F/z:n <fl$,u> - n,n <f07ﬂ>

,g Iu/'yM2Zfl

fO 7 RO,-

and
< /{E/2,LNM2Z.
Le(Hy) ™

e+ | (o) = B

+ He/2’u'yM2Z'

L (Hr)

fﬂ,o - f0,°7 gn,- - gO,o

Which implies the conclusion as

(3) limsup sup #a+6H (G - Gu) * <Fgu <]EH»M> - F(;{u <f07“>> HLoo(HT)

k=0 pe(0,1]

< limsup sup p® |G -G <H>—FT (N )‘
K%OPHG(OPH# I ”L1 (Hr) Je 00 \ fou Lo (Hy)

< limsup sup p®tot1/2 (; )—FT <~ )‘

~ nﬁopue(ol,)ﬂu o \Jr o o Le=(Hr)

< limsup sup MO‘MH/Q[ YMP N Frw = fowr Gre — Jou —l—/fe/z/ﬂMﬂ
k=0 1€(0,1]

= tlimsup sup i [MF| foo = Foes G = o || + 572007
k=0 pe(0,1]

= timsup (77| foe = four e — do | +57228%) = 0,
K

where we used lemma [4.6{ and proposition (C).
Note that we have proved the convergence in C* for a = 2o + 2§ = % + 4e + 26.
As e and § can be taken arbitrarily small, this concludes the proof of theorem [4.1]






Appendix A

Regularising kernels

This appendix presents the regularisation kernels used throughout the thesis and
analyses some of their properties.

Definition A.1. Let p € (0, 1], then we define f(u :R? - R as

L
Kt @) = 5 55¢ eI gy (A.1)

and K, = [E’;? Similarly, we define P, = (1 + ud;)(1 — pA) and P, = ]SZ.

The kernel [N(u is the fundamental solution of the differential operator ]5”. In
1/2 .

fact, it can be shown with a simple computation that I_(u(x) = 2;1/2 e~ l=l/m 7 g

the fundamental solution of (1 — uA) and _f(“(t) = ie*t/“l{tzo} is the fundamental
solution of (1 + ud).

Proposition A.2. For each N > 1, the following estimates hold uniformly in p €
(0,1]

A f(*N‘ <, 30-3)
( ) 12 LP(RQ) ~Y M 7
B) ||,k <put
( ) t 123 TV ~Y M 9

(©) axf(uHTV S M_1/27

(D) pnf(u o 1 for every p > n,
(E) PO K, v N /~L_17

B || TN < ,30-3)

( ) 1Y LP(H) ~Y ILL 9

where |||, is the total variation norm of measures and T is the periodisation
operator defined by TK,(t,x) =3 o, K,.(t, +y)

The proof of all these can be done by hand using the explicit formula (A.1)).
However, we point out that in [Duc21] the proofs of all the above can be found in
arbitrary dimensions.






Appendix B

Besov spaces

The purpose of this chapter is to define the norm used in the thesis. First, we will
define it and then compare it with a classical Besov norm.

Definition B.1. Let T > 0, A € (—1,0] and ¢ € C* (Hy). We define

16lleny) = $UP 121K % Ol (B.1)
1e(0,1]

and we set C*(Hy) as the subset of distributions which is the closure of C*=(Hry) in
the above norm.

We remark that we can define the space C* with a smaller A with a similar
definition if we use K ;N instead of K, for a sufficiently large N (that depends on
how small A is).

To justify the above definition, which may sound a little strange, we compare it
with the standard Besov norm and show that it is contained in the latter. For the
sake of simplicity, we limit ourselves to describing the case of the torus. In this case,
the norm [B.1l becomes

18]l r) = MSE?OI?I] pME R+ ¢HL<>0(R) ;

where K ,(z) is the fundamental solution of the operator (1 — pA) as defined in
appendix [A]

The following classical construction of the parabolic Besov space is taken from
[GPT15]. A reference for defining these spaces in the whole R? is [BCDTI].

We start with the following definition.

Definition B.2. A couple of functions (p_1, po) is called a dyadic partition of unity
if they are in C°°(R%,R), they are non-negative, radial, py is supported in the ball
{l|z|| < 4/3}, p_1 is supported in the annulus {3/4 < ||z|| < 8/3} and such that, if
we call p;(-) = p(277-) for j > 1, the following hold.

j=-1

2. supp (pi) N supp (p;) = O for each i,j > —1 such that |i — j| > 2.
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The existence of a dyadic partition of unity is a well-known result in Fourier
analysis and can be found in [BCD11] (Proposition 2.10). From now on, we fix one
of these partitions.

We now define the Littlewood-Paley blocks of the distribution u as

Aju=F (p,Fu)
for any 7 > —1. This can be seen as
Aju = J; * u,

where %; = . 'p; and .Z is the Fourier transform.
Now we can define Besov spaces.

Definition B.3. Let A € R, p,q € [1,00]%2. Then the Besov space with these 3
parameters s

1/q
ng (T):=quce€ S’ s.t. (Z (Qj)‘ ||AjuHLp)q>

Jj=-1

with the obvious interpretation if ¢ = oco.
Foru € By, (T), we set

1/q
lull gy, = (Z (27 ||Aju||Lp)")

j>—1
with the correct interpretation if ¢ = oo.

In the case p = ¢ = oo (the case that interests us) we write ¢ instead of BY, ..
We now show the desired inequality for the norms of ¥ and C*.

Lemma B.4. Let ¢ € C°(T) and X € (—1,0]. Then it holds

||¢||<@M(1r) S ;1(101”1] p? ”K;7 * ¢||L°°(R) :

Proof. Let P, := (1 — uA). Then observe that
Aj¢:%§*¢:PZ%*KZ7*¢,

and that from the definition of ./}, it holds J#;(-) = 27.#5(27-). Thanks to the latter,
for every N > 0 we can estimate

™02 | sy = 27 (|22 (027 AG) (27 < 2,

M zs ey
So, with . = 27 we obtain !!PJ_Qj%HLI(R) < 1. This allows us to estimate the
Littlewood-Paley block. In fact, with the above choice of u, we have
D7 [T
||Aj¢||Loo(R) < HP2*2J"%§HL1(R) HKQ*%QSHLOO(R)

SEed| eqy S 277 s NG 5 6|

Which concludes the proof. ]



Appendix C

Heat kernel

This appendix studies some inequalities concerning the solver of equation and
the truncated version present in equation
First, we recall that the heat kernel H(t, z) is defined as

I —
—€ 4t 1{t>0} + 50(1’)1{,5:0}.

H(t,x) = Y

Given that (G is the space derivative of the heat kernel, we have

922
G(t,x) = e” 4 Loy + 0o(2) Li—oy.

x
- 2t3/2
As we will solve the equation with a zero initial condition, it is better to redefine G
as - E

G(t,l’) = —Weiﬂl{t>0}.

We moreover set GS’O) (t,2) = tG,(t, ), GLO’I)(t, x) = 2G,(t,z) and for every a =
(ay,a2) € {(0,0),(1,0),(0,1)} we set [a] = a1 + aa/2.

The following statement presents the estimates used throughout the thesis.

Proposition C.1. For each N € N, T > 0, 6 > 0 and a of the above form, the
following estimates hold uniformly in p € (0,1]

A HIBNGa < —1/2+[a]’

(A) |1 gy =

B HpNG < 8, 71/2-8
( ) 1 Ll([O,T}XR) ~ lu

(C) HG - GunLl(M) SJ Iu1/27

where IE’H has been defined in appendix .

anamca < ;,—1/24+[a]-n—m/2
t Yx w Ll(M)NILL

by a scaling argument and conclude by the triangular inequality. For the second one,

we notice that the above argument can be refined and show that after the scaling,
we have

Proof. For the first one, it is enough to notice that ‘

) T/
Mn+m/2 8{‘8;“Gu <M_1/2/ U1/2)~((U)d1)
0

LY([0,T]xR)
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for a x € C2°((1,2)). The latter is 0 if 7" < p and if T > p, we have
T/
M1/2/ V25 () de < V2 < T2l
0

Lastly, for the third, we have the following easy computation

16 = Gl = [ [ 1G0)] (= (¢/)

21 2
g/ /|G(t,x)|da:dt§/ t2at < ptf?
0 R 0

that concludes the proof. n



Appendix D

Additional estimate on the
functional

This appendix should be seen as a supplement to chapter |4 and in particular to the

proofs of inequalities (4.5]) and ( .
Let us introduce a norm similar to V, but suitable for measures.

Given V(z;dzy;...;dzy,) that fixed z € H, gives a measure with finite total
variation, we set

V1, = sup/ \V(z;dz1, ..., dzp)]| .

z€Hy

Let us prove the following theorem.

Theorem D.1. Let k € (0,1]. Then for all (i,m) € N?, the two following hold
uniformly in p € (0,1]
HFZm V! NK/ 7

Ha Fzm » NK/ /L_l/Q

where the implicit constants depend on k.

Note that s is fixed in the above result. In fact, if we let x vary, we have no
hope of proving a uniform bound for the coefficients of the force (not even for the
first one, which tends to the white noise as k goes to 0). In fact, in theorem we
proved a bound uniform in x that diverges for small 1 (at least for some values of
the couple (i,m)).

Proof. We will prove both by induction.

If i = 0, this is true as &, does not depend on pu. Let us now assume ¢ > 1 and
to know the theorem for all (i,,m,) such that i, < i or i, =i and m, > m. Using
equation ([1.9), we obtain

0Ly == 30 3G+ 1B (Gu g i)

=0 j=0
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Taking the norm, we get

7 m

p SIS G+ |[B (G Bl B,

=0 j=0

HaﬂFQZL

v

Using inequality (2.2)), proposition (A) and the inductive hypothesis, we obtain

lo.Ez1, ~ZZH

A m

n Zﬂ_l/Q 1-1 <“—1/2
=0 j=

lj+l
(FoA

Fz l,m— JHV/

which proves the bound on the derivative. Finally, from the relation
; 2,1 a

and using that F ;81 does not depend on u, we get

e

<1+ / 2 S 1 <
0

1l = 1

which concludes the proof. n

Similarly, we have

L <Y D G+ HB (Gu, Flitt, F;;z,m—jﬂ y

1=0 j=0 1=0 j=0

i,m
15
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