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(Euclidean-) Quantum Fields – Brief Background

B QFTs Result from combining quantum mechanical models with special relativity

B natural space: Minkowski space R
n+1 with

k(t, x , y , z)k2 = �t
2 + x

2 + y
2 + z

2.

B Wightman Axioms: minimal requirements for a QFT

! Di�cult to find concrete models satisfying these axioms.

B Wick-rotation: Replace t ! it so that the Minkowski space R
n+1 becomes a

Euclidean space R
d .

B Osterwalder-Schrader Axioms: precise conditions to swap between Minkowski and

Euclidean space.

Upshot: Euclidean QFTs can (in some cases) be understood as probability measure on

S
0(Rd ).

1



EQFTs

B Probability measures on S0(Rd ) satisfying additional axioms

(i) Regularity (ii) Euclidean Invariance (iii) Reflection Positivity

B Simplest example of a EQFT:

(massive) Gaussian free field (GFF) with covariance (m2
��)�1

B Formally,

“µ(O) = Z
�1
µ

Z

S0(Rd )
e
�

R
Rd (m

2|'(x)|2+|r'(x)|2)
O(')d'”

B for d � 2: not a function.
more precisely the GFF is a distribution of regularity 2�d

d
� � for any � > 0 small,

(in the sense of Besov-Hölder regularity)

Yields a free QFT but can be used as a starting point and reference measure for

interacting theories.
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Interacting EQFTs

B Probability measures on S0(Rd ) satisfying additional axioms

(i) Regularity (ii) Euclidean Invariance (iii) Reflection Positivity

B Aim: Construct interacting models by Gibbsian perturbations of the free theory:

“⌫(O) = Z
�1
⌫

Z
e
��

R
Rd V ('(x))dx

O(')µ(d')”,

for a non-linear function V : R ! R and µ the GFF.

This representation is ill-defined:

IR-Problem (large scale behaviour). No decay in space

B
R
Rd V ('(x))dx does not make sense.

UV-Problem (small scale behaviour). ' ⇠ µ is only a distribution for d � 2

B V ('(x)) cannot be defined in a pointwise manner.

3



Approximating the Gibbs measure

B To deal with the IR-Problem: spacial cut-o↵ ⇠ 2 C
1
c (Rd ).

replace

Z

Rd

V ('(x))dx by

Z

Rd

⇠(x)V ('(x))dx .

B To deal with the UV-Problem: small scale cut-o↵ T > 0.

Choose µT with support on genuine function spaces with

µT
! µ. (T ! 1)

If V is independent of T : there are divergent contributions and V ('T ) with

'T
⇠ µT becomes trivial in the limit.

Renormalisation for 'T
⇠ µT

replace V ('T ) by VT ('
T ),

to compensate the divergent contributions.
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Some Examples

! New objects of interest

⌫⇠,T (d') = (Z⇠,T
⌫ )�1 exp

✓
��

Z

Rd

⇠(x)VT ('(x))dx

◆
µT (d'),

and their limit as T ! 1 and ⇠ ! 1.

B Possible choices for VT :

B d = 2, 3:

VT (') = '4
� ↵T'

2

B d = 2:

VT (') = '2p +
2p�1X

`

a`,T'
`, for any p > 0

VT (') = ↵T cos(�')

VT (') = ↵T exp(�')

and linear combinations (e.g. cosh).
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Plan

Goal: Construct the sine-Gordon EQFT

“⌫SG(d') = Z
�1
⌫SG

exp

✓
�

Z

R2
� cos(�'(x))dx

◆
µ(d')

= eZ�1
⌫SG

exp

✓
�

Z

R2
dx� cos(�'(x)) +m

2
|'(x)|2 + |r'(x)|2

◆
d'”,

on S0(R2) for �2 < 4⇡ as a random shift of the massive GFF.

Outline:

B The Boué-Dupuis Formula

B Decompose the Free Field

B Introduce the Stochastic Control Problem

B Stochastic Maximum Principle/ EL-equation

B BSDEs and a priori estimates

B Variational description on R
2
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Boué-Dupuis Formula

Translates the Gibbs variational problem to a stochastic control problem:

Theorem

For a bounded functional F and a Q-Brownian motion W ,

� logE[e�F (W )] = inf
u2H0

E


F (I (u) +W ) +

1

2

Z 1

0
kusk

2
L2(R2)ds

�
,

where H
0 is the space of adapted processes, and

It(u) :=

Z
t

0
Qsusds.

Extensions to more general functionals are available.

M. Boué and P. Dupuis. “A variational representation for certain functionals of Brownian motion”. In: Ann. Prob. 26.4 (1998)

Ali Süleyman Üstünel. “Variational calculation of Laplace transforms via entropy on Wiener ...”. In: J. Funct. Anal. 267.8 (2014)
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The BD formula in the EQFT setting

Choose {Qt}t�0 to be positive Hilbert-Schmidt operators s.t.

Z 1

0
Q

2
s ds = (m2

��)�1.

Define for a cylindrical Brownian motion B on L
2(R2),

Wt :=

Z
t

0
QsdBs , W1 ⇠ µ.

With the BD formula and µT := Law(WT ),

� log

Z
e
�F (')µT (d') = � logE[e�F (WT )]

= inf
u2H0

E


F (IT (u) +WT ) +

1

2

Z 1

0
kusk

2
L2(R2)ds

�
.

B Use this formula for the Laplace transform of ⌫⇠,T .
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Variational Formula for the Laplace Transform

⌫⇠,T (d') = Z
�1

⌫⇠,T exp

✓
��

Z

R2
⇠(x)VT ('(x))dx

◆
µT (d'),

Z
⌫⇠,T =

Z
exp(�

Z

R2
⇠(x)VT ('(x))dx)µT (d').

Applying the BD formula with the (bounded) functional

V
g,⇠
T

(') := g(') + �

Z

R2
⇠(x)VT ('(x))dx

the Laplace transform has the variational representation

� log

Z
e
�g(')⌫⇠,T (d') = � log

�
Z

�1
⌫⇠,T

Z
e
�V

g,⇠
T

(')µT (d')
�

= inf
u2H0

J
g,⇠
T

(u)� inf
u2H0

J
0,⇠
T

(u).

where T 2 [0,1),

J
g,⇠
T

(u) = E


V

g,⇠
T

(XT (u)) +

Z
T

0
kutk

2
L2
dt

�
,

and

XT (u) = WT +

Z
T

0
Qsusds, W1 ⇠ µ.

N. Barashkov and M. Gubinelli. “A variational method for �4
3”. In: Duke Math. Jour. 169.17 (2020)

N. Barashkov and M. Gubinelli. “On the variational method for Euclidean ...”. arXiv:2112.05562. (2021)

N. Barashkov. “A stochastic control approach to Sine Gordon EQFT”. arXiv:2203.06626. (2022)
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Stochastic Control Problem

Control

Xt(u) =

Z
t

0
Qsusds +Wt ,

subject to

V
g,⇠
T

= inf
u2H0

Y
g,⇠
0,T := inf

u2H0
E


V

g,⇠
T

(XT (u)) +
1

2

Z
T

0
kusk

2
L2
ds

�
.

Fact: The infimum is a minimum.

B Introduce a variation u" = u + "�u and look for stationary controls.

(i.e. compute d

d"

��
"=0

)

r"Xt(u) =

Z
t

0
Qs�usds,

r"Y
g,⇠
0,T (u) = E

Z
T

0
rV

g,⇠
T

(XT (u))r"Xt(u) +

Z
T

0
us�usds

= E

Z
T

0
E


rV

g,⇠
T

(Xs(u))Qs + us

����Fs

�
�usds.

=) u
⇤
s = �Qs E[rV

g,⇠
T

(XT (u
⇤))|Fs ].
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Stochastic Control Problem

Control

Xt(u) =

Z
t

0
Qsusds +Wt ,

subject to

V
g,⇠
T

= inf
u2H0

Y
g,⇠
0,T := inf

u2H0
E


V

g,⇠
T

(XT (u)) +
1

2

Z
T

0
kusk

2
L2
ds

�
.

Fact: The infimum is a minimum and the optimal control satisfies

u
⇤
s = �Qs E[rV

g,⇠
T

(XT (u
⇤))|Fs ].

B The optimal dynamics are

X
g,⇠
t,T = �

Z
t

0
Q

2
s E

h
rV

g,⇠
T

(Xg,⇠
T ,T )|Fs

i
ds +Wt .

B SDE depending on the distribution of X with

Law(X 0,⇠
T ,T ) = ⌫⇠,TSG .
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Backward SDEs: Motivation

We derived the optimal dynamics

(
X

g,⇠
t,T = �

R
t

0 Q
2
s rY

g,⇠
s,T ds +Wt ,

rY
g,⇠
t,T = E[rV

g,⇠
T

(Xg,⇠
T ,T )|Ft ].

Problem: Conditional expectation is inconvenient.

Solution: Martingale Representation theorem:

There is a square-integrable and adapted process rZ such that

E[rV
g,⇠
T

(Xg,⇠
T ,T )|Ft ] = E [rV

g,⇠
T

(Xg,⇠
T ,T )] +

Z
t

0
rZs,TdBs .

Rearranging yields

E[rV
g,⇠
T

(Xg,⇠
T ,T )|Ft ] = rV

g,⇠
T

(Xg,⇠
T ,T )�

Z
T

t

rZ
g,⇠
s,T dBs .

In di↵erential notation, we could write

d(rY
g,⇠
t,T ) = rZ

g,⇠
t,T , Y

g,⇠
T ,T = rVT (X

g,⇠
T ,T ).
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Backward SDEs: Brief Background

B “correct” formulation for adapted solutions to SDEs with a terminal condition.

B given a terminal condition ⇠ and a generator f a solution is a (square-integrable)

pair (Y ,Z) (
�dYt = f (t,Yt ,Zt)dt � ZtdBt , t 2 [0,T ],

YT = ⇠.

or equivalently

Yt = ⇠ +

Z
T

t

f (s,Ys ,Zs)ds �

Z
T

t

ZsdBs , t 2 [0,T ].

B Stochastic analysis for conditional expectations relying on the martingale

representation theorem.

B For us: a priori estimates via Itô calculus

e.g. Surveys N. El Karoui, S. Peng, and M.C. Quenez. “Backward stochastic di↵erential equations...”. In: Math Financ 7.1 (1997) or

E. Pardoux. “Backward Stochastic Di↵erential Equations and Viscosity...”. In: Stochastic Analysis and Related Topics VI. (1998)
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Backward SDEs: a priori estimates

Given

Yt = ⇠ +

Z
T

t

f (s,Ys ,Zs)ds �

Z
T

t

ZsdBs , t 2 [0,T ].

apply Itô’s formula for |·|2,

|Yt |
2 +

Z
T

t

kZsk
2
ds = |⇠|2 +

Z
T

t

2hYs , f (s,Ys ,Zs)i| {z }
estimate in terms of |Y | , kZk

ds +

Z
T

t

2hYs ,ZsdBsi

| {z }
martingale

.

B e.g. uniform Lipschitz assumptions on f in y , z.

B combined with BDG inequality (provided all terms are finite) this yields estimates of

the form

E


sup
t

|Yt |+

Z
T

0
kZtk

2
dt

�
 C E |⇠|2 + C E

Z
T

0
kf (s, 0, 0)k2ds.
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Uniform estimates: Rough Outline

Rewrite the optimal dynamics in this way

(
X

g,⇠
t,T = �

R
t

0 Q
2
s rY

g,⇠
s,T ds +Wt ,

rY
g,⇠
t,T = rV

g,⇠
T

(Xg,⇠
T ,T )�

R
T

t
rZ

g,⇠
s dBs(= E[rV

g,⇠
T

(Xg,⇠
T ,T )|Ft ]).

Advantage: Can be studied using stochastic analysis.

Goal: Pass to limit ⇠ ! 1, T ! 1.

B need uniform a priori bounds on the equation above.

Key points for the estimates:

(i) the system depends only on rV
g,⇠
T

; and does not involve an integral over R2

V
0,⇠
T

(') = �

Z

R2
⇠(x)↵T cos(�'(x))dx , rV

0,⇠
T

(')(x) = ���↵T ⇠(x)sin(�'(x)).

(ii) ↵T cos(WT ) is a martingale.
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Change of variables

How to obtain bounds uniform in T?

Fact: The renormalised potential has a martingale property, that is

E[rVT (WT )|Ft ] = rVt(Wt).

B As X
g,⇠
t,T = Wt + I

g,⇠
t,T we make the Ansatz

E[rVT (XT ,T )|Ft ] = rVt(Xt,T ) + Rt,T ,

and try to bound Rt,T .

BUse this in rY
g,⇠
t,T = E[rV

g,⇠
T

(Xg,⇠
T ,T )|Ft ],

R
g,⇠
t,T = rg(Xg,⇠

T ,T ) +rV
⇠
T
(Xg,⇠

T ,T )�rV
⇠
t
(Xg,⇠

t,T )
| {z }

rewrite with Itô’s formula

�

Z
T

t

Z
g,⇠
s,T dBs .

R
g,⇠
t,T = rg(Xg,⇠

T ,T )�

Z
T

t

��↵sr sin(�Xg,⇠
s,T )dXg,⇠

s,T �

Z
T

t

Z
g,⇠
s,T dBs ,
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Uniform Estimates

R
g,⇠
t,T = rg(Xg,⇠

T ,T ) +

Z
T

t

h
⇠(s,Xg,⇠

s,T ,Rg,⇠
s,T )ds �

Z
T

t

eZg,⇠
s,T dBs ,

with

h
⇠(s, x , r) = �2�⇠↵scos(�x)Q

2
s rV

⇠,g
s (x)

| {z }
=:�s

+�2�⇠↵scos(�x)Q
2
s| {z }

=:�s

r .

B Variation of constants type argument for the BSDE yields

R
g,⇠
t,T = E


�t,Trg(Xg,⇠

T ,T ) +

Z
T

t

�t,s�sds
��Ft

�
, �ts = e

R
s

t
�s ds .

B Uniform estimates for �2
2 [0, 4⇡)

kR
g,⇠
t,T k

L1(R2) + kR
g,⇠
t,T k

L2(hxi�`)  C`,rg + C�2
hti

�2�
 C ,
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Dependence on T , ⇠

B Consider the BSDEs for the di↵erences

�TRt := R
g,⇠
t,T1

� R
g,⇠
t,T2

, and similarly �⇠Rt .

and apply the standard a priori estimates for (F)BSDEs.

B for “nice” functionals g , this yields

E


sup
t

k�TRtk
2
L2(hxi�`)

�
 ChT i

�4� .

B proceed analogously for the dependence ⇠:

E


sup
t

k�⇠Rtk
2
L2(hxi�`)

�
 Ck⇠1 � ⇠2k

2
L2(hxi�`)

.

B Convergence to some R
g,⇠

as T ! 1 and R
g,⇠

! R
g
as ⇠ ! 1.

B Convergence transfers to X and u (by a simple Gronwall argument).
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Convergence of the Control

Notation for the optimal control ug,⇠
s,T = �QsrY

g,⇠
s,T .

Proposition

(T ) There is a u
g,⇠ such that

lim
T!1

E

Z
T

0
ku

g,⇠
s,T � u

⇠
s k

2
L2(hxi�`)

ds = 0.

Moreover, ug,⇠ is optimal for the control problem at T = 1.

(⇠) Similarly, there is a u
g such that

lim
⇠!1

E

Z
T

0
ku

g,⇠
s � u

g

s k
2
L2(hxi�`)

ds = 0.
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⌫SG as a Random Shift of the GFF

B The limit (X
0,⇠

, u0,⇠) is optimal for the control problem, and

Law(X
0,⇠
1 ) = Law(W1 + I

⇠
1) = ⌫⇠SG,

where I
⇠
1 2 L

1(P;W 1,1(R2)) and ⇠ 2 C
1
c (R2).

B Since (X
0,⇠

, u0,⇠) converges as ⇠ ! 1 (to a unique limit for � > 0 small),

⌫⇠SG = Law(W1 + I
⇠
1) ! Law(W1 + I1) =: ⌫SG

weakly on H
��(hxi�`).

B Again I1 2 L
1(P;W 1,1(R2)).
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Summary

B Goal: Construct EQFTs from

⌫⇠,T (O) = Z
�1
⌫

Z

S0(Rd )
O(')e��

R
Rd ⇠VT (')µT (d') as ⇠ ! 1, T ! 1.

B Symmetries of the physical system: large- and small-scale problems.

B Boué-Dupuis formula ! Stochastic control problem with optimal dynamics

X
g,⇠
t,T = �

Z
t

0
Q

2
s E

h
rV

g,⇠
T

(Xg,⇠
T ,T )|Fs

i
ds +Wt .

B For the sine-Gordon model, simple a priori estimates can be used to remove the

cut-o↵s via stochastic calculus/BSDEs

B Variational description for the infinite volume EQFT the Laplace transform &

characterisation as a shift of the free field

⌫SG = Law(W1 + I1) = Law(X 0,1
1,1).
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Dependence on g

Is the limit (X , u) still optimal for T = 1, ⇠ = 1?

B Problem: The cost functional for ⇠ ⌘ 1 is ill-defined

J
0,⇠(u) = E


�

Z

R2
⇠(x)V1(X1(u))(x)dx +

1

2

Z 1

0
kusk

2
L2
ds

�
.

B Dependence of R on g is local in the sense that for any n

E

"
sup

t2[0,T ]
kR

g,⇠
t,T � R

0,⇠
t,T k

2
L2(hxin)

#
 Crg,n.

B transfers again to the optimal control ug,⇠

E

Z 1

0
ku

g,⇠
t,T � u

0,⇠
t,T k

2
L2(hxin)  Crg,n.

BTry to pass to

lim
⇠!1

inf
u
J
g,⇠(u)� inf

u
J
0,⇠(u) = lim

⇠!1
inf
u
J
g,⇠(u)� J

0,⇠(u⇠).

which provides a variational problem for

W(g) :=

Z
e
�g(')⌫SG(d').
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Variational Description on the Infinite Volume

Theorem

For n su�ciently large, � > 0 small enough,

W(g) = lim
⇠!1

lim
T!1

W
⇠,T (g) = inf

v2A(g)
J
g
(v),

with the cost functional

J
g
(v) = E


g(X1(u + v)) +

Z

R2
(V1(X1(u + v)) � V1(X1(u))) + E(u, v)

�
.

Here,

X1(u) = I1(u) +W1

is the shifted free field.

B u is an adapted stochastic process which does not depend on g , v

B I1 is a linear functional, which increases regularity by 1 and does not depend on

g .

B E is a quadratic functional, also independent of g , and

B A(g) contains the adapted controls v such that E
R1
0 kvsk

2
L2(hxin)ds  Crg,n.
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Convergence of ↵t cos(�Wt) = Jcos(�Wt)K

Theorem

For any p � 1, the Wick-ordered cosine satisfies

sup
t�0

E

2

4kJcos�WtKkp
B
� �2

4⇡ �2�
p,p (hxi�`)

3

5 < 1,

and converges in L
p(P,B

� �2

4⇡ �2�
p,p (hxi�`)) and almost surely to a limit which we

denote by Jcos(�W1)K. The analogous statement holds also for the Wick-ordered

sine.

J. Junnila, E. Saksman, and C. Webb. “Imaginary multiplicative chaos: Moments, regularity, and...”. In: Ann. App. Prob. 30.5 (2020)


