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Chapter 1

Introduction

This thesis aims to present in a simple way the recent flow approach technique to
study singular stochastic partial differential equations originally developed by Pawe l
Duch in [Duc21] and [Duc22].

As an example to showcase this technique, we will prove the local existence of
the one-dimensional stochastic Burgers equations

∂tf = ∆f + ∂x
(
f 2
)

+ ∂xξ, (1.1)

on the space H := R × T where T = R/Z is the torus and ξ is a space-time white
noise, i.e. it is a centred Gaussian distribution such that for every test functions φ
and ψ it holds

E [ξ (φ) ξ (ψ)] =

∫
H
φψdxdt.

Actually, we will prove the existence in a subset of H of the form HT := [0, T ] × T
for a random T > 0.

One of the main difficulties in studying this equation, and all the singular equa-
tions in general, is the irregularity of the noise. Because of this, we expect the
solution to be a distribution rather than a regular function, so it is unclear what the
non-linear operation on the right-hand side means.

To solve this, we introduce a regularisation. We take a mollifier θ(t, x) in R2, we
set θκ(t, x) = κ−3/2θ

(
t
κ
, x
κ1/2

)
for any κ in (0, 1] and we use this to define the regular

function ξκ := θκ ∗ ξ. The choice of the scaling in the definition of θκ is to take
advantage of the parabolic one of the differential operator ∂t − ∆. With this, we
can consider the regularised stochastic Burgers equation with an initial condition
constantly equal to 0

∂tfκ = ∆fκ + ∂x
(
f 2
κ

)
+ ∂xξκ. (1.2)

It is straightforward to prove that this equation is well-posed for every positive
value of κ. However, we will not rely on this result, as we will construct a solution
independently. Now the hope is that, after proving some a priori estimates, one can
show that fκ converges to some distribution f0 in a suitable Holder norm, and so f0
can be seen as the solution of equation (1.1).

The Burgers equation and the related KPZ equation (first introduced in [KPZ86])
are classic test cases for all methods aiming to develop a pathwise theory of singular
SPDEs. We quickly note that the two main approaches are: regularity structures
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[Hai14b], which allows us to obtain a local series expansion using singulars objects
as a basis, and paracontrolled distributions [GIP15], which imposes an Ansatz using
Bony’s paraproduct. Other than these two, we point out that a flow approach
method has already been developed by Kupiainen some years ago [Kup16]. The
main difference is that Kupianien’s flow is discrete, while Duch’s is continuous in
the parameter µ we will soon introduce.

A notion of solution to the KPZ equation has already been given using the Cole-
Hopf transform by Bertini and Giacomin in the seminal paper [BG97]. After that, a
solid pathwise solution has been studied in [Hai14a] using rough paths, an embryonic
form of regularity structure; in [GP17] using paracontrolled distributions and very
recently (while writing this thesis) in [CF24] using the flow approach, also based on
Duch’s approach.

Now, let us see how the flow approach works. First, let us consider the following
mild form of equation (1.2)

fκ = G ∗ Fκ(fκ), (1.3)

where Fκ(ϕ) := 1t>0 (ϕ2 + ξκ) and G is the spatial derivative of the fundamental
solution of the parabolic differential operator ∂t − ∆ (see appendix C).

Now we introduce a further regularising parameter µ and define fκ,µ with µ ∈
[0, 1] such that fκ,0 = fκ. Duch’s idea is to get a closed equation for fκ,µ by changing
the functional Fκ in equation (1.3).

To be more explicit, as in Duch’s articles, we introduce a scale decomposition
of G to define fκ,µ. To do this, we fix a smooth non-negative cut-off function
χ ∈ C∞ (R≥0) which vanish in [0, 1] and is identically equal to 1 in [2,∞).
With this, we define Gµ(t, x) = χ (t/µ)G(t, x) for µ > 0, G0 = G and

fκ,µ := Gµ ∗ Fκ(fκ). (1.4)

In order to get a closed equation for fκ,µ, one might look for some new functionals
Fκ,µ such that Fκ,µ(fκ,µ) = Fκ(fκ).

Let us find out which condition guarantees the latter. First, we will derive in µ,
so that

∂µ (Fκ,µ(fκ,µ)) = 0

∂µFκ,µ(fκ,µ) +DFκ,µ(fκ,µ) [∂µfκ,µ] = 0,

where DFκ,µ(ϕ)[ψ] is the Gâteaux derivative of Fκ,µ in ϕ in direction ψ.
To find ∂µfκ,µ, we derive in µ equation (1.4) obtaining

∂µfκ,µ = Ġµ ∗ Fκ(fκ) = Ġµ ∗ Fκ,µ(fκ,µ),

where Ġµ = ∂µGµ.
Now we substitute this expression in the previous one obtaining

∂µFκ,µ(fκ,µ) +DFκ,µ(fκ,µ)
[
Ġµ ∗ Fκ,µ(fκ,µ)

]
= 0.

If we set
Hκ,µ(ϕ) := ∂µFκ,µ(ϕ) +DFκ,µ(ϕ)

[
Ġµ ∗ Fκ,µ(ϕ)

]
,



7

we might impose Hκ,µ(ϕ) = 0 for each ϕ. This is essentially the flow equation.
This equation might be solvable in several cases (and it is in [Duc21] and [Duc22]).

But, as it is suggested in [DGR24], it might be possible to obtain the desired a priori
estimate even with an approximate version of the flow equation (see also [Duc23]).
This allows more flexibility in the approach and we think using this variation makes
the method even easier to understand.

With this generalization, we set

Fκ,µ(fκ,µ) +Rκ,µ = Fκ(fκ)

for some reminder Rκ,µ, which will be small in a suitable norm.
Now we can do similar computations as before.

∂µ (Fκ,µ(fκ,µ) +Rκ,µ) = 0

∂µFκ,µ(fκ,µ) +DFκ,µ(fκ,µ) [∂µfκ,µ] + ∂µRκ,µ = 0.

To calculate ∂µfκ,µ we derive (1.4)

∂µfκ,µ = Ġµ ∗ Fκ(fκ) = Ġµ ∗ (Fκ,µ(fκ,µ) +Rκ,µ) .

So that

∂µFκ,µ(fκ,µ) +DFκ,µ(fκ,µ)
[
Ġµ ∗ (Fκ,µ(fκ,µ) +Rκ,µ)

]
+ ∂µRκ,µ = 0

Hκ,µ(fκ,µ) + Fκ,µ(fκ,µ)
[
Ġµ ∗Rκ,µ

]
+ ∂µRκ,µ = 0,

where Hκ,µ is defined as before.
Using that Rκ,0 = 0, we obtain the system of equations{

fκ,µ = −
∫ 1

µ
Ġη ∗ (Fκ,η(fκ,η) +Rκ,η) dη + fκ,1,

Rκ,µ = −
∫ µ

0

(
Hκ,η(fκ,η) +DFκ,η(fκ,η)

[
Ġη ∗Rκ,η

])
dη.

Since fκ,1 ≡ 0 in [0, 1] × T, we will neglect it as we will restrict to a short time
interval. To conclude the study of the equation, we will do a fixed-point argument
in chapter 4, which will give us some a priori estimates and allow us to take the
limit as µ and κ which goes to 0.

It is time to choose the shape of Fκ,µ.
We exploit the fact that Fκ,0(ϕ) is polynomial in ϕ imposing the following form

for the functional

Fκ,µ(ϕ)(z) =
ῑ∑

i=0

2i∑
m=0

∫
Mm

F i,m
κ,µ (z; dz1, . . . , dzm)

m∏
j=1

ϕ(zj), (1.5)

where M = R2, ῑ is a natural number that we will choose later and F i,m
κ,µ (z; dz1, . . . , dzm)

are functions on H with values in the space of measures on Mm. We also ask for the
symmetry of these measures under the permutation of their m components.

To understand where this form of the functional comes from, we rewrite it as

Fκ,µ(ϕ)(z) =
ῑ∑

i=0

2i∑
m=0

λi
∫
Mm

F i,m
κ,µ (z; dz1, . . . , dzm)

m∏
j=1

ϕ(zj)
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for λ = 1. In this way Fκ,µ is the truncated series expansion in λ of the solution of
Hκ,µ ≡ 0, when in the stochastic Burgers equation (1.2) the nonlinear term is tuned
by a factor λ, that is:

∂tfκ = ∆fκ + λ∂x
(
f 2
κ

)
+ ∂xξκ.

With the above choice, we have F 1,2
κ,0 (z; dz1, dz2) = 1z̊>0δz(dz1)δz(dz2), F

0,0
κ,0 (z) =

1z̊>0ξk(z) where z̊ is the time component of z and F i,m
κ,0 = 0 for all the other choices of

the couple (i,m). However, to deal with a renormalisation type problem in section
2, we add F i,0

κ,0(z) = 1z̊>0c
i
κ(̊z) for 1 ≤ i ≤ ῑ to the equation, where ciκ are some

functions on the time variable. This will not change the equation because only the
space derivatives of Fκ(ϕ) play a role, so we can add arbitrary functions which are
constant in the space variable.

Now let us calculate the shape of Hκ,µ. The first term is easy to find

∂µFκ,µ(ϕ)(z) =
ῑ∑

i=0

2i∑
m=0

λi
∫
Mm

∂µF
i,m
κ,µ (z; dz1, . . . , dzm)

m∏
j=1

ϕ(zj).

The other requires some more computations. First, we observe that

DFκ,µ(ϕ)[ψ] = ∂τFκ,µ(ϕ+ τψ)|τ=0

=
ῑ∑

i=0

2i∑
m=0

λi∂τ |τ=0

∫
Mm

F i,m
κ,µ (z; dz1, . . . , dzm)

m∏
j=1

(ϕ(zj) + τψ(zj))

=
ῑ∑

i=0

2i∑
m=1

λi
∫
Mm

F i,m
κ,µ (z; dz1, . . . , dzm)

m∑
l=1

ψ(zl)
∏

1≤j≤m
j ̸=l

ϕ(zj).

Moreover

Ġµ ∗ Fκ,µ(ϕ)(z) =
ῑ∑

l=0

2l∑
k=0

λl
∫
Mk+1

Ġµ(z − y)F l,k
κ,µ(y; dy1, . . . , dyk)

k∏
j=1

ϕ(yj)dy.

This, combined with the previous equation, leads to

DFκ,µ(ϕ)
[
Ġµ ∗ Fκ,µ(ϕ)

]
(z) =

ῑ∑
i=0

2i∑
m=1

λi
∫
Mm

F i,m
κ,µ (z; dz1, . . . , dzm)

×
m∑
r=1

ῑ∑
l=0

2l∑
k=0

λl
∫
Mk+1

Ġµ(zr − y)F l,k
κ,µ(y; dy1, . . . , dyk)

k∏
j=1

ϕ(yj)
∏

1≤j≤m
j ̸=l

ϕ(zj)dy.

This proves that Hκ,µ has a form similar to that of the functional Fκ,µ. Indeed

Hκ,µ(ϕ)(z) =
2ῑ∑
i=0

2i∑
m=0

λi
∫
Mm

H i,m
κ,µ (z; dz1, . . . , dzm)

m∏
j=1

ϕ(zj), (1.6)

with

H i,m
κ,µ (z; dz1, . . . , dzm) = ∂µF

i,m
κ,µ +

i∑
l=0

m∑
j=0

(j + 1)B
(
Ġµ, F

l,j+1
κ,µ , F i−l,m−j

κ,µ

)
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if i ≤ ῑ and

H i,m
κ,µ (z; dz1, . . . , dzm) =

i∑
l=0

m∑
j=0

(j + 1)B
(
Ġµ, F

l,j+1
κ,µ , F i−l,m−j

κ,µ

)
(1.7)

if i > ῑ. Where the function B is defined as

B(G,W,U)(x; dy1, . . . , dym)

=
1

m!

∑
π∈Pm

∫
M2

G(y − z)W (x; dy, dyπ1 , . . . , dyπk
)U(z; dyπk+1

, . . . , dyπm)dz,

(1.8)

where Pm is the set of the permutation of m elements. We remark that we have
averaged over Pm to obtain a symmetric H i,m

κ,µ .
As we want Hκ,µ to be as small as possible, we impose H i,m

κ,µ = 0 for each i ≤ ῑ. In
this way, we obtain the following flow equation for the coefficients of the functionals

∂µF
i,m
κ,µ = −

i∑
l=0

m∑
j=0

(j + 1)B
(
Ġµ, F

l,j+1
κ,µ , F i−l,m−j

κ,µ

)
. (1.9)

Note that these equations together with the condition F i,m
κ,µ = 0 if m > 2i, define

inductively all the coefficients of the functional. In fact, we have assigned the values
of F i,m

κ,0 and, if we know F l,k
κ,µ for all l < i and for all (l, k) such that l = i and k > m,

then we have

F i,m
κ,µ = F i,m

κ,0 +

∫ µ

0

∂ηF
i,m
κ,η dη

= F i,m
κ,0 −

∫ µ

0

i∑
l=0

m∑
j=0

(j + 1)B
(
Ġη, F

l,j+1
κ,η , F i−l,m−j

κ,η

)
dη, (1.10)

and now all the terms on the right-hand side are given.
An important property to observe that follows from induction on the above rela-

tion is that F i,m
κ,µ (z; dz1, . . . , dzm) is equal to zero on z̊ ≤ 0 and on z̊j > z̊ for any j

where z̊j is the time component of zj.
We will analyse a regularised version of the system to take advantage of the esti-

mate we will prove in chapter 3. To do so, we first introduce the following notation.
Given a function f(x0, x1) defined on H, we set 10,Tf(x0, x1) := 1[0,T ](x0)f(x0, x1).
Now we set

F̃ T
κ,µ (ϕ) = Kµ ∗ 10,TFκ,µ (Kµ ∗ ϕ) ,

H̃T
κ,µ (ϕ) = Kµ ∗ 10,THκ,µ (Kµ ∗ ϕ)

for a suitable convolution kernel Kµ which is defined in (A.1).
Using these new functionals, we can write two closed equations for

R̃κ,µ = Kµ ∗Rκ,µ and f̃κ,µ = Pµfκ,µ,
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where Pµ is defined in appendix A.
Indeed, we have

f̃κ,µ = −Pµ

∫ 1

µ

Ġη ∗
(
PηF̃

T
κ,η

(
f̃κ,η

)
+ PηR̃κ,η

)
dη

= −
∫ 1

µ

PµPηĠη ∗
(
F̃ T
κ,η

(
f̃κ,η

)
+ R̃κ,η

)
dη

= −
∫ 1

µ

PµKη ∗ P 2
η Ġη ∗

(
F̃ T
κ,η

(
f̃κ,η

)
+ R̃κ,η

)
dη,

where in the last equality we used that PµKµ is the Dirac distribution.
Performing computations similar to those we have just done, we obtain the fol-

lowing regularised systemf̃κ,µ = −
∫ 1

µ
PµKη ∗ G̃η ∗

(
F̃ T
κ,η

(
f̃κ,η

)
+ R̃κ,η

)
dη,

R̃κ,µ = −
∫ µ

0
PηKµ ∗

(
H̃T

κ,η

(
f̃κ,η

)
+DF̃ T

κ,η

(
f̃κ,η

) [
G̃η ∗ R̃κ,η

])
dη,

(1.11)

where G̃µ = P 2
µĠµ.

To solve the regularised system (1.11) and to obtain some estimates, we firstly
prove some inequalities on F̃ T

κ,µ(ϕ). In particular, we will focus on the supremum
norm. Note that∥∥∥F̃ T

κ,µ(ϕ)
∥∥∥
L∞(H)

= ∥Kµ ∗ 10,TFκ,µ(Kµ ∗ ϕ)∥L∞(H)

=

∥∥∥∥∥
ῑ∑

i=0

2i∑
m=0

∫
Mm

Kµ ∗ 10,TF
i,m
κ,µ (z; dz1, . . . , dzm)

m∏
j=1

Kµ ∗ ϕ(zj)

∥∥∥∥∥
L∞(H)

=

∥∥∥∥∥
ῑ∑

i=0

2i∑
m=0

∫
Mm

K⊗1+m
µ ∗ 10,TF

i,m
κ,µ (z; z1, . . . , zm)

m∏
j=1

ϕ(zj)dz1 . . . dzm

∥∥∥∥∥
L∞(H)

≤
ῑ∑

i=0

2i∑
m=0

∥∥K⊗1+m
µ ∗ 10,TF

i,m
κ,µ

∥∥
L∞(H;L1(Mm))

∥ϕ∥mL∞(H) , (1.12)

where the indicator function always acts on the first component of the first variable.
We set ∥·∥V = ∥·∥L∞(H;L1(Mm)) without specifying the m.

It will be the purpose of section 3 to prove some estimates on∥∥K⊗1+m
µ ∗ 10,TF

i,m
κ,µ

∥∥
V

(see theorem 3.3). We will use these in section 4 to conclude the presentation
by proving the existence of the solution of the original equation. To achieve such
inequality, we will first introduce the cumulants of the coefficients F i,m

κ,µ and we will
prove a version of the above inequality for these. After that, we will improve it to
the desired inequality.

We conclude this chapter emphasizing that thanks to the above argument we
have defined F i,m

κ,µ for every µ ∈ [0, 1] and κ ∈ (0, 1]. However, as we will see at the
end of chapter 3, we will define them for κ = 0 and µ ∈ (0, 1]. Thanks to this, we
will solve the system (1.11) for all κ ∈ [0, 1] and get a good candidate for f0.



Chapter 2

Cumulants of the force coefficients

This chapter aims to study the cumulants of the coefficients of the force. As we have
seen in the introduction, we need to bound

∥∥K⊗1+m
µ ∗ 10,TF

i,m
κ,µ

∥∥
V . Here, we will

prove a version of the estimate that involves the cumulants instead of the coefficient
itself, in short, we will have an averaged version of the desired inequality (theorem
2.7). In the next chapter, we will use it to prove the pointwise one.

2.1 Bounds on the cumulants

We start by defining what cumulants are.

Definition 2.1. Given a vector (ζ1, . . . , ζp) of p random variables, we define its
cumulant as

E (ζ1; · · · ; ζp) := (−i)p∂t1 . . . ∂tp logE [exp (i(t1ζ1 + · · · + tpζp))]|t1=···=tp=0 .

We will also indicate it with E (ζi)I , where I = {1, . . . , p}.
The above definition can be extended by duality to the case where {ζj}j are

distributions, as in [Duc21]. It is sufficient to impose

E (ζ1; · · · ; ζp) (ϕ1 ⊗ · · · ⊗ ϕp) = E (ζ1(ϕ1); · · · ; ζp(ϕp)) .

Thanks to the following proposition, the knowledge of some bounds on the cu-
mulants allows us to estimate the moments.

Proposition 2.2. Let X be a random variable with finite n−th moment. Then,

E (Xn) =
n∑

l=1

∑
I1⊔···⊔Il=[n]

Ij ̸=∅ for each j

l∏
j=1

E (X)Ij ,

where the sum is taken over all partitions of [n] = {1, . . . , n}.
The proof of the above proposition can be found in [PT11] (Proposition 3.2.1).
Estimating cumulants instead of standard moments has several advantages. First,

they are easier to bound when studying a Gaussian field like white noise. Secondly,
they satisfy a simple inductive property stated in the following lemma. Thanks to
the latter and the flow equation for force coefficients, we can obtain a flow equation
for force cumulants.
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Lemma 2.3. Given a family of random variables (X, Y, ζ1, . . . , ζp), the following
holds

E (XY ; ζ1; . . . ; ζp) = E (X;Y ; ζ1; . . . ; ζp)+
∑

I1∪I2={1,...,p}

E
(
X; (ζj)j∈I1

)
E
(
Y ; (ζj)j∈I1

)
.

Like the previous proposition, this lemma is contained in Proposition 3.2.1 of
[PT11] as it is the third point of the cited result, the only passage we have done is
to explicitly state, using the book’s notation, all the partitions τ such that τ ∨σ = 1̂
where σ = {{1, 2}, {3}, . . . , {p+ 2}}.

We now generalise the force coefficients for a technical reason that will be clear
in the localisation section 2.2.

Definition 2.4. Given m a natural numbers, we consider a = {̊a1, a1, . . . , åm, am}
a vector of 2m non-negative integers such that |a| = å1 + a1 + · · · + åm + am ≤ 1
(i.e. a has only zeroes or one element is equal to 1 and all the others are equal to
0). Now let i be a natural number, µ ∈ [0, 1] and κ ∈ (0, 1]. Then we set

F i,m,a
κ,µ (z, dz1, . . . , dzm) =

m∏
l=1

(̊z − z̊l)
ål(z − zl)

al · F i,m
κ,µ (z, dz1, . . . , dzm),

where z̊j and zj (resp. z̊ and z) are the time and the space components of zj (resp.
z).

Moreover, given any such a, we set [a] = å1 + a1
2

+ · · · + åm + am
2
.

The asymmetric definition of [a] is justified by the parabolic scaling of the equa-
tion, where the time variable counts twice as much as the space variable.

Before going on, we note that even this generalisation of the force coefficients
satisfies a flow equation similar to (1.9). In fact, it holds

∂µF
i,m,a
κ,µ = −

i∑
l=0

m∑
j=0

∑
b,c,d∈F(a)

(j + 1)B
(
Ġc

µ, F
l,j+1,b
κ,µ , F i−l,m−j,d

κ,µ

)
, (2.1)

where the third sum is over some family of triples of vectors (b, c, d) such that b and
d are two vectors of the form of the previous definition and c ∈ {(0, 0), (0, 1), (1, 0)}
as in appendix C and such that [b] + [c] + [d] = [a]. We remark that the definition
of Ġc

µ is given in appendix C.
We can now introduce the cumulants that we want to bound.

Definition 2.5. Let I be an index of the form

I = ((i1,m1, a
1, s1, r1), . . . , (in,mn, a

n, sn, rn)),

where ij,mj are natural numbers, sj ∈ {0, 1}, rj ∈ {0, 1, 2} and

aj =
{̊
aj1, a

j
1, . . . , å

j
mj
, ajmj

}
are such that |aj| ≤ 1 for each j.

We define

EI
κ,µ(x1; dy

1
1, . . . , dy

1
m1

; . . . ;xn; dyn1 , . . . , dy
n
mn

)
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:= E
(
∂r1κ ∂

s1
µ F

i1,m1,a1

κ,µ (x1; dy
1
1, . . . , dy

1
m1

); . . . ; ∂rnκ ∂
sn
µ F

in,mn,an

κ,µ (xn; dyn1 , . . . , dy
n
mn

)
)
.

Moreover, we set

n(I) = n;

i(I) = i1 + · · · + in;

m(I) = m1 + · · · +mn;

|a| = |a1| + · · · + |an|;
[a] = [a1] + · · · + [an];

s(I) = s1 + · · · + sn;

r(I) = r1 + · · · + rn.

In the sequel, we will have to use a generalisation of the norm V for these kinds
of objects. In general, consider V (x1; dy1; . . . ;xn; dyn) where yj ∈ Rmj for some
naturals mj and xj ∈ H. Then, without changing the notation, we set

∥V ∥V := sup
x1∈H

∫
Hn−1

∫
Mm

|V (x1; dy1; . . . ;xn; dyn)| dx2 . . . dxn,

where m =
n∑

j=1

mj and the integrals in Hn−1 is taken with respect to the variables

x2, . . . , xn and the integral in Mm is taken with respect to the variables (yj)j
We can now write the flow equation for the cumulants. In the following theorem,

we state the existence of two operators whose expressions are somewhat convoluted.
We think it is better not to focus on their specific form, but only on their existence
and estimates, which we will see in (2.2) and (2.3).

Theorem 2.6. There exist two operators A and B such that for every I index of
the form of the previous definition such that s1 = 1, the term EI

κ,µ can be expressed

as a sum of terms A(Ġc
µ, E

K
κ,µ) and B(Ġc

µ, E
L
κ,µ, E

M
κ,µ) where K is such that

n(K) = n(I) + 1;

i(K) = i(L);

m(K) = m(I) + 1;

a(K) + [c] = a(I);

s(K) = s(I) − 1;

r(K) = r(I)

and L and M are such that

n(L) + n(M) = n(I) + 1;

i(L) + i(M) = i(I);

m(L) +m(M) = m(I) + 1;

a(L) + a(M) + [c] = a(I);

s(L) + s(M) = s(I) − 1;
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r(L) + r(M) = r(I).

Moreover, given K = ((i1,m1, a
1, s1, r1), . . . , (in(K),mn(K), a

n(K), sn(K), rn(K))), the
operator

A(Ġc
µ, E

K
κ,µ)

(
x1; dy

1
2, . . . , dy

1
m1
, dy

n(K)
1 , . . . , dyn(K)

mn(K)
;x2; dy

2
1, . . . , dy

2
m2

; . . . ;

xn(K)−1; dy
n(K)−1
1 , . . . , dyn(K)−1

mn(K)−1

)
is given by∫

M2

Ġc
µ(y11 − xn(K))E

K
κ,µ(x1; dy

1
1, . . . , dy

1
m1

; . . . ;xn(K); dy
n(K)
1 , . . . , dyn(K)

mn(K)
)dy11dxn(K).

And, given L = ((iL1 ,m
L
1 , a

L,1, sL1 , r
L
1 ), . . . , (iLn(L),m

L
n(L), a

L,n(L), sLn(L), r
L
n(L))) andM =

((iM1 ,m
M
1 , a

M,1, sM1 , r
M
1 ), . . . , (iMn(M),m

M
n(M), a

M,n(M), sMn(M), r
M
n(M))), if we set

m̄ := mL
1 +mM

n(M) − 1, then the operator

B(Ġc
µ, E

L
κ,µ, E

M
κ,µ)

(
x1; dy

1
1, . . . dy

1
m̄;x2; dy

2
1, . . . dy

2
mL

2
; . . . ;xn(L); dy

n(L)
1 ; . . . ; dy

n(L)

mL
n(L)

;

xn(L)+1; dy
n(L)+1
1 . . . dy

n(L)+1

mM
1

; . . . ;xn(L)+n(M)−1; dy
n(L)+n(M)−1
1 . . . dy

n(L)+n(M)−1

mM
n(M)

)
is given by

1

(m̄)!

∑
π∈Pm̄

∫
M2

Ġc
µ(y − x)EL

κ,µ

(
x1; dy, dy

1
π(1), . . . , dy

1
π(mL

1 −1);x2; dy
2
1, . . . , dy

2
mL

2
; . . . ;

xn(L); dy
n(L)
1 . . . ; dy

n(L)

mL
n(M)

)
EM

κ,µ

(
x; dy1

π(mL
1 ) . . . dy

1
π(m̄);xn(L)+1; dy

n(L)+1
1 , . . . , dy

n(L)+1

mM
2

;

. . . ;xn(L)+n(M)−1; dy
n(L)+n(M)−1
1 . . . dy

n(L)+n(M)−1

mM
n(M)

)
dydx.

We remark that the operator B defined in the previous theorem is a generalisation
of the one defined in 1.8 and present in the flow equations (1.9) and (2.1).

The proof of the above important result consists only in a cumbersome computa-
tion. In fact, it is sufficient to consider the term ∂r1κ ∂µF

i1,m1,a1

κ,µ in the first component
of EI

κ,µ, expand it with relation (2.1) and conclude with lemma 2.3.
The previous theorem is crucial in this strategy. Thanks to it, we will be able to

prove the estimate by induction. To do this, we first need to see how the convolution
of the kernels and the norm V behave with the operators defined in the previous
theorem. The former is easy to study. Indeed, directly from the definitions of A and
B, for any g ≥ 0 we obtain

K̃∗g,⊗n(K)+m(K)−2
µ ∗ A

(
Ġc

µ, E
M
κ,µ

)
= A

(
P̃ 2g
µ Ġc

µ, K̃
∗g,⊗n(K)+m(K)
µ ∗ EK

κ,µ

)
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and

K̃∗g,⊗n(L)+n(M)+m(L)+m(M)−2
µ ∗B

(
Ġc

µ, E
L
κ,µ, E

M
κ,µ

)
= B

(
P̃ 2g
µ Ġc

µ, K̃
∗g,⊗n(L)+m(L)
µ ∗ EL

κ,µ, K̃
∗g,⊗n(M)+m(M)
µ ∗ EM

κ,µ

)
.

For the latter, consider in general a function Ĝ defined on M and two functions
V1
(
x11; dy

1
1; . . . ;x

1
n1

; dy1
n1

)
and V2

(
x21; dy

2
1; . . . ;x

2
n2

; dy2
n2

)
where yl

j ∈ Rml
j for some

naturals ml
j and xlj ∈ H. Then, we immediately get from the definition of B that∥∥∥B (Ĝ, V1, V2)∥∥∥

V
≤
∥∥∥Ĝ∥∥∥

L1(M)
∥V1∥V ∥V2∥V (2.2)

and from the definition of A, using the change of variable formula with translations,
we obtain ∥∥∥A(Ĝ, V1)∥∥∥

V
≤
∥∥∥T ∣∣∣Ĝ∣∣∣∥∥∥

L∞(H)
∥V1∥V , (2.3)

where T is the periodisation operator in the space variable (see proposition A.2).
The above special treatment of the operator A is needed as the variable which has
been called xn(K) on his definition is integrated in M, while for our estimate we
would like to integrate it only over H. To solve this, we had to periodise one of
the terms in the integral. More details about the above estimates can be found in
[Duc21].

Now notice that for any smooth function h defined on M, we have

∥Th∥L∞(H) =
∥∥∥T (K̃µ ∗ P̃µh

)∥∥∥
L∞(H)

= sup
x∈H

∣∣∣∣∣∑
y∈Z

K̃µ ∗ P̃µh(x+ y)

∣∣∣∣∣
= sup

x∈H

∣∣∣∣∣∑
y∈Z

∫
M
K̃µ(x+ y − z)P̃µh(z)dz

∣∣∣∣∣
= sup

x∈H

∣∣∣∣∫
M
TK̃µ(x− z)P̃µh(z)dz

∣∣∣∣ =
∥∥∥T (K̃µ

)
∗ P̃µh

∥∥∥
L∞(M)

≤
∥∥∥TK̃µ

∥∥∥
L∞(H)

∥∥∥P̃µh
∥∥∥
L1(M)

≲ µ−3/2
∥∥∥P̃µh

∥∥∥
L1(M)

thanks to proposition A.2 (F).
Combining all of the above and using proposition C.1 (A), we obtain∥∥∥K̃∗g,⊗n(J)+m(J)−2
µ ∗ A

(
Ġµ, E

K
κ,µ

)∥∥∥
V
≤
∥∥∥T ∣∣∣P̃ 2gĠc

µ

∣∣∣∥∥∥
L∞(H)

∥∥∥K̃∗g,⊗n(J)+m(J)
µ ∗ EK

κ,µ

∥∥∥
V

≲ µ−2+[c]
∥∥∥K̃∗g,⊗n(J)+m(J)

µ ∗ EK
κ,µ

∥∥∥
V

(2.4)

and∥∥∥K̃∗g,⊗n(L)+n(M)+m(L)+m(M)−2
µ ∗B

(
Ġc

µ, E
L
κ,µ, E

M
κ,µ

)∥∥∥
V

≲ µ−1/2+[c]
∥∥∥K̃∗g,⊗n(L)+m(L)

µ ∗ EL
κ,µ

∥∥∥
V

∥∥∥K̃∗g,⊗n(M)+m(M)
µ ∗ EM

κ,µ

∥∥∥
V
.

(2.5)

We can finally state and prove the main estimate.
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Theorem 2.7. Let ϵ > 0 be a sufficiently small real number. Then, there exists an
integer g ≥ 1 such that for every index I as before, we have∥∥∥K̃∗g,⊗n(I)+m(I)

µ ∗ EI
κ,µ

∥∥∥
V
≲ κ(ϵ−1)r(I)µσ(I),

where σ(I) =
(
3
4
− ϵ
)
n(I) +

(
1
4

+ ϵ
)
m(I) +

(
1
4
− 2ϵ

)
i(I) − 3

2
− s(I) + a(I).

The above σ is found by taking σ(I) = b1n(I)+b2m(I)+b3i(I)+b4−s(I)+a(I),
asking for the above inequality for some special values of I (in particular, for some
values that exploit our knowledge of some coefficients for µ = 0) and lastly, by
imposing that the inequality can be carried on by recursion thanks to theorem 2.6.

An important observation is that some cumulants converge to zero in the above
norm as µ goes to zero, those such that σ(I) > 0. If we restrict ourselves to the
case n(I) = 1 and |a| = 0, we can characterise the force coefficients such that
σ((i,m, 0, 0, 0)) > 0 and those such that σ((i,m, 0, 0, 0)) ≤ 0. The former are called
irrelevant, the latter relevant. We will not do this in this remark, as it will be part
of the proof of the above theorem. Here, we only anticipate that we will see that the
only relevant force coefficients satisfy i ≤ 3. In particular, since in our heuristic of
chapter 1 we can think of Rκ,µ as a small remainder for small values of µ, we must
include all the relevant terms in the series expansion of Fκ,µ. Given this, it makes
sense to take ῑ = 3 so that the remainder contains only irrelevant terms.

Remark 2.8. Note that if the above bound holds for a couple (I, g), it also holds
with the same I and any h > g. In fact, a simple explicit computation that just

uses
∥∥∥K̃µ

∥∥∥
L1(M)

=1, yields
∥∥∥K̃∗(g+1),⊗n(I)+m(I)

µ ∗ EI
κ,µ

∥∥∥
V

≲
∥∥∥K̃∗g,⊗n(I)+m(I)

µ ∗ EI
κ,µ

∥∥∥
V
.

Thanks to this, we allow ourselves to change the value of g if necessary, taking a
higher value.

Proof. Let us prove the theorem by induction.
First, consider i(I) = 0. In this case, to have a non-trivial term, we must have

m(I) = 0 and s(I) = 0 as the only coefficient of the force appearing in this term is
F 0,0
κ,µ which does not depend on µ. Finally, note that as the characteristic function

of a Gaussian vector is an exponential of a quadratic function, their cumulants of
order 3 or greater are equal to zero. This proves that the only interesting cases are
n = 1 and n = 2. The first one of these is zero as the white noise is centred and so
we are left with only I = ((0, 0, 0, 0, r1), (0, 0, 0, 0, r2)).

Thanks to all these arguments, we can focus on the last term, which is

sup
z∈H

∫
M

∣∣∣E(K̃∗2
µ ∗ 10,∞ [∂r1κ θκ ∗ ξ(z)] · K̃∗2

µ ∗10,∞ [∂r2κ θκ ∗ ξ(y)]
)∣∣∣dy

≤
∥∥∥∂r1κ θκ ∗ K̃∗2

µ

∥∥∥
L1(M)

∥∥∥∂r2κ θκ ∗ K̃∗2
µ

∥∥∥
L1(M)

.

It is enough to prove that ∥∥∥∂rκθκ ∗ K̃∗2
µ

∥∥∥
L1(M)

≲ κ(ϵ̂−1)rµ−ϵ

for any r ∈ {0, 1, 2}. If r = 0, it holds easily, as the left-hand side is bounded
uniformly in κ and µ. Now let us study the case where r ≥ 1.
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If µ ≤ κ, the above follows from∥∥∥∂rκθκ ∗ K̃∗2
µ

∥∥∥
L1(M)

≤ ∥∂rκθκ∥L1(M)

∥∥∥K̃∗2
µ

∥∥∥
L1(M)

≤ κ−r ≤ κ(ϵ−1)rµ−ϵ.

Now consider the case κ < µ. In this part, let us use (t, x) to indicate the com-
ponents of M. Let Sκ be the parabolic scaling operator defined by Sκv(t, x) =
κ−3/2v

(
t/κ, x/κ1/2

)
. Then observe that

∂κθk = −∂tSκ [tθ] − 1

2κ1/2
∂zSκ [xθ]

which, thanks to proposition A.2 (B) and (C), gives∥∥∥∂rκθκ ∗ K̃∗2
µ

∥∥∥
L1(M)

≤
∥∥∥∂tK̃µ

∥∥∥
TV

∥tθ∥L1(M) +
1

2κ1/2

∥∥∥∂xK̃µ

∥∥∥
L1(M)

∥xθ∥L1(M)

≲ µ−1 + κ−1/2µ−1/2 ≤ κϵ−1µ−ϵ.

Which solves the case r = 1. If r = 2, we have to do a similar expansion with the
scaling operator. In this case, the two derivatives that appear must be distributed
between the two kernels K̃µ so that each has only one derivative.

For the inductive step, let I be an index of the form given in definition 2.5 and
assume that the thesis of the theorem holds for all indices J such that i(J) < i(I)
or i(J) = i(I) and m(J) > m(I). We divide this into multiple cases.

First, assume s(I) ̸= 0. We can use theorem 2.6 to bound the term∥∥∥K̃∗g,⊗n(I)+m(I)
µ ∗ EI

κ,µ

∥∥∥
V

with terms of the form∥∥∥K̃∗g,⊗n(I)+m(I)
µ ∗ A

(
Ġµ, E

J
κ,µ

)∥∥∥
V

and
∥∥∥K∗g,⊗n(I)+m(I)

µ ∗B
(
Ġc

µ, E
L
κ,µ, E

M
κ,µ

)∥∥∥
V
.

The first can be estimated using the inductive hypothesis and inequality (2.4). In-
deed ∥∥∥K̃∗g,⊗n(I)+m(I)

µ ∗ A
(
Ġµ, E

J
κ,µ

)∥∥∥
V
≲ µ−2+[c]

∥∥∥K̃∗g,⊗n(J)+m(J)
µ ∗ EJ

κ,µ

∥∥∥
V

≲ µ−2+[c]κ(ϵ̂−1)r(J)µσ(J) = κ(ϵ−1)r(I)µσ(I),

where we used the relations given in theorem 2.6 to infer σ(I) = −2 + [c] + σ(J).
Whereas for the second term, we have∥∥∥K∗g,⊗n(I)+m(I)

µ ∗B
(
Ġc

µ, E
L
κ,µ, E

M
κ,µ

)∥∥∥
V

≲ µ−1/2+[c]
∥∥∥K̃∗g,⊗n(L)+m(L)

µ ∗ EL
κ,µ

∥∥∥
V

∥∥K∗g,⊗n(M)+m(M)
µ ∗ EM

κ,µ

∥∥
V

≲ µ−1/2+[c] · κ(ϵ−1)r(L)µσ(L) · κ(ϵ−1)r(M)µσ(M) = κ(ϵ−1)r(I)µσ(I),

where we have used inequality (2.5) and the fact that from theorem 2.6, it holds
r(I) = r(L) + r(M) and σ(I) = σ(L) + σ(M) − 1/2 + [c].
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We now consider the case where s(I) = 0 and divide it into two more subcases.
Suppose σ(I) > 0, i.e. we assume that EI

κ,µ is irrelevant.
Let us first notice that, in this case, Eκ,0 = 0. In fact, if n(I) ≥ 2, then at least

one term in the definition of the cumulant Eκ,0 is deterministic, and so it is equal
to zero. If n(I) = 1, the only terms with i(I) > 0 for which this can be non-zero,
are I = ((i, 0, 0, 0, r)) and I = ((1, 2, a, 0, r)).

For the first one, we have σ((i, 0, 0, s, r)) = 3
4
−ϵ+i

(
1
4
− 2ϵ

)
− 3

2
, which is negative

for every i ≤ 3 = ῑ.
For the second one, if |a| = 0, we have σ((1, 2, 0, s, r)) ≤ 3

4
− ϵ+ 2

(
1
4

+ ϵ
)

+ 1
4
−

2ϵ − 3
2

= −ϵ < 0, while F 1,2,a
κ,µ = 0 by direct inspection if |a| is non-zero as by (1.9)

we have F 1,2
κ,µ(z; dz1, dz2) = 1z̊>0δz(dz1)δz(dz2).

To resume all of this, we have proved that if σ(I) > 0, then EI
κ,0 = 0. Now, given

q ∈ {1, . . . , n(I)} let Iq be defined as equal to I except that sq = 1 in Iq while sq = 0
in I. In particular, we already have∥∥∥K̃∗g,⊗n(Iq)+m(Iq)

µ ∗ EIq
κ,η

∥∥∥
V
≲ κ(ϵ−1)σ(Iq)µσ(Ip) = κ(ϵ−1)σ(I)µσ(I)−1.

So it is enough to consider

EI
κ,µ = EI

κ,0 +

n(I)∑
q=1

∫ µ

0

EIq
κ,ηdη =

n(I)∑
q=1

∫ µ

0

EIq
κ,ηdη

and to take the norm to obtain∥∥∥K̃∗g,⊗n(I)+m(I)
µ ∗ EI

κ,η

∥∥∥
V

≤
n(I)∑
q=1

∥∥∥∥K̃∗g,⊗n(I)+m(I)
µ ∗

∫ µ

0

EIq
κ,ηdη

∥∥∥∥
V
≤

n(I)∑
q=1

∫ µ

0

∥∥∥K̃∗g,⊗n(I)+m(I)
µ ∗ EIq

κ,η

∥∥∥
V
dη

=

n(I)∑
q=1

∫ µ

0

∥∥∥P̃ g
η K̃

∗g,⊗n(I)+m(I)
µ ∗ K̃∗g,⊗n(I)+m(I)

η ∗ EIq
κ,η

∥∥∥
V
dη

≤
n(I)∑
q=1

∫ µ

0

∥∥∥P̃ g
η K̃

∗g,⊗n(I)+m(I)
µ

∥∥∥
TV

∥∥∥K̃∗g,⊗n(I)+m(I)
η ∗ EIq

κ,η

∥∥∥
V
dη

≤
n(I)∑
q=1

∫ µ

0

∥∥∥K̃∗g,⊗n(I)+m(I)
η ∗ EIq

κ,η

∥∥∥
V
dη ≲

n(I)∑
q=1

∫ µ

0

κ(ϵ−1)r(I)ησ(Iq)dη

=

n(I)∑
q=1

∫ µ

0

κ(ϵ−1)r(I)ησ(I)−1dη ≲ κ(ϵ−1)r(I)µσ(I),

where we used proposition A.2 (C).
Finally, we can consider the last case: σ(I) ≤ 0, i.e. EI

κ,µ is relevant.
Note that, if n(I) ≥ 2, it holds

σ(I) ≥ 2

(
3

4
− ϵ

)
+

(
1

4
− 2ϵ

)
− 3

2
=

1

4
− 4ϵ > 0,
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because i(I) ≥ 1. So assume n(I) = 1.
If m(I) ≥ 3, we have

σ(I) ≥
(

3

4
− ϵ

)
+ 3

(
1

4
+ ϵ

)
+

(
1

4
− 2ϵ

)
− 3

2
=

1

4
> 0.

We are left with 3 cases depending on m(I). Let us find out which are the cumulants
left to be analysed.

If m(I) = 2 :

0 ≥ σ(I) =

(
3

4
− ϵ

)
+ 2

(
1

4
+ ϵ

)
+

(
1

4
− 2ϵ

)
i(I) − 3

2
+ a(I)

= −1

4
+ ϵ+

(
1

4
− 2ϵ

)
i(I) + a(I),

which is true only if i(I) = 1 and |a(I)| = 0.
If m(I) = 1 :

0 ≥ σ(I) =

(
3

4
− ϵ

)
+

(
1

4
+ ϵ

)
+

(
1

4
− 2ϵ

)
i(I) − 3

2
+ a(I)

= −1

2
+

(
1

4
− 2ϵ

)
i(I) + a(I),

which is true only if |a(I)| = 0 and i(I) ∈ {1, 2}.
If m(I) = 0:

0 ≥ σ(I) =

(
3

4
− ϵ

)
+

(
1

4
− 2ϵ

)
i(I) − 3

2
= −3

4
− ϵ+

(
1

4
− 2ϵ

)
i(I),

which is true only if 1 ≤ i(I) ≤ ῑ. So we are left with the terms with (i(I),m(I))
such that (i(I),m(I)) ∈ {(1, 0), (2, 0), (3, 0), (1, 1), (2, 1), (1, 2)}. Let us bound them.
The case m(I) = 2 is easy, as we have already seen that F 1,2

κ,µ = 1z̊>0δz(dz1)δz(dz2)
and so ∥∥∥K̃∗g,⊗3

µ ∗ F 1,2
κ,µ

∥∥∥
V
≲ 1

that is less than µ−ϵ = µσ(1,2,0,0,r).
If m(I) = 0, we have to exploit the arbitrariness of the functions ciκ. Note that

E
(
F i,0
κ,µ

)
= ciκ +

∫ µ

0

E
(
∂ηF

i,0
κ,η

)
dη.

To solve the problem of the non-integrability in 0, we can take

ciκ = −
∫ 1

2

0

E
(
∂ηF

i,0
κ,η

)
dη,

which is constant in space for the stationarity of the white noise. With this choice,
it holds

E
(
F i,0
κ,µ

)
=

∫ µ

1
2

E
(
∂ηF

i,0
κ,η

)
dη.
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With this, we obtain∥∥∥K̃∗g
µ ∗E

(
∂rκF

i,0
κ,µ

) ∥∥∥
L∞(H)

≤

∣∣∣∣∣
∫ µ

1
2

∥∥∥K̃∗g
µ ∗ E

(
∂rκ∂ηF

i,0
κ,η

)∥∥∥
L∞(H)

dη

∣∣∣∣∣
≤

∣∣∣∣∣
∫ µ

1
2

∥∥∥P̃ g
η K̃

∗g
µ ∗ K̃∗g

η ∗ E
(
∂rκ∂ηF

i,0
κ,η

)∥∥∥
L∞(H)

dη

∣∣∣∣∣
≤

∣∣∣∣∣
∫ µ

1
2

∥∥∥P̃ g
η K̃

∗g
µ

∥∥∥
TV

∥∥∥K̃∗g
η ∗ E

(
∂rκ∂ηF

i,0
κ,η

)∥∥∥
L∞(H)

dη

∣∣∣∣∣
≤

∣∣∣∣∣
∫ µ

1
2

∥∥∥K̃∗g
η ∗ E

(
∂rκ∂ηF

i,0
κ,η

)∥∥∥
L∞(H)

dη

∣∣∣∣∣ ≲
∣∣∣∣∣
∫ µ

1
2

κ(ϵ−1)rησ((i,0,0,1,r))dη

∣∣∣∣∣
=

∣∣∣∣∣
∫ µ

1
2

κ(ϵ−1)rησ((i,0,0,0,r))−1dη

∣∣∣∣∣ ≲ κ(ϵ−1)r
∣∣µσ((i,0,0,0,r)) − 2−σ((i,0,0,0,r))

∣∣
≲ κ(ϵ−1)rµσ((i,0,0,0,r)),

where we used proposition A.2 (C).
We are left with m(I) = 1. The term with i(I) = 1 is easy to bound as, from

(1.9), we have

∂µF
1,1
κ,µ = −2B

(
Ġµ, F

1,2
κ,µ, F

0,0
κ,µ

)
and therefore

F 1,1
κ,µ(z, dz1) = −2

∫ µ

0

∫
Ġη(x− y)ξκ(y)δz(dx)δz(dz1)dydη,

which has zero average because the white noise is centred.
The last term to be estimated is E

((2,1,0,0,r))
κ,µ , and as it requires some more technical

tools, we will study it in the following section.

2.2 Localisation

In this section, we will develop a part of the theory that justifies the need for the
generalisation introduced in definition 2.4.

We already know that we can bound E
((2,1,0,0,r))
κ,µ multiplied by a linear polynomial

of the above type (as σ((2, 1, a, 0, r)) > 0 for both non-empty choices of a). So, it is
reasonable that some version of the Taylor expansion might do the job.

We start with a symmetry argument. First, let S be the reflection operator in the
space variable, i.e. given (x1, x2) ∈ M we set S(x1, x2) = (x1,−x2). Similarly, if x =
(z, z1, . . . , zm) ∈ H×Mm, with an abuse of notation, we set Sx := (Sz, Sz1, . . . , Szm).
Then observe that using the flow equation, we can infer that

E
(
F i,m
κ,µ (·)

)
= (−1)mE

(
F i,m
κ,µ (S·)

)
. (2.6)
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This is obvious for µ = 0; therefore, we conclude by induction using equation
(1.10). This reflects the fact that equation (1.2) is invariant under the transfor-
mation (fκ, ξκ) 7→ (−fκ ◦ S, ξκ ◦ S) and ξκ ◦ S has the same law of ξκ.

Now we introduce the operator I defined as follows, given V (z; dz1), we set
I(V )(x) =

∫
M V (x; dy). Then, if we consider x = (x1, x2) ∈ H, by the station-

arity in the space variable of the white noise, we obtain

I
(
E∂rκF 2,1

κ,µ

)
(x1, x2) = I

(
E∂rκF 2,1

κ,µ

)
(x1, 0).

Given all this, we have the following easy computation

I
(
E∂rκF 2,1

κ,µ

)
(x1, 0) =

∫
E∂rκF 2,1

κ,µ(x1, 0; dz1) = −
∫

E∂rκF 2,1
κ,µ(x1, 0, Sdz1)

= −
∫

E∂rκF 2,1
κ,µ(x1, 0, dz1) = −I

(
E∂rκF 2,1

κ,µ

)
(x1, 0),

where we used the antisymmetry given by equation (2.6) and the change of variable
formula. This argument implies I

(
E∂rκF 2,1

κ,µ

)
≡ 0. Let us now see that this, together

with the fact that we are already able to bound E
((2,1,a,0,r))
κ,µ with |a| = 1, gives the

desired estimate for E
((2,1,0,0,r))
κ,µ .

To do this, let Lb with b ∈ {1, 2} be the operator given by LbV (x; dy) := (yb −
xb)V (x; dy). We moreover set [1] := 1 and [2]:=1/2 similarly to what we have done
in definition 2.5. Let us assume that I(V ) ≡ 0.

By the Taylor formula, for any ϕ function in M, we get

ϕ(y) = ϕ(x) +

∫ 1

0

(y − x) · ∇ (ϕ) (x+ τ(y − x))dτ.

So that∫
M
ϕ(y)V (x; dy) =

∫
M
ϕ(x)V (x; dy) +

∫
M

∫ 1

0

V (x; dy)(y − x) · ∇ (ϕ) (x+ τ(y − x))dτ

= ϕ(x)I(V )(x) +

∫
M

∫ 1

0

V (x; dy)(y − x) · ∇ (ϕ) (x+ τ(y − x))dτ

(2.7)

=

∫
M

∫ 1

0

V (x; dy)(y − x) · ∇ (ϕ) (x+ τ(y − x))dτ.

Using the above relation with the regularising kernels, we obtain

K̃∗g+1,⊗2
µ ∗ V (z, z1)

=

∫
M2

K̃∗g+1
µ (z − x)K̃∗g+1

µ (z1 − y)V (x; dy)dx

= −
∫
M2

∫ 1

0

K̃∗g+1
µ (z − x)V (x; dy)(y − x) · ∇

(
K̃∗g+1

µ

)
(z1 − [x+ τ(y − x)])dτdx

= −
∫
M3

∫ 1

0

K̃∗g+1
µ (z − x)K̃∗g

µ (z1 − [x+ τ(y − x)] − v)V (x; dy)(y − x) · ∇K̃µ(v)dτdxdv.
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We use the substitution in the integral in dv given by w = z1 − v + (1 − τ)(y − x)

= −
∑

b∈{1,2}

∫
M3

∫ 1

0

K̃∗g+1
µ (z − x)K̃∗g

µ (w − y)

×V (x; dy)(yb − xb)∂
bK̃µ(z1 − w + (1 − τ)(y − x))dτdxdw

= −
∑

b∈{1,2}

∫
M4

∫ 1

0

K̃∗g
µ (z − x− u)K̃∗g

µ (w − y)V (x; dy)(yb − xb)

×K̃µ(u)∂bK̃µ(z1 − w + (1−τ)(y − x))dτdxdwdu

= −
∑

b∈{1,2}

∫
M2

∫ 1

0

[
K̃∗g,⊗2

µ ∗ LbV
]

(z − u,w)K̃µ(u)∂bK̃µ(z1 − w + (1 − τ)(y − x))dτdwdu.

Now if we take the norm and use proposition A.2 (A), (B), and (C), we obtain∥∥∥K̃∗g+1,⊗2
µ ∗ V

∥∥∥
V

≤ sup
z∈H

∑
b∈{1,2}

∫
M3

∫ 1

0

∣∣∣[K̃∗g,⊗2
µ ∗ LbV

]
(z − u,w)

× K̃µ(u)∂b K̃µ(z1 − w + (1 − τ)(y − x))
∣∣∣ dτdwdudz1

= sup
z∈H

∑
b∈{1,2}

∥∥∥∂bK̃µ

∥∥∥
TV

∫
M2

∫ 1

0

∣∣∣[K̃∗g,⊗2
µ ∗ LbV

]
(z − u,w)K̃µ(u)

∣∣∣ dτdwdu
≲ sup

z∈H

∑
b∈{1,2}

µ−[b]

∫
M2

∣∣∣[K̃∗g,⊗2
µ ∗ LbV

]
(z − u,w)K̃µ(u)

∣∣∣ dwdu
= sup

z∈H

∑
b∈{1,2}

µ−[b]

∫
M

∥∥∥K̃∗g,⊗2
µ ∗ LbV (z − u, ·)

∥∥∥
L1(R2)

K̃µ(u)du

≤
∑

b∈{1,2}

µ−[b]
∥∥∥K̃∗g,⊗2

µ ∗ LbV
∥∥∥
V

∥∥∥K̃µ

∥∥∥
L1(R2)

=
∑

b∈{1,2}

µ−[b]
∥∥∥K̃∗g,⊗2

µ ∗ LbV
∥∥∥
V
.

It is now sufficient to take V = E∂rκF 2,1
κ,µ to conclude that∥∥∥K̃∗g+1,⊗2

µ ∗ E((2,1,0,0,r))
κ,µ

∥∥∥
V
≲
∑

b∈{1,2}

µ−[b]
∥∥∥K̃∗g,⊗2

µ ∗ E((2,1,(b),0,r))
κ,µ

∥∥∥
V

≲
∑

b∈{1,2}

µ−[b]κ(ϵ−1)rµσ((2,1,(b),0,0))

=
∑

b∈{1,2}

µ−[b]κ(ϵ−1)rµσ((2,1,0,0,0))+[b] ≲ κ(ϵ−1)rµσ((2,1,0,0,0)),

where (b) = (1, 0) if b = 1 and (b) = (0, 1) if b = 2.

Remark 2.9. Finally, we point out that we can take g = 3 in the above theorem
because we started with two kernels for the base case and added one more in the
localisation part.



Chapter 3

Bounds on the coefficients

This chapter is divided into two parts. In the first one, we will use theorem 2.7 to
obtain a bound on the moments of the coefficients of the functional. We will use
the latter in the second part to prove the desired pointwise estimate (theorem 3.3).

3.1 Moments of the force coefficients

We let F̄ i,m,a
κ,µ (z) = I

(
F i,m,a
κ,µ

)
(z) for each (i,m, a) such that σ(i,m, a, 0, 0) ≤ 0 where

I is, as in definition 2.5, given by

F̄ i,m,a
κ,µ (z) = I

(
F i,m,a
κ,µ

)
(z) =

∫
Mm

F i,m,a
κ,µ (z, dx1, . . . , dxm).

Then we have the following proposition.

Proposition 3.1. In the above setting, for each n ∈ Z+ even, the following holds

E
[(
K̃∗4

µ ∗ ∂rκ∂sµF̄ i,m,a
κ,µ (x)

)n]
≲ κn(ϵ−1)rµnσ′(i,m,a)−ns,

where σ′(i,m, a) := −3
4
−ϵ+m

(
1
4

+ ϵ
)

+ i
(
1
4
− 2ϵ

)
+[a], s ∈ {0, 1} and r ∈ {0, 1, 2}.

Proof. We already know by 2.7 that a similar estimate holds for the cumulants of
the coefficients. At this point, it is sufficient to use the relation between cumulants
and moments given by proposition 2.2. Thanks to the latter, we have

E
[(
K̃∗4

µ ∗ ∂rκ∂sµF̄ i,m,a
κ,µ (x)

)n]
=

n∑
l=1

∑
I1⊔···⊔Il=[n]

l∏
j=1

E
(
K̃µ ∗ K̃∗3

µ ∗ ∂rκ∂sµF̄ i,m,a
κ,µ

)
Ij
.

Let us estimate the right-hand side.

E
(
K̃µ ∗K̃∗3

µ ∗ ∂rκ∂sµF̄ i,m,a
κ,µ

)
Ij

= E
(∫

M
K̃µ

(
x− zh

)
K̃∗3

µ ∗ ∂rκ∂sµF̄ i,m,a
κ,µ

(
zh
)
dzh
)|Ij |

h=1

=

∫
M|Ij|

|Ij |∏
h=1

K̃µ

(
x− zh

)
E
(
K̃∗3

µ ∗ ∂rκ∂sµF̄ i,m,a
κ,µ

(
zh
))|Ij |

h=1
dz1 . . . dz|Ij |.
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Which, together with proposition A.2 (A) and the already cited theorem 2.7, gives∥∥∥∥E(K̃µ∗K̃∗3
µ ∗ ∂rκ∂sµF̄ i,m,a

κ,µ

)
Ij

∥∥∥∥
L∞(H)

≤
∥∥∥K̃µ

∥∥∥
L1(R2)

∥∥∥K̃µ

∥∥∥|Ij |−1

L∞(R2)

∥∥∥∥E(K̃∗3
µ ∗ ∂rκ∂sµF̄ i,m,a

κ,µ

)
Ij

∥∥∥∥
V

=
∥∥∥K̃µ

∥∥∥
L1(R2)

∥∥∥K̃µ

∥∥∥|Ij |−1

L∞(R2)

∥∥∥∥I (E(K̃∗3,⊗1+m
µ ∗ ∂rκ∂sµF i,m,a

κ,µ

)
Ij

)∥∥∥∥
V

≤
∥∥∥K̃µ

∥∥∥
L1(R2)

∥∥∥K̃µ

∥∥∥|Ij |−1

L∞(R2)

∥∥∥∥E(K̃∗3,⊗1+m
µ ∗ ∂rκ∂sµF i,m,a

κ,µ

)
Ij

∥∥∥∥
V

≲ µ− 3
2
(|Ij |−1) · κ(ϵ−1)r|Ij |µ|Ij |( 3

4
−ϵ)+m|Ij |( 1

4
+ϵ)+i|Ij |( 1

4
−2ϵ)− 3

2
−s|Ij |+[a]|Ij |

= κ(ϵ−1)r|Ij |µ|Ij |(− 3
4
−ϵ)+m|Ij |( 1

4
+ϵ)+i|Ij |( 1

4
−2ϵ)−s|Ij |+[a]|Ij |

= κ(ϵ−1)r|Ij |µ|Ij |(− 3
4
−ϵ+m( 1

4
+ϵ)+i( 1

4
−2ϵ)−s+[a]).

This allows us to conclude as

E
[(
K̃∗4

µ ∗∂rκ∂sµF̄ i,m,a
κ,µ (x)

)n]
≤

n∑
l=1

∑
I1⊔···⊔Il=[n]

l∏
j=1

∥∥∥∥E(K̃∗4
µ ∗ ∂rκ∂sµF̄ i,m,a

κ,µ

)
Ij

∥∥∥∥
L∞(H)

≲
n∑

l=1

∑
I1⊔···⊔Il=[n]

l∏
j=1

κ|Ij |(ϵ−1)rµ|Ij |(− 3
4
−ϵ+m( 1

4
+ϵ)+i( 1

4
−2ϵ)−s+[a])

≲ κn(ϵ−1)rµnσ′(i,m,a)−ns.

3.2 Pointwise estimates

Let us fix Ξκ,µ := K̃∗4
µ ∗ 10,1∂

r
κF̄

i,m,a
κ,µ for an r ∈ {0, 1} and

Ξ̂κ,µ := µΘK̃µ ∗ Ξκ,µ = µΘK̃∗5
µ ∗ 10,1∂

r
κF̄

i,m,a
κ,µ

for a fixed Θ.

We will bound E
(∥∥∥∂lκ∂sµΞ̂κ,µ

∥∥∥n
L∞(H)

)
for any s, l ≤ 1. To shorten this part, we

set σ′ := σ′(i,m, a).
First, observe that given a function v defined on H, if we let h = K̃µ ∗ v, then we

have

10,1h = K̃µ ∗ P̃µ(10,1h) = K̃µ ∗ [(µ∂t10,1) (1 − µ∆)h] + K̃µ ∗ 10,1P̃µh

= µ(1 − µ∆)K̃µ ∗ [δ1(t)h] + K̃µ ∗ 10,1P̃µh

and therefore ∥∥∥K̃µ ∗ 10,1v
∥∥∥
L∞(H)

≲
∥∥∥10,1K̃µ ∗ v

∥∥∥
L∞(H)

.
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Similarly, the previous holds with K̃∗g
µ for any g ≥ 1. Now we can bound the desired

term.
Let us start with s = 0. In this case, we have

E
(∥∥∥∂lκΞ̂κ,µ

∥∥∥n
L∞(H)

)
= µΘnE

(∥∥∥K̃µ ∗ ∂lκΞκ,µ

∥∥∥n
L∞(H)

)
= µΘnE

(∥∥∥TK̃µ ⋆ ∂
l
κΞκ,µ

∥∥∥n
L∞(H)

)
≤ µΘnE

(∥∥∥TK̃µ

∥∥∥n
L

n
n−1 (H)

∥∥∂lκΞκ,µ

∥∥n
Ln(H)

)
= µΘn

∥∥∥TK̃µ

∥∥∥n
L

n
n−1 (H)

∫
H
E
((
∂lκΞκ,µ

)n
(x)
)
dx

≲ µΘn · µ−3/2 · κn(ϵ−1)(l+r)µnσ′
= κn(ϵ−1)(l+r)µn(σ′+Θ− 3

2n),

where we used proposition A.2 (F), that ⋆ is the convolution on H and T is the
periodisation operator (see proposition A.2).

Now let us consider s = 1. In this case, it holds

∂µΞ̂κ,µ = ΘµΘ−1K̃∗5
µ ∗10,1∂

r
κF̄

i,m,a
κ,µ +5µΘ∂µK̃µ∗K̃∗4

µ ∗10,1∂
r
κF̄

i,m,a
κ,µ +µΘK̃∗5

µ ∗10,1∂
r
κ∂µF̄

i,m,a
κ,µ .

As before, we have

E
(∥∥∥ΘµΘ−1K̃∗5

µ ∗ ∂r+l
κ F̄ i,m,a

κ,µ

∥∥∥n
L∞(H)

)
≲ κn(ϵ−1)(l+r)µn(σ′+Θ−1− 3

2n)

and

E
(∥∥∥µΘK̃∗5

µ ∗ ∂r+l
κ ∂µF̄

i,m,a
κ,µ

∥∥∥n
L∞(H)

)
≲ µΘn · µ−3/2 ·

∫
H
E
((
∂µ∂

l
κΞκ,µ(x)

)n)
dx

≲ µΘn−3/2 · κn(ϵ−1)(r+l)µnσ′−n

= κn(ϵ−1)(l+r)µn(σ′+Θ−1− 3
2n).

Furthermore, we notice that

µΘ∂µK̃µ ∗ K̃∗4
µ ∗ 10,1∂

r
κF̄

i,m,a
κ,µ = µΘP̃µ∂µK̃µ ∗ K̃∗5

µ ∗ 10,1∂
r
κF̄

i,m,a
κ,µ = P̃µ∂µK̃µ ∗ Ξ̂κ,µ.

So, using A.2 (E), we obtain

E
(∥∥∥µΘP̃µ∂µK̃µ ∗ K̃∗5

µ ∗ 10,1∂
l+r
κ F̄ i,m,a

κ,µ

∥∥∥n
L∞(H)

)
≤ E

(∥∥∥P̃µ∂µK̃µ

∥∥∥n
TV

·
∥∥∥∂lκΞ̂κ,µ

∥∥∥n
L∞(H)

)
≲ µ−n · κn(ϵ−1)(l+r)µn(σ′+Θ− 3

2n)

= κn(ϵ−1)(l+r)µn(σ′+Θ−1− 3
2n).

To summarise, we have proved

E
(∥∥∥∂lκ∂sµΞ̂κ,µ

∥∥∥n
L∞(H)

)
≲ κn(ϵ−1)(l+r)µn(σ′+Θ−s− 3

2n). (3.1)
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This easily implies a pointwise estimate. Indeed, if r = 0, we have

Ξ̂κ,µ = Ξ̂1,µ −
∫ 1

κ

∂νΞ̂ν,µdν =

=

(
Ξ̂1,1 −

∫ 1

µ

∂ηΞ̂1,ηdη

)
−
∫ 1

κ

∂ν

(
Ξ̂ν,1 −

∫ 1

µ

∂ηΞ̂ν,ηdη

)
dν

= Ξ̂1,1 −
∫ 1

µ

∂ηΞ̂1,ηdη −
∫ 1

κ

∂νΞ̂ν,1dν +

∫ 1

κ

∫ 1

µ

∂ν∂ηΞ̂ν,ηdηdν.

That gives∥∥∥Ξ̂κ,µ

∥∥∥n
L∞(H)

≲
∥∥∥Ξ̂1,1

∥∥∥n
L∞(H)

+

∫ 1

µ

∥∥∥∂ηΞ̂1,η

∥∥∥n
L∞(H)

dη +

∫ 1

κ

∥∥∥∂νΞ̂ν,1

∥∥∥n
L∞(H)

dν

+

∫ 1

κ

∫ 1

µ

∥∥∥∂ν∂ηΞ̂ν,η

∥∥∥n
L∞(H)

dηdν.

Taking the expected value, this will result in

E
(

sup
κ,µ

∥∥∥Ξ̂κ,µ

∥∥∥n
L∞(H)

)1/n

≲ E
(∥∥∥Ξ̂1,1

∥∥∥n
L∞(H)

)1/n

+

∫ 1

0

E
(∥∥∥∂ηΞ̂1,η

∥∥∥n
L∞(H)

)1/n

dη

+

∫ 1

0

E
(∥∥∥∂νΞ̂ν,1

∥∥∥n
L∞(H)

)1/n

dν +

∫ 1

0

∫ 1

0

E
(∥∥∥∂ν∂ηΞ̂ν,η

∥∥∥n
L∞(H)

)1/n

dηdν.

Using (3.1), we know that the right-hand side is finite if the two functions ησ
′+Θ−1− 3

2n ,
νϵ−1 are integrable near 0. The latter is because ϵ − 1 > −1. For the first one, we
take n big enough so that 3

2n
< ϵ/2 and Θ = 3

4
+ 2ϵ−m

(
1
4

+ 2ϵ
)
− i
(
1
4
− 4ϵ

)
− [a].

With this choice, we obtain σ′ + Θ− 1− 3
2n

= ϵ+ (2i−m)ϵ− 1− 3
2n

≥ ϵ/2− 1 > −1
if 2i ≥ m (but this is the only interesting regime because, in the other one, the
left-hand side is identically 0).

If r = 1, we have to repeat the last estimates with κ1−ϵ/2Ξ̂κ,µ instead of Ξ̂κ,µ to
prove

E
(

sup
κ,µ

∥∥∥κ1−ϵ/2Ξ̂κ,µ

∥∥∥n
L∞(H)

)1/n

<∞.

To summarise, let us define α = 1
4

+ 2ϵ, β = 1
4
− 4ϵ, γ = −3

4
− 2ϵ and ρ(i,m, a) =

αm+ βi+ γ + [a]. Then we have proved the following proposition.

Proposition 3.2. Let (i,m, a) such that σ(i,m, a, 0, 0) ≤ 0 and r ∈ {0, 1}. Then∥∥∥K̃∗5
µ ∗ 10,1∂

r
κF̄

i,m,a
κ,µ

∥∥∥
L∞(H)

≲ κ(ϵ/2−1)rµρ(i,m,a)

holds uniformly in (µ, κ) ∈ (0, 1]2.

We can finally state and prove the general theorem that gives a pointwise estimate
for any coefficients of the force.
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Theorem 3.3. There exists an integer g ≥ 1 such that for any (i,m, a) with i,m
natural numbers and a as in definition 2.5, and r ∈ {0, 1}, the following holds
uniformly in (µ, κ) ∈ (0, 1]2∥∥∥K̃∗g,⊗1+m

µ ∗ 10,1∂
r
κF

i,m,a
κ,µ

∥∥∥
V
≲ κ(ϵ/2−1)rµρ(i,m,a).

We remark that the indicator function in the above theorem acts only on the first
component of the coefficients of the force.

Proof. We will prove this by induction, similarly to the proof of theorem 2.7.
First, note that if m = 0, it holds F i,0,0

κ,µ = F̄ i,0,0
κ,µ and so we already have the thesis

by theorem 3.2. Now assume i > 0 and m > 0. As in the abovementioned proof, we
first treat the case ρ(i,m, a) > 0.

We notice that in this case F i,m,a
κ,0 = 0 as otherwise, we would have (i,m) = (1, 2)

but ρ(1, 2, 0) = −2ϵ < 0 and if a ̸= 0, it holds F 1,2,a
κ,µ = 0 as in the proof of theorem

2.7. Now, by the flow equation (2.1), we have

10,1∂µF
i,m,a
κ,µ = −

i∑
l=0

m∑
j=0

∑
b,c,d∈F(a)

(j + 1)B
(
Ġc

µ, 10,1F
l,j+1,b
κ,µ , 10,1F

i−l,m−j,d
κ,µ

)
,

where we were able to bring the indicator functions inside the operator thanks to
the support property of F i,m

κ,µ remarked in chapter 1 after their inductive definition.
Now, using relation (2.2), proposition C.1 (A) and the induction hypothesis, we
obtain ∥∥∥K̃∗g,⊗1+m

µ ∗ 10,1∂µF
i,m,a
κ,µ

∥∥∥
V

≲
i∑

l=0

m∑
j=0

∑
b,c,d∈F(a)

∥∥∥P̃ 2g
µ Ġc

µ

∥∥∥
L1(M)

∥∥∥K̃∗g,⊗j+2
µ ∗ 10,1F

l,j+1,b
κ,µ

∥∥∥
V∥∥∥K̃∗g,⊗m−j+1

µ ∗ 10,1F
i−l,m−j,d
κ,µ

∥∥∥
V

≲
i∑

l=0

m∑
j=0

∑
b,c,d∈F(a)

µ−1/2+[c] · µρ(l,j+1,b) · µρ(i−l,m−j,d)

=
i∑

l=0

m∑
j=0

∑
b,c,d∈F(a)

µ−1/2+α(m+1)+βi+2γ+[a] ≲ µρ(i,m,a)−1,

where we used α + γ = −1/2.
Deriving equation (2.1) in κ, we obtain

10,1∂κ∂µF
i,m,a
κ,µ = −

i∑
l=0

m∑
j=0

∑
b,c,d∈F(a)

(j + 1)
[
B
(
Ġc

µ, 10,1∂κF
l,j+1,b
κ,µ , 10,1F

i−l,m−j,d
κ,µ

)
+

+B
(
Ġc

µ, 10,1F
l,j+1,b
κ,µ , 10,1∂κF

i−l,m−j,d
κ,µ

)]
.

Taking the norm and using inequality (2.2), we have∥∥∥K̃∗g,⊗1+m
µ ∗ 10,1∂κ∂µF

i,m,a
κ,µ

∥∥∥
V
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≲
i∑

l=0

m∑
j=0

∑
b,c,d∈F(a)

∥∥∥P̃ 2g
µ Ġc

µ

∥∥∥
L1(M)

(
κ(ϵ/2−1)rµρ(l,j+1,b) · µρ(i−l,m−j,d)

+µρ(l,j+1,b) · κ(ϵ/2−1)rµρ(i−l,m−j,d)
)

≲
i∑

l=0

m∑
j=0

∑
b,c,d∈F(a)

κϵ/2−1µ−1/2+α(m+1)+βi+2γ+[a] ≲ κϵ/2−1µρ(i,m,a)−1.

To summarise ∥∥∥K̃∗g,⊗1+m
µ ∗ 10,1∂

r
κ∂µF

i,m,a
κ,µ

∥∥∥
V
≲ κ(ϵ/2−1)rµρ(i,m,a)−1

for any r ∈ {0, 1}. Using

K̃∗g,⊗1+m
µ ∗ 10,1∂

r
κF

i,m,a
κ,µ =

∫ µ

0

K̃∗g,⊗1+m
µ ∗ 10,1∂

r
κ∂ηF

i,m,a
κ,η dη

and F i,m,a
κ,0 = 0, we obtain∥∥∥K̃∗g,⊗1+m

µ ∗ 10,1∂
r
κF

i,m,a
κ,µ

∥∥∥
V
≤
∫ µ

0

∥∥∥K̃∗g,⊗1+m
µ ∗ 10,1∂

r
κ∂ηF

i,m,a
κ,η

∥∥∥
V
dη

=

∫ µ

0

∥∥∥P̃ g
η K̃

∗g,⊗1+m
µ ∗ K̃∗4,⊗1+m

η ∗ 10,1∂
r
κ∂ηF

i,m,a
κ,η

∥∥∥
V
dη

≤
∫ µ

0

∥∥∥P̃ηK̃
⊗1+m
µ

∥∥∥g
TV

∥∥∥K̃∗g,⊗1+m
η ∗ 10,1∂

r
κ∂ηF

i,m,a
κ,η

∥∥∥
V
dη

≤
∫ µ

0

∥∥∥K̃∗g,⊗1+m
η ∗ 10,1∂

r
κ∂ηF

i,m,a
κ,η

∥∥∥
V
dη

≲
∫ µ

0

κ(ϵ/2−1)rηρ(i,m,a)−1dη ≲ κ(ϵ/2−1)rµρ(i,m,a),

where we used proposition A.2 (D).
We are left with the case ρ(i,m, a) ≤ 0. Again, as in the proof of theorem 2.7,

we characterise all these (i,m, a).
If m ≥ 3, we have

ρ(i,m, a) = αm+ βi+ γ + [a] ≥ 3α + β + γ

= 3

(
1

4
+ 2ϵ

)
+

(
1

4
− 4ϵ

)
− 3

4
− 2ϵ =

1

4
> 0.

As we already know the theorem for m = 0, we have to study only the cases m ∈
{1, 2}.

If m = 2 :

0 ≥ ρ(i,m, a) = 2α + βi+ γ + [a]

= 2

(
1

4
+ 2ϵ

)
+ i

(
1

4
− 4ϵ

)
− 3

4
− 2ϵ+ [a]

= 2ϵ+ i

(
1

4
− 4ϵ

)
− 1

4
+ [a],
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which is true only if i = 1 and |a| = 0.
If m = 1 :

0 ≥ ρ(i,m, a) = α + βi+ γ + [a] = −1

2
+ i

(
1

4
− 4ϵ

)
+ [a],

which is true only if |a| = 0 and i ∈ {1, 2}.
So we just have to study all (i,m, a) in {(1, 2, 0), (1, 1, 0), (2, 1, 0)}. As F 1,2

κ,µ is
deterministic, in this case the theorem follows from 2.7. We are now left with F 1,1

κ,µ

and F 2,1
κ,µ. To estimate those two, we have to use the localisation strategy as in

section 2.2.
Remember that it holds∫
M
ϕ(y)V (x; dy) = ϕ(x)I(V )(x) +

∫
M

∫ 1

0

V (x; dy)(y − x) · ∇ (ϕ) (x+ τ(y − x))dτ.

If we convolve with the regularising kernel, we obtain that
∥∥∥K̃∗g+1,⊗2

µ ∗ V
∥∥∥
V

can be

bounded by the sum of∥∥∥∥∫
M
K̃∗g+1

µ (z − x)K̃∗g+1
µ (z1 − x)I(V )(x)dx

∥∥∥∥
V

and∥∥∥∥∫
M

∫ 1

0

K̃∗g+1
µ (z − x)V (x; dy)(y − x)∇

(
K̃∗g+1

µ

)
(z1 − [x+ τ(y − x)])dτdx

∥∥∥∥
V
.

As we have seen in section 2.2, the latter can be bounded up to a multiplicative

constant by
∑

b∈{1,2}
µ−[b]

∥∥∥K̃∗g,⊗2
µ ∗ LbV

∥∥∥
V
. Whereas for the first one, we have

∥∥∥∥∫
M
K̃∗g+1

µ (z − x)K̃∗g+1
µ (z1 − x)I(V )(x)dx

∥∥∥∥
V

= sup
z∈T

∫
M

∣∣∣∣∫
M
K̃∗g+1

µ (z − x)K̃∗g+1
µ (z1 − x)I(V )(x)dx

∣∣∣∣ dz1
= sup

z∈T

∫
M

∣∣∣∣∫
M
K̃∗g+1

µ (z − x)K̃∗g+1
µ (w)I(V )(x)dx

∣∣∣∣ dw
= sup

z∈T

∣∣∣∣∫
M
K̃∗g+1

µ (z − x)I(V )(x)dx

∣∣∣∣ =
∥∥∥K̃∗g+1

µ ∗ I(V )
∥∥∥
V
.

Now, it is enough to take V = 10,1∂
r
κF

i,1
κ,µ with r ∈ {0, 1} and i ∈ {1, 2} and to use

the inductive hypothesis together with theorem 2.7 to conclude that∥∥∥K̃∗g+1,⊗2
µ ∗ 10,1∂

r
κF

i,1
κ,µ

∥∥∥
V
≲
∥∥∥K̃∗g+1

µ ∗ I
(
10,1∂

r
κF

i,1
κ,µ

)∥∥∥
V

+
∑

b∈{1,2}

µ−[b]
∥∥∥K̃∗g,⊗2

µ ∗ 10,1Lb∂
r
κF

i,1
κ,µ

∥∥∥
V

=
∥∥∥K̃∗g+1

µ ∗ 10,1∂
r
κF̄

i,1
κ,µ

∥∥∥
V

+
∑

b∈{1,2}

µ−[b]
∥∥∥K̃∗g,⊗2

µ ∗ 10,1∂
r
κF

i,1,b
κ,µ

∥∥∥
V
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≲ κ(ϵ/2−1)rµρ(i,1,0) +
∑

b∈{1,2}

µ−[b]κ(ϵ/2−1)rµρ(i,1,b)

≲ κ(ϵ/2−1)rµρ(i,1,0).

That concludes the last two cases.

Remark 3.4. We note that in the above theorem, we can choose g = 7 because we
started with 5 kernels to apply proposition 3.2, and we used the localisation argument
to bound 2 terms, so we added 2 kernels.

Moreover, we point out that all the above arguments lead to a similar inequality
with 10,T for any T ∈ (0, 1]. In particular, it holds∥∥K⊗1+m

µ ∗ 10,T∂
r
κF

i,m,a
κ,µ

∥∥
V ≲ κ(ϵ/2−1)rµρ(i,m,a), (3.2)

where Kµ = K̃∗7
µ has been defined in definition A.1.

We conclude by noting that thanks to the last theorem, it is possible to define
K⊗1+m

µ ∗10,TF
i,m,a
0,µ (z; dz1, . . . , dzm) for any µ ∈ (0, 1] integrating the above inequality

in κ as it is integrable near 0. Moreover, the following holds uniformly in µ ∈ (0, 1]
and κ ∈ [0, 1] ∥∥K⊗1+m

µ ∗ 10,TF
i,m,a
κ,µ

∥∥
V ≲ µρ(i,m,a) (3.3)

and a similar consideration can be done with Hκ,µ.



Chapter 4

Fixed-point argument

This chapter is devoted to the proof of the existence of the solution of the stochastic
Burgers equation.

We will prove the following theorem, which is the main result of the thesis.

Theorem 4.1. Given any ᾱ ∈
(
1
2
, 1
)
, there exists a (random) time T > 0 such that

the regularised Burgers equation (1.2) has a solution fκ ∈ C−ᾱ (HT ) with the constant
0 as initial condition for every κ > 0, and there exists a distribution f0 ∈ C−ᾱ (HT )
such that fκ converges to f0 in C−ᾱ (HT ) for κ that goes to 0.

We recall that we want to study the system (1.11) defined asf̃κ,µ = −
∫ 1

µ
PµKη ∗ G̃η ∗

(
F̃ T
κ,η

(
f̃κ,η

)
+ R̃κ,η

)
dη,

R̃κ,µ = −
∫ µ

0
PηKµ ∗

(
H̃T

κ,η

(
f̃κ,η

)
+DF̃ T

κ,η

(
f̃κ,η

) [
G̃η ∗ R̃κ,η

])
dη.

We will solve it using the contraction principle in a suitable Banach space. Let us
define the latter. First, let us fix δ ∈ (0, β/2) small enough (recall that β = 1

4
− 4ϵ).

Definition 4.2. Given {fµ ∈ C (HT )}µ∈(0,1] and {gµ ∈ C (HT )}µ∈(0,1] both continu-
ous in µ, we define

|||f, g||| :=

(
sup

µ∈(0,1]
µα+δ ∥fµ∥L∞(HT )

)
∨

(
sup

µ∈(0,1]
µc ∥gµ∥L∞(HT )

)

with c < 0 that we will determine later.
We moreover define

BT,M :=
{

(f•, g•) ∈ (C ((0, 1] ×HT ))2 | |||f, g||| ≤M
}
.

To solve the system, we would like to define a contraction

Sk : BT,M → BT,M

such that

(Sk(f, g))1 = −
∫ 1

µ

PµKη ∗ G̃η ∗
(
F̃ T
κ,η (fη) + gη

)
dη,
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(Sk(f, g))2 = −
∫ µ

0

PηKµ ∗
(
H̃T

κ,η (fη) +DF̃ T
κ,η (fη)

[
G̃η ∗ gη

])
dη

to obtain a fixed point. Now we show this is the case for a suitable choice of T and
M . The proof relies heavily on inequality (3.3) and requires a lot of calculations,
although it is quite easy.

We start by proving a bound on the regularised force.

Lemma 4.3. Let (f, g) ∈ BT,M with T ≤ 1 and M ≥ 1. Then the following hold
uniformly in µ ∈ (0, 1] and κ ∈ [0, 1]

(A)
∥∥∥F̃ T

κ,µ (fµ)
∥∥∥
L∞(HT )

≲ µγM2ῑ,

(B)
∥∥∥H̃T

κ,µ (fµ)
∥∥∥
L∞(HT )

≲ T δµ−1−δ+γ+(β−2δ)(ῑ+1)M4ῑ,

(C)
∥∥∥DF̃ T

κ,η (fη)
[
G̃η ∗ gη

]∥∥∥
L∞(HT )

≲ T δµ−1−cM2ῑ.

Proof. This lemma is a straightforward application of inequality (3.3).
For the first, we use (1.12). Thanks to it, we have∥∥∥F̃ T
κ,µ (fµ)

∥∥∥
L∞(HT )

≤
ῑ∑

i=0

2i∑
m=0

∥∥Kµ ∗ 10,TF
i,m
κ,µ

∥∥
V ∥fµ∥

m
L∞(HT ) ≲

ῑ∑
i=0

2i∑
m=0

µαm+βi+γ ∥fµ∥mL∞(HT )

≤ µγM2ῑ

ῑ∑
i=0

µβi

2i∑
m=0

µ−δm ≤ µγM2ῑ

ῑ∑
i=0

µ(β−2δ)i ≲ µγM2ι,

where we used that β − 2δ > 0.
Similarly, we just need to expand the coefficients of Hκ,µ and use that H i,m

κ,µ = 0
if i ≤ ῑ or i > 2ῑ to obtain∥∥∥H̃T

κ,µ(fµ)
∥∥∥
L∞(HT )

≤
2ῑ∑

i=ῑ+1

2i∑
m=0

ῑ∑
l=i−ῑ

m∑
k=0

∥∥∥K⊗m+1
µ ∗B

(
Ġµ, 10,TF

l,k+1
κ,µ , 10,TF

i−l,m−k
κ,µ

)∥∥∥
V
∥f∥mL∞(HT )

≤
∑
i,m,l,k

∥∥∥P 2
µĠµ

∥∥∥
L1(HT )

∥∥K⊗k+2
µ ∗ 10,TF

l,k+1
κ,µ

∥∥
V

×
∥∥K⊗m−k+1

µ ∗ 10,TF
i−l,m−k
κ,µ

∥∥
V ∥f∥

m
L∞(HT )

≲
∑
i,m,l,k

T δµ−1/2−δ · µα(k+1)+βl+γ · µα(m−k)+β(i−l)+γµ−αm−δmMm

≤ T δµα−1/2−δ+2γM4ῑ

2ῑ∑
i=ῑ+1

µβi

2i∑
m=0

µ−δm ≲ T δµ−1−δ+γM4ῑ

2ῑ∑
i=ῑ+1

µ(β−2δ)i

≲ T δµ−1−δ+γ+(β−2δ)(ῑ+1)M4ῑ,

where we used inequality (2.2) and proposition C.1 (B).
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Finally∥∥∥Kµ ∗D10,TFκ,µ(Kµ ∗ f)[Kµ ∗ G̃µ ∗ g]
∥∥∥
L∞(HT )

≲
ῑ∑

i=1

2i∑
m=1

∥∥K⊗1+m
µ ∗ 10,TF

i,m
κ,µ

∥∥
V ∥f∥

m−1
L∞(HT )

∥∥∥G̃µ

∥∥∥
L1(HT )

∥g∥L∞(HT )

≲
∑
i,m

µαm+βi+γ · µ−(α+δ)(m−1)Mm−1 · T δµ−1/2−δ · µ−cM

= T δµ−1−c
∑
i,m

µβi · µ−δmMm ≤ T δµ−1−cM2ῑ

ῑ∑
i=1

µβi

2i∑
m=1

µ−δm

≲ T δµ−1−cM2ῑ

ῑ∑
i=1

µ(β−2δ)i ≲ T δµ−1−cM2ῑ.

We can now prove that the image of Sκ is contained in BT,M .

Theorem 4.4. For every T ≤ 1, M ≥ 1 such that T δM4ῑ−1 is sufficiently small,
Sk : BT,M → BT,M is well-defined for every κ ∈ [0, 1].

Before proving it, we stress that the choices of T and M are uniform in κ. This
allows us to obtain an a priori estimate independent of the regularisation parameter.

Proof. We will estimate the two components independently. Let us start with the
first one.

∥(Sk(f, g))1∥L∞(HT )

≤
∫ 1

µ

∥PµKη∥TV

∥∥∥G̃η

∥∥∥
L1(HT )

(∥∥∥F̃ T
κ,η (fη)

∥∥∥
L∞(HT )

+ ∥gη∥L∞(HT )

)
dη

≲
∫ 1

µ

1 · T δη−1/2−δ ·
(
ηγM2ῑ + η−cM

)
dη

≲ T δM2ῑ

∫ 1

µ

η−1/2−δ+γdη

≲ T δM2ῑµ−δ+1/2+γ = T δM2ῑµ−α−δ,

where we used propositions A.2 (D) and C.1 (B) and lemma 4.3 (A). So

sup
µ∈(0,1]

µα+δ ∥(Sk(f, g))1∥L∞(HT ) ≲ T δM2ῑ.

Whereas for the second component

∥(Sk(f, g))2∥L∞(HT )

≤
∫ µ

0

∥PηKµ∥TV ·
(∥∥∥H̃T

κ,η (fη)
∥∥∥
L∞(HT )

+
∥∥∥DF̃ T

κ,η (fη)
[
G̃η ∗ gη

]∥∥∥
L∞(HT )

)
dη
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≲
∫ µ

0

1 ·
[
T δη−1−δ+γ+(β−2δ)(ῑ+1)M4ῑ + T δη−1−cM2ῑ

]
dη

≲ T δ
(
µ−c + µ−δ+γ+(β−2δ)(ῑ+1)

)
M4ῑ.

Now it makes sense to impose c = δ− γ− (β − 2δ)(ῑ+ 1), which is negative if ϵ and
δ are sufficiently small (because ῑ = 3).

This gives us
sup

µ∈(0,1]
µc ∥(Sk(f, g))2∥L∞(HT ) ≲ T δM4ῑ,

and it allows us to conclude as

|||Sκ(f, g)||| ≲ T δM4ῑ

can be made smaller than M if T δM4ῑ−1 is sufficiently small.

Now that we have proved the well-posedness of the map Sκ, we want to show
that it is a contraction for a good choice of the two parameters. We stress once more
that even for this property the choices of T and M are independent of κ.

Theorem 4.5. For every T ≤ 1 and M ≥ 1 such that T δM4ῑ−1 is sufficiently small,
the family {Sk : BT,M → BT,M}κ∈[0,1] is 1/2-uniformly Lipschitz.

Proof. Let (f, g),
(
f̄ , ḡ
)
∈ BT,M . We start by proving a result similar to lemma 4.3

suitable for the Lipschitzianity.

(A)
∥∥∥F̃ T

κ,µ(fµ) − F̃ T
κ,η

(
f̄µ
) ∥∥∥

L∞(HT )

≤
ῑ∑

i=1

2i∑
m=1

∥∥K⊗1+m
µ ∗ 10,TF

i,m
κ,µ

∥∥
V

∥∥fµ − f̄µ
∥∥
L∞(HT )

(
∥fµ∥m−1

L∞(HT ) ∨
∥∥f̄µ∥∥m−1

L∞(HT )

)
≲
∑
i,m

µαm+βi+γ · µ−α−δ
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣ · µ−(α+δ)(m−1)Mm−1

≤ µγM2ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣ ῑ∑
i=1

µβi

2i∑
m=1

µ−δm

≲ µγM2ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣ ῑ∑
i=1

µ(β−2δ)i ≲ µγM2ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣. (4.1)

While for the difference of two H, we have

(B)
∥∥∥H̃T

κ,µ (fµ) − H̃T
κ,µ

(
f̄µ
) ∥∥∥

L∞(HT )

≤
2ῑ∑

i=ῑ+1

2i∑
m=1

ῑ∑
l=i−ῑ

m∑
k=0

∥∥∥K⊗m+1
µ ∗B

(
Ġµ, 10,TF

l,k+1
κ,µ , 10,TF

i−l,m−k
κ,µ

)∥∥∥
V

×
∥∥fµ − f̄µ

∥∥
L∞(HT )

(
∥fµ∥m−1

L∞(HT ) ∨
∥∥f̄µ∥∥m−1

L∞(HT )

)
≤
∑
i,m,l,k

∥∥∥P 2g
µ Ġµ

∥∥∥
L1(HT )

∥∥K⊗k+2
µ ∗ 10,TF

l,k+1
κ,µ

∥∥
V

∥∥K⊗m−k+1
µ ∗ 10,TF

i−l,m−k
κ,µ

∥∥
V

×
∥∥fµ − f̄µ

∥∥
L∞(HT )

(
∥fµ∥m−1

L∞(HT ) ∨
∥∥f̄µ∥∥m−1

L∞(HT )

)
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≲
∑
i,m,l,k

T δµ−1/2−δ · µα(k+1)+βl+γ · µα(m−k)+β(i−l)+γµ−αm−δmMm−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣
≲ T δµα−1/2−δ+2γM4ῑ−1

∣∣∣∣∣∣f − f̄ , g − ḡ
∣∣∣∣∣∣ 2ῑ∑

i=ῑ+1

µβi

2i∑
m=0

µ−δm

≲ T δµ−1−δ+γM4ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣ 2ῑ∑
i=ῑ+1

µ(β−2δ)i

≲ T δµ−1−δ+γ+(β−2δ)(ῑ+1)M4ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣ = T δµ−1−cM4ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣.
Lastly

(C)
∥∥∥DF̃ T

κ,η (fµ)
[
G̃µ ∗ gµ

]
−DF̃ T

κ,µ

(
f̄µ
) [
G̃µ ∗ ḡµ

] ∥∥∥
L∞(HT )

≤
ῑ∑

i=1

2i∑
m=1

∥∥K⊗1+m
µ ∗ 10,TF

i,m
κ,µ

∥∥
V

∥∥∥G̃µ

∥∥∥
L1(HT )

[(
∥fµ∥m−1

L∞(HT ) ∥gµ − ḡµ∥L∞(HT )

)
∨
(
∥fµ∥m−2

L∞(HT ) ∥gµ∥L∞(HT )

∥∥fµ − f̄µ
∥∥
L∞(HT )

)]
≲
∑
i,m

µαm+βi+γ · T δµ−1/2−δ · µ−(α+δ)(m−1)µ−cMm−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣
≤ µα+γ−1/2−cT δM2ῑ−1

∣∣∣∣∣∣f − f̄ , g − ḡ
∣∣∣∣∣∣ ῑ∑

i=1

µβi

2i∑
m=1

µ−δm

≲ µ−1−cT δM2ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣ ῑ∑
i=1

µ(β−2δ)i

≲ µ−1−cT δM2ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣.
We now have all the tools to prove the theorem. Indeed, for the first component,
we have∥∥ (Sk(f, g) − Sk

(
f̄ , ḡ
))

1

∥∥
L∞(HT )

≤
∫ 1

µ

∥PµKη∥TV

∥∥∥G̃η

∥∥∥
L1(HT )

(∥∥∥F̃ T
κ,η (fη) − F̃ T

κ,η

(
f̄η
)∥∥∥

L∞(HT )
+ ∥gη − ḡη∥L∞(HT )

)
dη

≲
∫ 1

µ

1 · T δη−1/2−δ ·
(
ηγM2ῑ−1

∣∣∣∣∣∣f − f̄ , g − ḡ
∣∣∣∣∣∣+ η−c

∣∣∣∣∣∣f − f̄ , g − ḡ
∣∣∣∣∣∣) dη

≲ T δM2ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣ ∫ 1

µ

η−1/2−δ+γdη ≲ T δM2ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣µ−δ+1/2+γ

= T δM2ῑ−1
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣µ−α−δ.

While for the second one∥∥(Sk(f, g) − Sk

(
f̄ , ḡ
) )

2

∥∥
L∞(HT )

≤
∫ µ

0

∥PηKµ∥TV ·
[∥∥∥H̃T

κ,η (fη) − H̃T
κ,η

(
f̄η
)∥∥∥

L∞(HT )
+

+
∥∥∥DF̃ T

κ,η (fη)
[
G̃η ∗ gη

]
−DF̃ T

κ,η

(
f̄η
) [
G̃η ∗ ḡη

]∥∥∥
L∞(HT )

]
dη
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≲
∫ µ

0

1 ·
[
T δη−1−cM4ῑ−1

∣∣∣∣∣∣f − f̄ , g − ḡ
∣∣∣∣∣∣+ η−1−cT δM2ῑ−1

∣∣∣∣∣∣f − f̄ , g − ḡ
∣∣∣∣∣∣] dη

= T δ
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣ (M4ῑ−1 +M2ῑ−1
) ∫ µ

0

η−1−cdη

≲ T δµ−c
∣∣∣∣∣∣f − f̄ , g − ḡ

∣∣∣∣∣∣ (M4ῑ−1 +M2ῑ−1
)
≲ T δµ−cM4ῑ−1

∣∣∣∣∣∣f − f̄ , g − ḡ
∣∣∣∣∣∣.

The last two together give us∣∣∣∣∣∣Sκ(f, g) − Sκ

(
f̄ , ḡ
)∣∣∣∣∣∣ ≲ T δM4ῑ−1

∣∣∣∣∣∣f − f̄ , g − ḡ
∣∣∣∣∣∣

that concludes the proof.

Now that we have the last two theorems, for each κ we can define the fixed point
of Sκ. But to get a solution to the original equation, we need a stability result: the
convergence of these fixed points as κ goes to 0.

To do so, we will use the following easy lemma.

Lemma 4.6. Let X be a complete metric space, and for every κ in [0, 1] let Tκ :
X → X be a L−Lipschitz function with L < 1. Assume that Tκ (ϕ) → T0 (ϕ) for κ
that goes to 0 for each ϕ in X. Moreover, let {ϕκ}κ∈[0,1] be their unique fixed point
given by the contraction principle. Then ϕκ → ϕ0 for κ that goes to 0.

Proof. Using the triangle inequality and the Lipschitz condition, we have

d(ϕκ, ϕ0) ≤ d(Tκ(ϕκ), Tκ(ϕ0)) + d(Tκ(ϕ0), T0(ϕ0))

≤ Ld(ϕk, ϕ0) + d(Tκ(ϕ0), T0(ϕ0)).

This concludes the proof as

d(ϕκ, ϕ0) ≤
d(Tκ(ϕ0), T0(ϕ0))

1 − L
→ 0

To use the latter, we still need to prove the stability of Sκ as κ goes to 0. This
is exactly the content of the following theorem.

Theorem 4.7. For every T and M given by theorem 4.4, it holds

Sκ(f, g)
BT,M−−−→ S0(f, g)

for κ that goes to 0 and for every (f, g) in BT,M .

Like the previous results of this chapter, the proof of this theorem is quite easy,
but it requires some lengthy calculations.

Proof. First, we will find a relation between F̃ T
κ,µ (fµ) and F̃ T

0,µ (fµ) . This is easy to
obtain as

F̃ T
κ,η (fµ) =

ῑ∑
i=0

2i∑
m=0

∫
Mm+1

K⊗1+m
µ ∗ 10,TF

i,m
κ,µ (z; dz1, . . . , dzm)

m∏
j=1

fµ(zj)dz
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=
ῑ∑

i=0

2i∑
m=0

∫
Mm+1

K⊗1+m
µ ∗ 10,TF

i,m
0,µ (z; dz1, . . . , dzm)

m∏
j=1

fµ(zj)dz

+
ῑ∑

i=0

2i∑
m=0

∫ k

0

∫
Mm+1

K⊗1+m
µ ∗ 10,T∂lF

i,m
l,µ (z; dz1, . . . , dzm)

m∏
j=1

fµ(zj)dzdl.

Thanks to this, we have the following inequality

∥∥∥F̃ T
κ,η (fµ) − F̃ T

0,µ(fµ)
∥∥∥
L∞(HT )

≤
ῑ∑

i=0

2i∑
m=0

∫ k

0

∥∥K⊗1+m
µ ∗ 10,T∂lF

i,m
l,µ

∥∥
V ∥fµ∥

m
L∞(HT ) dl

≲
ῑ∑

i=0

2i∑
m=0

∫ k

0

lϵ/2−1µαm+βi+γ ∥fµ∥mL∞(HT ) dl

≲
ῑ∑

i=0

2i∑
m=0

κϵ/2µαm+βi+γ ∥fµ∥mL∞(HT )

≤ κϵ/2µγ

ῑ∑
i=0

2i∑
m=0

µαm+βi · µ−(α+δ)mMm

≤ κϵ/2µγM2ῑ

ῑ∑
i=0

µβi

2i∑
m=0

µ−δm

≲ κϵ/2µγM2ῑ

ῑ∑
i=0

µ(β−2δ)i ≤ κϵ/2µγM2ῑ, (4.2)

where we used theorem 3.3.
This immediately gives us the convergence of the first component, in fact

∥(Sk(f, g) − S0 (f, g))1∥L∞(HT )

≤
∫ 1

µ

∥PµKη∥TV

∥∥∥G̃η

∥∥∥
L1(HT )

∥∥∥F̃ T
κ,η (fη) − F̃ T

0,η (fη)
∥∥∥
L∞(HT )

dη

≲
∫ 1

µ

1 · η−1/2 · κϵ/2ηγM2ῑdη ≲ κϵ/2µ1/2+γM2ῑ,

which concludes because

sup
µ∈(0,1]

µα+δ ∥(Sk(f, g) − S0 (f, g))1∥L∞(HT ) ≲ sup
µ∈(0,1]

µα+δκϵ/2µ1/2+γM2ῑ

= sup
µ∈(0,1]

µδκϵ/2M2ῑ = κϵ/2M2ῑ κ→0−−→ 0.

We can now do similar computations for the second component.
First

H̃T
κ,µ (fµ) =

2ῑ∑
i=ῑ+1

2i∑
m=0

∫
Mm+1

K⊗1+m
µ ∗ 10,TH

i,m
κ,µ (z; dz1, . . . , dzm)

m∏
j=1

fµ(zj)dz
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=
2ῑ∑

i=ῑ+1

2i∑
m=0

∫
Mm+1

K⊗1+m
µ ∗ 10,TH

i,m
0,µ (z; dz1, . . . , dzm)

m∏
j=1

fµ(zj)dz

+
2ῑ∑

i=ῑ+1

2i∑
m=0

∫ k

0

∫
Mm+1

K⊗1+m
µ ∗ 10,T∂lH

i,m
κ,µ (z; dz1, . . . , dzm)

m∏
j=1

fµ(zj)dzdl.

Let us compute the term inside the integral. Deriving expression (1.7) in κ, we
obtain

10,T∂κH
i,m
κ,µ =

ῑ∑
l=1−ῑ

m∑
j=0

(j + 1)
[
B
(
Ġµ, 10,T∂κF

l,j+1
κ,µ , 10,TF

i−l,m−j
κ,µ

)
+

+B
(
Ġµ, 10,TF

l,j+1
κ,µ , 10,T∂κF

i−l,m−j
κ,µ

)]
.

After convolving with K⊗1+m
µ , the last series can be bounded term by term using

inequality (3.3), proposition C.1 (A) and theorem 3.3) to get∥∥K⊗1+m
µ ∗ 10,T∂κH

i,m
κ,µ

∥∥
V

≲
ῑ∑

l=1−ῑ

m∑
j=0

∥∥∥Ġµ

∥∥∥
L1(HT )

[∥∥K⊗j+2
µ ∗ 10,T∂κF

l,j+1
κ,µ

∥∥
V

∥∥K⊗m−j+1
µ ∗ 10,TF

i−l,m−j
κ,µ

∥∥
V +

+
∥∥K⊗j+1

µ ∗ 10,TF
l,j+1
κ,µ

∥∥
V

∥∥K⊗m−j+1
µ ∗ 10,T∂κF

i−l,m−j
κ,µ

∥∥
V

]
≲

ῑ∑
l=1−ῑ

m∑
j=0

µ−1/2
[
κϵ/2−1µα(j+1)+βl+γ·µα(m−j)+β(i−l)+γ

+µα(j+1)+βl+γ · κϵ−1µα(m−j)+β(i−l)+γ
]

≲
ῑ∑

l=1−ῑ

m∑
j=0

µ−1/2κϵ/2−1µα(m+1)+βi+2γ ≲ κϵ/2−1µαm+βi+γ−1.

Which finally brings us to an estimate on H̃T
κ,µ (•) − H̃T

0,µ(•). Indeed the previous
results give∥∥∥H̃T

κ,µ(fµ) − H̃T
0,µ(fµ)

∥∥∥
L∞(HT )

≤
2ῑ∑

i=ῑ+1

2i∑
m=0

∫ k

0

∥∥K⊗1+m
µ ∗ 10,T∂lH

i,m
l,µ

∥∥
V ∥fµ∥

m
L∞(HT ) dl

≲
2ῑ∑

i=ῑ+1

2i∑
m=0

∫ k

0

lϵ/2−1µαm+βi+γ−1 ∥fµ∥mL∞(HT ) dl

≲
2ῑ∑

i=ῑ+1

2i∑
m=0

κϵ/2µαm+βi+γ−1 ∥fµ∥mL∞(HT )

≤ κϵ/2µγ−1

2ῑ∑
i=ῑ+1

2i∑
m=0

µαm+βi · µ−(α+δ)mMm ≤ κϵ/2µγ−1M4ῑ

2ῑ∑
i=ῑ+1

µβi

2i∑
m=0

µ−δm
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≲ κϵ/2µγ−1M4ῑ

2ῑ∑
i=ῑ+1

µ(β−2δ)i ≲ κϵ/2µγ−1+(β−2δ)(ῑ+1)M4ῑ = κϵ/2µ−1−c+δM4ῑ.

Now we can repeat all these computations for the term with the Gâteaux derivative.

Kµ ∗D10,TFκ,µ (Kµ ∗ fµ)
[
Kµ ∗ G̃µ ∗ gµ

]
=

ῑ∑
i=1

2i∑
m=1

m

∫
Mm

K⊗1+m
µ ∗ 10,TF

i,m
κ,µ (z; dz1, . . . , dzm) · G̃µ ∗ gµ(z1)

m∏
j=2

fµ(zj)dz

=
ῑ∑

i=1

2i∑
m=1

m

∫
Mm

K⊗1+m
µ ∗ 10,TF

i,m
0,µ (z; dz1, . . . , dzm) · G̃µ ∗ gµ(z1)

m∏
j=2

fµ(zj)dz

+
ῑ∑

i=1

2i∑
m=1

m

∫ k

0

∫
Mm

K⊗1+m
µ ∗ 10,T∂lF

i,m
l,µ (z; dz1, . . . , dzm) · G̃µ ∗ gµ(z1)

m∏
j=2

fµ(zj)dzdl,

so that∥∥∥DF̃ T
κ,η (fη)

[
G̃η ∗ gη

]
−DF̃ T

0,η (fη)
[
G̃η ∗ gη

] ∥∥∥
L∞(HT )

≲
ῑ∑

i=1

2i∑
m=1

∫ κ

0

∥∥K⊗1+m
µ ∗ 10,T∂lF

i,m
l,µ

∥∥
V ·
∥∥∥G̃µ ∗ gµ

∥∥∥
L∞(HT )

· ∥fµ∥m−1
L∞(HT ) dl

≤
ῑ∑

i=1

2i∑
m=1

∫ κ

0

∥∥K⊗1+m
µ ∗ 10,T∂lF

i,m
l,µ

∥∥
V ·
∥∥∥G̃µ

∥∥∥
L1(HT )

· ∥gµ∥L∞(HT ) · ∥fµ∥
m−1
L∞(HT ) dl

≲
ῑ∑

i=1

2i∑
m=1

∫ κ

0

lϵ/2−1µαm+βi+γ · µ−1/2 · µ−cM · µ−(α+δ)(m−1)Mm−1dl

= µγ−1/2−c+α+δ

ῑ∑
i=1

2i∑
m=1

µβi−δmMm

∫ κ

0

lϵ/2−1dl

≲ κϵ/2µγ−1/2−c+α+δ

ῑ∑
i=1

2i∑
m=1

µβi−δmMm ≤ κϵ/2µ−1−c+δM2ῑ

ῑ∑
i=1

µβi

2i∑
m=1

µ−δm

≲ κϵ/2µ−1−c+δM2ῑ

ῑ∑
i=1

µ(β−2δ)i ≲ κϵ/2µ−1−c+δM2ῑ.

This finally proves the desired estimate on the second component.

∥(Sk(f, g) − S0 (f, g))2∥L∞(HT )

≤
∫ µ

0

∥PηKµ∥TV ·
[∥∥∥H̃T

κ,η (fη) − H̃T
0,η(fη)

∥∥∥
L∞(HT )

+

+
∥∥∥DF̃ T

κ,η (fη)
[
G̃η ∗ gη

]
−DF̃ T

0,η (fη)
[
G̃η ∗ gη

]∥∥∥
L∞(HT )

]
dη

≲
∫ µ

0

[
κϵ/2η−1−c+δM4ῑ + κϵ/2η−1−c+δM2ῑ

]
dη
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≲ κϵ/2
∫ µ

0

η−1−c+δM4ῑdη ≲ κϵ/2µ−c+δM4ῑ.

That concludes the proof of the theorem as

sup
µ∈(0,1]

µc ∥(Sk(f, g) − S0 (f, g))2∥L∞(HT ) ≲ sup
µ∈(0,1]

κϵ/2µδM4ῑ κ→0−−→ 0.

We are ready to prove the final theorem 4.1.
The strategy consists in repeating the argument clarified in the introduction, but

in reverse order, since by now, we have proved the existence of the solution of the
regularised system (1.11).

We start by considering for each κ ∈ [0, 1],
(
f̃κ,•, R̃κ,•

)
∈ BT,M the unique fixed

point of Sκ. Now, inspired by the starting computations, we define the following two

fκ,µ := Kµ ∗ f̃κ,µ, Rκ,µ := PµR̃κ,µ.

Then those two solve the non-regularised system{
fκ,µ = −

∫ 1

µ
Ġη ∗ (Fκ,η(fκ,η) +Rκ,η) dη,

Rκ,µ = −
∫ µ

0

(
Hκ,η(fκ,η) +DFκ,η(fκ,η)

[
Ġη ∗Rκ,η

])
dη.

This proves that Rκ,µ is a function, not just a distribution.
The first equation of the last system can be simplified. In fact, by the easy

computation
∂µ (Fκ,µ (fκ,µ) +Rκ,µ) = 0,

we obtain
fκ,µ = Gµ ∗ (Fκ,η (fκ,η) +Rκ,η) (4.3)

for any η ∈ (0, 1].
Finally, for each κ ∈ (0, 1] we define

fκ := G ∗ (Fκ,η (fκ,η) +Rκ,η) .

We want to prove that this is the solution of the regularised Burgers equation (1.3)
and that fκ converges to some f0 in C−2α−2δ for κ that goes to 0.

Fix a κ ∈ (0, 1]. First, we will study the limit of (fκ,µ, Rκ,µ) as µ goes to zero.
Note that

∥fκ,µ − fκ∥L∞(HT ) ≤ ∥G−Gµ∥L1(HT ) · ∥Fκ,1 (fκ,1) +Rκ,1∥L∞(HT ) ≲κ µ
1/2 µ→0−−→ 0

(4.4)
by proposition C.1 (C). This also proves that fixed κ, ∥fκ,µ∥L∞(HT ) is uniformly

bounded in µ ∈ (0, 1].
Moreover

∥Rκ,µ∥L∞(HT ) ≤
∫ µ

0

∥Hκ,η (fκ,η)∥L∞(HT ) +
∥∥∥DFκ,η (fκ,η)

[
Ġη ∗Rκ,η

]∥∥∥
L∞(HT )

dη
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≲κ,T

∫ µ

0

η−1/2 + η−1/2 ∥Rκ,η∥L∞(HT ) dη

≲ µ1/2 +

∫ µ

0

η−1/2 ∥Rκ,η∥L∞(HT ) dη (4.5)

by theorem D.1 and inequality (D.1). This, together with Grönwall’s lemma, gives

∥Rκ,µ∥L∞(HT ) ≲κ,T µ
1/2 exp

(
Aκ,Tµ

1/2
) µ→0−−→ 0

for some constant Aκ,T that depends on κ and on T .
We now show that the expression Fκ,µ (fκ,µ) +Rκ,µ, which is constant in µ, con-

verges to Fκ(fκ) and so it is identically equal to it. We have already shown that

Rκ,µ
µ→0−−→ 0 and so the only thing missing is Fκ,µ (fκ,µ)

µ→0−−→ Fκ(fκ).
First observe that Fκ (fκ,µ) − Fκ (fκ) = f 2

κ,µ − f 2
κ and so

∥Fκ (fκ,µ) − Fκ (fκ)∥L∞(HT ) =
∥∥f 2

κ,µ − f 2
κ

∥∥
L∞(HT )

µ→0−−→ 0

by (4.4).
Let us prove that

∥Fκ,µ (fκ,µ) − Fκ (fκ,µ)∥L∞(HT ) → 0

for µ that goes to 0.
To achieve this, we perform a computation similar to the ones in theorem 4.7.

Fκ,µ (fκ,µ) =
ῑ∑

i=0

2i∑
m=0

∫
Mm

F i,m
κ,η (z; dz1, . . . , dzm)

m∏
j=1

fκ,µ(zj)dz

=
ῑ∑

i=0

2i∑
m=0

∫
Mm

F i,m
κ (z; dz1, . . . , dzm)

m∏
j=1

fκ,µ(zj)dz

+
ῑ∑

i=0

2i∑
m=0

∫ µ

0

∫
Mm

∂ηF
i,m
κ,η (z; dz1, . . . , dzm)

m∏
j=1

fκ,µ(zj)dzdη,

so that

Fκ,µ (fκ,µ) − Fκ (fκ,µ) =
ῑ∑

i=0

2i∑
m=0

∫ µ

0

∫
Mm

∂ηF
i,m
κ,η (z; dz1, . . . , dzm)

m∏
j=1

fκ,µ(zj)dzdη.

Taking the norm and using theorem D.1, we obtain

∥Fκ,µ (fκ,µ) − Fκ (fκ,µ)∥L∞(HT ) ≲κ

ῑ∑
i=0

2i∑
m=0

∫ µ

0

∥fκ,µ∥mL∞(HT ) η
−1/2dη

≲κ

ῑ∑
i=0

2i∑
m=0

∫ η

0

µ−1/2dη ≲ µ1/2 µ→0−−→ 0, (4.6)

where we used the fact that ∥fκ,µ∥L∞(HT ) is bounded uniformly in µ.
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This concludes as

∥Fκ,µ (fκ,µ)−Fκ (fκ)∥L∞(HT )

≤ ∥Fκ,µ (fκ,µ) − Fκ (fκ,µ)∥L∞(HT ) + ∥Fκ (fκ,µ) − Fκ (fκ)∥L∞(HT )

µ→0−−→ 0

and so Fκ,µ (fκ,µ) +Rκ,µ = Fκ (fκ). This finally implies

fk = G ∗ Fκ (fκ) .

We can now focus on the last part: the convergence as κ goes to 0. Heuristically,
we know that f̃κ,µ is close to f̃0,µ for small κ thanks to lemma 4.6. So we want
to understand how much f̃κ,µ is close to fκ to conclude. To do this, observe the
following

fκ − fκ,µ = (G−Gµ) ∗ (Fκ,µ (fκ,µ) +Rκ,µ) .

This implies

fκ = Kµ ∗ f̃κ,µ + (G−Gµ) ∗
(
PµF̃

T
κ,µ

(
f̃κ,µ

)
+ PµR̃κ,µ

)
(4.7)

for κ = 0, we let the right-hand side be the definition of the left-hand side.
To prove the desired convergence, we must study Kµ ∗ fκ (recall definition B.1).

From the previous equation, this is

Kµ ∗ fκ = Kµ ∗Kµ ∗ f̃κ,µ + (G−Gµ) ∗
(
F̃ T
κ,µ

(
f̃κ,µ

)
+ R̃κ,µ

)
.

We are now ready to conclude. Observe that

∥fκ − f0∥C−2α−2δ(HT ) ≤ sup
µ∈(0,1]

µα+δ ∥Kµ ∗ (fκ − f0)∥L∞

≤ sup
µ∈(0,1]

µα+δ
∥∥∥Kµ ∗Kµ ∗ f̃κ,µ −Kµ ∗Kµ ∗ f̃0,µ

∥∥∥
L∞(HT )

+ sup
µ∈(0,1]

µα+δ
∥∥∥(G−Gµ) ∗

(
R̃κ,µ − R̃0,µ

)∥∥∥
L∞(HT )

+ sup
µ∈(0,1]

µα+δ
∥∥∥(G−Gµ) ∗

(
F̃ T
κ,µ

(
f̃κ,µ

)
− F̃ T

0,µ

(
f̃0,µ

))∥∥∥
L∞(HT )

.

We bound the three terms separately.

(1) lim sup
κ→0

sup
µ∈(0,1]

µα+δ
∥∥∥Kµ ∗Kµ ∗ f̃κ,µ −Kµ ∗Kµ ∗ f̃0,µ

∥∥∥
L∞(HT )

≤ lim sup
κ→0

sup
µ∈(0,1]

µα+δ ∥Kµ∥2L1(HT ) ·
∥∥∥f̃κ,µ − f̃0,µ

∥∥∥
L∞(HT )

= lim sup
κ→0

sup
µ∈(0,1]

µα+δ
∥∥∥f̃κ,µ − f̃0,µ

∥∥∥
L∞(HT )

≤ lim sup
κ→0

∣∣∣∣∣∣∣∣∣f̃κ,0 − f̃0,•, R̃κ,0 − R̃0,•

∣∣∣∣∣∣∣∣∣ = 0
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by lemma 4.6.

(2) lim sup
κ→0

sup
µ∈(0,1]

µα+δ
∥∥∥ (G−Gµ) ∗

(
R̃κ,µ − R̃0,µ

)∥∥∥
L∞(HT )

≤ lim sup
κ→0

sup
µ∈(0,1]

µα+δ ∥G−Gµ∥L1(HT )

∥∥∥R̃κ,µ − R̃0,µ

∥∥∥
L∞(HT )

≲ lim sup
κ→0

sup
µ∈(0,1]

µα+δ+1/2
∥∥∥R̃κ,µ − R̃0,µ

∥∥∥
L∞(HT )

≤ lim sup
κ→0

sup
µ∈(0,1]

µc
∥∥∥R̃κ,µ − R̃0,µ

∥∥∥
L∞(HT )

≤ lim sup
κ→0

∣∣∣∣∣∣∣∣∣f̃κ,0 − f̃0,•, R̃κ,0 − R̃0,•

∣∣∣∣∣∣∣∣∣ = 0

by lemma 4.6, proposition C.1 (C) and the relation 1/2 + α + δ > 0 > c.
To bound the last term, recall that in the proof of the Lipschitz condition of Sκ

and in the proof of the convergence of Sκ to S0 we proved relations (4.1) and (4.2).
Namely∥∥∥F̃ T

κ,η

(
f̃κ,µ

)
− F̃ T

κ,η

(
f̃0,µ

)∥∥∥
L∞(HT )

≲ µγM2ῑ−1
∣∣∣∣∣∣∣∣∣f̃κ,• − f̃0,•, R̃κ,• − R̃0,•

∣∣∣∣∣∣∣∣∣
and ∥∥∥F̃ T

κ,µ

(
f̃0,µ

)
− F̃ T

0,µ(f̃0,µ)
∥∥∥
L∞(HT )

≲ κϵ/2µγM2ῑ.

Given these inequalities, we have∥∥∥F̃ T
κ,µ

(
f̃κ,µ

)
− F̃ T

0,µ

(
f̃0,µ

)∥∥∥
L∞(HT )

≤
∥∥∥F̃ T

κ,η

(
f̃κ,µ

)
− F̃ T

κ,η

(
f̃0,µ

)∥∥∥
L∞(HT )

+
∥∥∥F̃ T

κ,µ

(
f̃0,µ

)
− F̃ T

0,µ(f̃0,µ)
∥∥∥
L∞(HT )

≲ µγM2ῑ−1
∣∣∣∣∣∣∣∣∣f̃κ,• − f̃0,•, g̃κ,• − g̃0,•

∣∣∣∣∣∣∣∣∣+ κϵ/2µγM2ῑ.

Which implies the conclusion as

(3) lim sup
κ→0

sup
µ∈(0,1]

µα+δ
∥∥∥ (G−Gµ) ∗

(
F̃ T
κ,µ

(
f̃κ,µ

)
− F̃ T

0,µ

(
f̃0,µ

))∥∥∥
L∞(HT )

≤ lim sup
κ→0

sup
µ∈(0,1]

µα+δ ∥G−Gµ∥L1(HT )

∥∥∥F̃ T
κ,µ

(
f̃κ,µ

)
− F̃ T

0,µ

(
f̃0,µ

)∥∥∥
L∞(HT )

≲ lim sup
κ→0

sup
µ∈(0,1]

µα+δ+1/2
∥∥∥F̃ T

κ,µ

(
f̃κ,µ

)
− F̃ T

0,µ

(
f̃0,µ

)∥∥∥
L∞(HT )

≲ lim sup
κ→0

sup
µ∈(0,1]

µα+δ+1/2
[
µγM2ῑ−1

∣∣∣∣∣∣∣∣∣f̃κ,• − f̃0,•, g̃κ,• − g̃0,•
∣∣∣∣∣∣∣∣∣+ κϵ/2µγM2ῑ

]
= lim sup

κ→0
sup

µ∈(0,1]
µδ
[
M2ῑ−1

∣∣∣∣∣∣∣∣∣f̃κ,• − f̃0,•, g̃κ,• − g̃0,•
∣∣∣∣∣∣∣∣∣+ κϵ/2M2ῑ

]
= lim sup

κ→0

(
M2ῑ−1

∣∣∣∣∣∣∣∣∣f̃κ,• − f̃0,•, g̃κ,• − g̃0,•
∣∣∣∣∣∣∣∣∣+ κϵ/2M2ῑ

)
= 0,

where we used lemma 4.6 and proposition C.1 (C).
Note that we have proved the convergence in C ᾱ for ᾱ = 2α + 2δ = 1

2
+ 4ϵ+ 2δ.

As ϵ and δ can be taken arbitrarily small, this concludes the proof of theorem 4.1.





Appendix A

Regularising kernels

This appendix presents the regularisation kernels used throughout the thesis and
analyses some of their properties.

Definition A.1. Let µ ∈ (0, 1], then we define K̃µ : R2 → R as

K̃µ(t, x) =
1

2µ3/2
e−t/µe−|x|/µ1/2

1{t≥0} (A.1)

and Kµ = K̃∗7
µ . Similarly, we define P̃µ = (1 + µ∂t)(1 − µ∆) and Pµ = P̃ 7

µ .

The kernel K̃µ is the fundamental solution of the differential operator P̃µ. In

fact, it can be shown with a simple computation that K̄µ(x) := 1
2µ1/2 e

−|x|/µ1/2
is

the fundamental solution of (1− µ∆) and K̊µ(t) := 1
µ
e−t/µ1{t≥0} is the fundamental

solution of (1 + µ∂t).

Proposition A.2. For each N ≥ 1, the following estimates hold uniformly in µ ∈
(0, 1]

(A)
∥∥∥K̃∗N

µ

∥∥∥
Lp(R2)

≲ µ− 3
2(1− 1

p),

(B)
∥∥∥∂tK̃µ

∥∥∥
TV

≲ µ−1,

(C)
∥∥∥∂xK̃µ

∥∥∥
TV

≲ µ−1/2,

(D)
∥∥∥P̃ηK̃µ

∥∥∥
TV

= 1 for every µ ≥ η,

(E)
∥∥∥P̃µ∂µK̃µ

∥∥∥
TV

≲ µ−1,

(F )
∥∥∥TK̃∗N

µ

∥∥∥
Lp(H)

≲ µ− 3
2(1− 1

p),

where ∥·∥TV is the total variation norm of measures and T is the periodisation
operator defined by TK̃µ(t, x) =

∑
y∈Z K̃µ(t, x+ y)

The proof of all these can be done by hand using the explicit formula (A.1).
However, we point out that in [Duc21] the proofs of all the above can be found in
arbitrary dimensions.





Appendix B

Besov spaces

The purpose of this chapter is to define the norm used in the thesis. First, we will
define it and then compare it with a classical Besov norm.

Definition B.1. Let T > 0, λ ∈ (−1, 0] and ϕ ∈ C∞ (HT ) . We define

∥ϕ∥Cλ(HT ) := sup
µ∈(0,1]

µ−λ/2 ∥Kµ ∗ ϕ∥L∞(HT ) (B.1)

and we set Cλ(HT ) as the subset of distributions which is the closure of C∞(HT ) in
the above norm.

We remark that we can define the space Cλ with a smaller λ with a similar
definition if we use K∗N

µ instead of Kµ, for a sufficiently large N (that depends on
how small λ is).

To justify the above definition, which may sound a little strange, we compare it
with the standard Besov norm and show that it is contained in the latter. For the
sake of simplicity, we limit ourselves to describing the case of the torus. In this case,
the norm B.1 becomes

∥ϕ∥Cλ(T) := sup
µ∈(0,1]

µ−λ/2
∥∥K̄∗7

µ ∗ ϕ
∥∥
L∞(R) ,

where K̄µ(x) is the fundamental solution of the operator (1 − µ∆) as defined in
appendix A.

The following classical construction of the parabolic Besov space is taken from
[GP15]. A reference for defining these spaces in the whole Rd is [BCD11].

We start with the following definition.

Definition B.2. A couple of functions (ρ−1, ρ0) is called a dyadic partition of unity
if they are in C∞(Rd,R), they are non-negative, radial, ρ0 is supported in the ball
{∥x∥ ≤ 4/3}, ρ−1 is supported in the annulus {3/4 ≤ ∥x∥ ≤ 8/3} and such that, if
we call ρj(·) = ρ (2−j·) for j ≥ 1, the following hold.

1.
∑

j≥−1

ρj ≡ 1,

2. supp (ρi) ∩ supp (ρj) = ∅ for each i, j ≥ −1 such that |i− j| ≥ 2.
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The existence of a dyadic partition of unity is a well-known result in Fourier
analysis and can be found in [BCD11] (Proposition 2.10). From now on, we fix one
of these partitions.

We now define the Littlewood-Paley blocks of the distribution u as

∆ju = F−1 (ρjFu)

for any j ≥ −1. This can be seen as

∆ju = Kj ∗ u,

where Kj = F−1ρj and F is the Fourier transform.
Now we can define Besov spaces.

Definition B.3. Let λ ∈ R, p, q ∈ [1,∞]2. Then the Besov space with these 3
parameters is

Bλ
p,q (T) :=

u ∈ S ′ s.t.

(∑
j≥−1

(
2jλ ∥∆ju∥Lp

)q)1/q


with the obvious interpretation if q = ∞.
For u ∈ Bλ

p,q (T), we set

∥u∥Bλ
p,q

=

(∑
j≥−1

(
2jλ ∥∆ju∥Lp

)q)1/q

with the correct interpretation if q = ∞.

In the case p = q = ∞ (the case that interests us) we write C λ instead of Bλ
∞,∞.

We now show the desired inequality for the norms of C λ and Cλ.

Lemma B.4. Let ϕ ∈ C∞(T) and λ ∈ (−1, 0]. Then it holds

∥ϕ∥C λ(T) ≲ sup
µ∈(0,1]

µ−λ/2
∥∥K̄∗7

µ ∗ ϕ
∥∥
L∞(R) .

Proof. Let P̄µ := (1 − µ∆) . Then observe that

∆jϕ = Kj ∗ ϕ = P̄ 7
µKj ∗ K̄∗7

µ ∗ ϕ,

and that from the definition of Kj, it holds Kj(·) = 2jK0(2
j·). Thanks to the latter,

for every N ≥ 0 we can estimate∥∥µN∂2Nx Kj

∥∥
L1(R) = 2j

∥∥µN22Nj(∂2Nx K0)(2
j·)
∥∥
L1(R) ≲ µN22Nj.

So, with µ = 2−2j, we obtain
∥∥P̄ 7

2−2jKj

∥∥
L1(R) ≲ 1. This allows us to estimate the

Littlewood-Paley block. In fact, with the above choice of µ, we have

∥∆jϕ∥L∞(R) ≤
∥∥P̄ 7

2−2jKj

∥∥
L1(R)

∥∥K̄∗7
2−2jϕ

∥∥
L∞(R)

≲
∥∥K̄∗7

2−2jϕ
∥∥
L∞(R) ≲ 2−jλ sup

µ∈(0,1]
µ−λ/2

∥∥K̄∗7
µ ∗ ϕ

∥∥
L∞(R) .

Which concludes the proof.



Appendix C

Heat kernel

This appendix studies some inequalities concerning the solver of equation 1.3 and
the truncated version present in equation 1.4.

First, we recall that the heat kernel H(t, x) is defined as

H(t, x) =
1

t1/2
e−

x2

4t 1{t>0} + δ0(x)1{t=0}.

Given that G is the space derivative of the heat kernel, we have

G(t, x) = − x

2t3/2
e−

x2

4t 1{t>0} + δ′0(x)1{t=0}.

As we will solve the equation with a zero initial condition, it is better to redefine G
as

G(t, x) = − x

2t3/2
e−

x2

4t 1{t>0}.

We moreover set Ġ
(1,0)
µ (t, x) = tĠµ(t, x), Ġ

(0,1)
µ (t, x) = xĠµ(t, x) and for every a =

(a1, a2) ∈ {(0, 0), (1, 0), (0, 1)} we set [a] = a1 + a2/2.
The following statement presents the estimates used throughout the thesis.

Proposition C.1. For each N ∈ N, T > 0, δ > 0 and a of the above form, the
following estimates hold uniformly in µ ∈ (0, 1]

(A)
∥∥∥P̃NĠa

µ

∥∥∥
L1(M)

≲ µ−1/2+[a],

(B)
∥∥∥P̃NĠµ

∥∥∥
L1([0,T ]×R)

≲ T δµ−1/2−δ,

(C) ∥G−Gµ∥L1(M) ≲ µ1/2,

where P̃µ has been defined in appendix A.

Proof. For the first one, it is enough to notice that
∥∥∥∂nt ∂mx Ġa

µ

∥∥∥
L1(M)

≲ µ−1/2+[a]−n−m/2

by a scaling argument and conclude by the triangular inequality. For the second one,
we notice that the above argument can be refined and show that after the scaling,
we have

µn+m/2
∥∥∥∂nt ∂mx Ġµ

∥∥∥
L1([0,T ]×R)

≲ µ−1/2

∫ T/µ

0

v1/2χ̃(v)dv
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for a χ̃ ∈ C∞
c ((1, 2)). The latter is 0 if T ≤ µ and if T > µ, we have

µ−1/2

∫ T/µ

0

v1/2χ̃(v)dv ≲ µ−1/2 ≤ T δµ−1/2−δ.

Lastly, for the third, we have the following easy computation

∥G−Gµ∥L1(M) =

∫ ∞

0

∫
R
|G(t, x)| (1 − χ (t/µ)) dxdt

≤
∫ 2µ

0

∫
R
|G(t, x)|dxdt ≲

∫ 2µ

0

t−1/2dt ≲ µ1/2

that concludes the proof.



Appendix D

Additional estimate on the
functional

This appendix should be seen as a supplement to chapter 4 and in particular to the
proofs of inequalities (4.5) and (4.6).

Let us introduce a norm similar to V , but suitable for measures.
Given V (z; dz1; . . . ; dzm) that fixed z ∈ H1, gives a measure with finite total

variation, we set

∥V ∥V ′ := sup
z∈H1

∫
Mm

|V (z; dz1, . . . , dzm)| .

Let us prove the following theorem.

Theorem D.1. Let κ ∈ (0, 1]. Then for all (i,m) ∈ N2, the two following hold
uniformly in µ ∈ (0, 1] ∥∥F i,m

κ,µ

∥∥
V ′ ≲κ 1,∥∥∂µF i,m

κ,µ

∥∥
V ′ ≲κ µ

−1/2,

where the implicit constants depend on κ.

Note that κ is fixed in the above result. In fact, if we let κ vary, we have no
hope of proving a uniform bound for the coefficients of the force (not even for the
first one, which tends to the white noise as κ goes to 0). In fact, in theorem 3.3 we
proved a bound uniform in κ that diverges for small µ (at least for some values of
the couple (i,m)).

Proof. We will prove both by induction.
If i = 0, this is true as ξκ does not depend on µ. Let us now assume i ≥ 1 and

to know the theorem for all (i∗,m∗) such that i∗ < i or i∗ = i and m∗ > m. Using
equation (1.9), we obtain

∂µF
i,m
κ,µ = −

i∑
l=0

m∑
j=0

(j + 1)B
(
Ġµ, F

l,j+1
κ,µ , F i−l,m−j

κ,µ

)
.
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Taking the norm, we get

∥∥∂µF i,m
κ,µ

∥∥
V ′ ≤

i∑
l=0

m∑
j=0

(j + 1)
∥∥∥B (Ġµ, F

l,j+1
κ,µ , F i−l,m−j

κ,µ

)∥∥∥
V ′
.

Using inequality (2.2), proposition C.1 (A) and the inductive hypothesis, we obtain

∥∥∂µF i,m
κ,µ

∥∥
V ′ ≲

i∑
l=0

m∑
j=0

∥∥∥Ġµ

∥∥∥
L1(M)

∥∥F l,j+1
κ,µ

∥∥
V ′

∥∥F i−l,m−j
κ,µ

∥∥
V ′

≲κ

i∑
l=0

m∑
j=0

µ−1/2 · 1 · 1 ≲ µ−1/2,

which proves the bound on the derivative. Finally, from the relation

F i,m
κ,µ = F i,m

κ,0 +

∫ µ

0

∂ηF
i,m
κ,η dη,

and using that F i,m
κ,0 does not depend on µ, we get

∥∥F i,m
κ,µ

∥∥
V ′ =

∥∥F i,m
κ,0

∥∥
V ′ +

∫ µ

0

∥∥∂ηF i,m
κ,η

∥∥
V ′ dη

≲κ 1 +

∫ µ

0

η−1/2dη ≲ 1 + µ1/2 ≲ 1,

which concludes the proof.

Similarly, we have

∥∥H i,m
κ,µ

∥∥
V ′ ≤

i∑
l=0

m∑
j=0

(j + 1)
∥∥∥B (Ġµ, F

l,j+1
κ,µ , F i−l,m−j

κ,µ

)∥∥∥
V ′

≲
i∑

l=0

m∑
j=0

µ−1/2 ≲ µ−1/2.

(D.1)
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