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(Euclidean-) Quantum Fields — Brief Background

> QFTs Result from combining quantum mechanical models with special relativity

> natural space: Minkowski space R"*1 with
||(t,X7_y,Z)H2 = 7t2 + X2 +y2 + 22.
> Wightman Axioms: minimal requirements for a QFT

— Difficult to find concrete models satisfying these axioms.

> Wick-rotation: Replace t — it so that the Minkowski space R"*1 becomes a
Euclidean space RY.

> Osterwalder-Schrader Axioms: precise conditions to swap between Minkowski and

Euclidean space.

Upshot: Euclidean QFTs can (in some cases) be understood as probability measure on
S’(RY).



EQFTs

> Probability measures on 8'(RY) satisfying additional axioms

(i) Regularity  (ii) Euclidean Invariance  (iii) Reflection Positivity

> Simplest example of a EQFT:
(massive) Gaussian free field (GFF) with covariance (m? — A)~1

> Formally,
“u(0) = 2;1 e*fmd(mz|'»°(X)|2+IV<P(X)\Z)O(w)dww
8/(RY)

> for d > 2: not a function.
more precisely the GFF is a distribution of regularity % — 4 for any & > 0 small,

(in the sense of Besov-Hélder regularity)

Yields a free QFT but can be used as a starting point and reference measure for
interacting theories.



Interacting EQFTs

> Probability measures on 8'(RY) satisfying additional axioms

(i) Regularity  (ii) Euclidean Invariance  (iii) Reflection Positivity

> Aim: Construct interacting models by Gibbsian perturbations of the free theory:
UO) =2t [ e VENE O u(dpy,
for a non-linear function V : R — R and p the GFF.

This representation is ill-defined:

IR-Problem (large scale behaviour). No decay in space
> [za V(o(x))dx does not make sense.

UV-Problem (small scale behaviour). ¢ ~ i is only a distribution for d > 2
> V(¢(x)) cannot be defined in a pointwise manner.



Approximating the Gibbs measure

> To deal with the IR-Problem: spacial cut-off ¢ € C2°(R?).

el /R | V{(x)dx by /R V()

> To deal with the UV-Problem: small scale cut-off T > 0.
Choose 17 with support on genuine function spaces with

pl = p (T = o0)

If V is independent of T: there are divergent contributions and V(cpT) with
@! ~ T becomes trivial in the limit.
Renormalisation for o7 ~ puT

replace V(o) by Vr(eT),

to compensate the divergent contributions.



Some Examples

— New objects of interest

S T(de) = (25T ow (2 [ evriatan) uT (o)

and their limit as T — oo and £ — 1.
> Possible choices for V1:
>d=23:

Vr(p) = ¢* — ary?
>d=2:

2p—1

Vr(e) = ¢ + 3" anret, forany p >0
4

Vr(p) = at cos(By)
V() = ot exp(By)

and linear combinations (e.g. cosh).



Goal: Construct the sine-Gordon EQFT
“vsa(dy) = ZV_;C exp (— /2 Acos(ﬂqs(x))dx) u(de)
R
= Zi o0 (= [ dircos(Bp) + o) + V00 )

on 8/(R?) for A% < 4 as a random shift of the massive GFF.

Outline:

The Boué-Dupuis Formula

Decompose the Free Field

Introduce the Stochastic Control Problem
Stochastic Maximum Principle/ EL-equation

BSDEs and a priori estimates

v VvV vV VvV VvV V

Variational description on R?



Boué-Dupuis Formula

Translates the Gibbs variational problem to a stochastic control problem:

For a bounded functional F and a @-Brownian motion W,

— log E[e—F(W)] = g\ﬂgo E [F(l(u) + W)+ 5/0‘ ||u5||i2(R2)d5:| ,
u

where HP? is the space of adapted processes, and
t
= / Qsusds.
0

Extensions to more general functionals are available.
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M. Boué and P. Dupuis. “A variational representation for certain functionals of Brownian motion”. In: Ann. Prob. 26.4 (1998)

Alj Siileyman Ustiinel. “Variational calculation of Laplace transforms via entropy on Wiener ...". In: J. Funct. Anal. 267.8 (2014)



The BD formula in the EQFT setting

Choose {Q:}¢>0 to be positive Hilbert-Schmidt operators s.t.
oo
/ Q%ds = (m* — A)~ L
0
Define for a cylindrical Brownian motion B on L2(R?),
t
W, ::/ QsdBs,  Weo ~ .

0

With the BD formula and 7 := Law(W7),

—Iog/e‘FW)uT(deo) = —log E[eF("T)]

. e
inf [F(IT(u)+ Wr) + 5/0 Hu5||L2(R2)ds} .

> Use this formula for the Laplace transform of v&: 7.



Variational Formula for the Laplace Transform

VT (o) = 27 o0 (=2 [ €CVr(ot0)ee) u” (0

Z,er = [en(= [ €vitotmonT (de).

Applying the BD formula with the (bounded) functional

VES(e) = £(0) + 2 | €0Vr(pta)ax
the Laplace transform has the variational representation
— _ _v&&
—IOg/e 8(#) 6T (dp) = — log (Zugl.T/e W (“’)MT(dcp))
— A g,& — 0,§
= ulgn]HfIU I35 (u) ulenﬂ-go J75 (u).
where T € [0, c0),
=
S5 = € [VEOxr(@) + [ uelBact]
Jo

and =
X1(u) = Wt +/ Qsusds, Woo ~ p.
0

N. Barashkov and M. Gubinelli. “A variational method for 0‘;”, In: Duke Math. Jour. 169.17 (2020)
N. Barashkov and M. Gubinelli. “On the variational method for Euclidean ...". arXiv:2112.05562. (2021)
N. Barashkov. “A stochastic control approach to Sine Gordon EQFT". arXiv:2203.06626. (2022)



Stochastic Control Problem

Control

t
= / Qsusds + Wt7
JO

subject to

1 T
VES = int YES = inf € |VESOr() + 5 [ luslacs].

Fact: The infimum is a minimum.

> Introduce a variation u: = u + edu and look for stationary controls.
. d
(i.e. compute E}s:o)

t
VEXt(u):/ Qsdusds,
0

.
Ve YEi(u _E/ VVES (X7 (1)) VeXe(u )+/ usSusds
JO

= E/OT E {vviﬂﬁ(xs(u))os + us

J’s} dusds.

—  uf = —Q:E[VVES(X7(u"))|F].



Stochastic Control Problem

Control

u) = /Ot Qsusds + W,
subject to
VES = inf YES = inf {V%’f(XT(u))JrE/THustzds}.
u€HO 2 Jo
Fact: The infimum is a minimum and the optimal control satisfies

¥ = —Qs E[VVES (Xr(u*))|Fs.

> The optimal dynamics are
¢ o2 £(x&k
X8 = 7/0 QZE [VVES(XES)IF] ds + We.
> SDE depending on the distribution of X with

0, N
Law(XT'fT) = VgG .



Backward SDEs: Motivation

We derived the optimal dynamics
{th’{_é = — fOt Q?VY§$d5 + Wk,
VYEE = E[VVES(XES) R

Problem: Conditional expectation is inconvenient.

Solution: Martingale Representation theorem:
There is a square-integrable and adapted process VZ such that

t
E[VVES(XE5) 1 Fi] = E[vv$5(x$ﬁ)]+/0 VZ, 1dBs.

Rearranging yields

;

E[vv.%{(xiﬁr)\}‘t]:vvivf(xiﬁ)—/ v Z&LdB.
; , :

In differential notation, we could write
d(VYg’E)—VZg’E ngg —VV (Xgnf)
t, T/ = t,T? T, T — T\AT, T/



Backward SDEs: Brief Bac und

> “correct” formulation for adapted solutions to SDEs with a terminal condition.

> given a terminal condition £ and a generator f a solution is a (square-integrable)
pair (Y, Z)
—dY; = f(t7 Yt,Zt)dt = thBf, te [07 T],
Yr =€

or equivalently

T T
Y.=¢ +/ f(s, Ye, Zs)ds —/ Z.dBs, t € [0, T].
t t

> Stochastic analysis for conditional expectations relying on the martingale
representation theorem.

> For us: a priori estimates via It6 calculus

e.g. Surveys N. El Karoui, S. Peng, and M.C. Quenez. “Backward stochastic differential equations...”. In: Math Financ 7.1 (1997) or
E. Pardoux. “Backward Stochastic Differential Equations and Viscosity...". In: Stochastic Analysis and Related Topics VI. (1998)



Backward SDEs: a priori estimates

Given

T T
yt:§+/ (s, Ys,Zs)ds—/ ZodBs, t € [0, T].
t t

apply I1té’'s formula for ||2

T T T
P+ [C1zdPds =g+ [ 20V f(s, Ve Z)) ds+ [ 20V ZidBl).
t t %/_/

estimate in terms of | Y|, || Z|| N
martingale

> e.g. uniform Lipschitz assumptions on f in y, z.
> combined with BDG inequality (provided all terms are finite) this yields estimates of
the form

T T
E {sup\YtH-/ ||Zt\|2dt] < CE|£\2+CE/ (s, 0,0)|%ds.
t 0 0



Uniform estimates: Rough Outline

Rewrite the optimal dynamics in this way

{Xf‘.ﬁ = — fOt QEVYsg"’.ﬁds + Wk,
T 3 &
VYEE = VVES(XEY) — [T VZELdB,(= E[VVE S (XL F).

Advantage: Can be studied using stochastic analysis.

Goal: Pass to limit § - 1, T — oo.
> need uniform a priori bounds on the equation above.

Key points for the estimates:

(i) the system depends only on VV.%’g; and does not involve an integral over R?

VPS(0) =2 [ eareos(Bet)dx,  TVIE(p)(x) = ~ABaré()sin(Ap(x))

(i) a7 cos(Wr) is a martingale.



Change of variables

How to obtain bounds uniform in T7?
Fact: The renormalised potential has a martingale property, that is

E[V V7 (Wr)|Fe] = VVe(We).
> As Xf’f =W;: + ltg’ﬁ we make the Ansatz
E[VV7 (X7 7)|Ft] = VVi(Xe, 7) + Re, 75

and try to bound Ry 7.
>Use this in VY£F = E[VVES(XES)| 7,

,
RE: = Vg(XE5) + VVE(XET) — VVE(XER) —/ 785 dBs.

t

rewrite with 1t8’s formula

T T
RE: = Vg(X4%) —/ ABasV sin(BXE ) dXE % —/ 782 dBs,
t t



Uniform Estimates

T T _
REE — Vg (XE4) +/ he (s, X&5 Rg’ﬁ)dsf/ Z8£dBs,
t t

with
hé(s, x, r) = B2Aéascos(Bx)QZV VEE(x) + B2 Aeascos(Bx) Q2 r.

=i¢s =s

> Variation of constants type argument for the BSDE yields

T 'S
REE —E [T, 7Vg(XEY) +/ Ft75¢5ds|]-'t} . Tt=effsds,
: , .

> Uniform estimates for 52 € [0, 47)

IRE £l oo (r2y + IREE N 2y —¢) < Co.vg + CA2 (1) ™2 < C,



Dependence on T, ¢

> Consider the BSDEs for the differences
7Re = REy — RE% | and similarly d¢Ry.

and apply the standard a priori estimates for (F)BSDEs.
> for “nice” functionals g, this yields

2 —46
E |supllorRell )| < €T
> proceed analogously for the dependence &:

€ |supllcRla oy < s = allaey-oy

> Convergence to some RS as T — oo and ﬁg’g — Rf as & — 1.

> Convergence transfers to X and u (by a simple Gronwall argument).



Convergence of the Control

: : 8§ _ g,€
Notation for the optimal control ug'y = —QsV YsﬁT'

There is a T8¢ such that
T—oo

;
lim E ! Huf”?7E§||i2(<x>,z)ds:0.

Moreover, T8¢ is optimal for the control problem at T = co.

Similarly, there is a @& such that

T
: 78:€ _ 78|12 —
§|[>n1E/0 ”us us||L2(<X>—2)ds 0.



vse as a Random Shift of the GFF

> The limit (Yo’g,ﬁof) is optimal for the control problem, and
Law(X) = Law(Weo + Z5.) = g,

where 7§, € L>°(P; W1°(R?)) and £ € C°(R?).

> Since (YO’E,Uovf) converges as £ — 1 (to a unique limit for A > 0 small),
l/éG = Law(Woo +Z8)) — Law(Weo + Zoo) =: v5a

weakly on H=9((x)~%).
> Again Zoo € L°(P; Wl’oo(Rz)).



> Goal: Construct EQFTs from

V5 T(0) = Zl,_l/ C)(go)ef’wikd ‘SVTW),U,T(dgo) as & — 1, T — oo.
87 (R9)

> Symmetries of the physical system: large- and small-scale problems.

> Boué-Dupuis formula — Stochastic control problem with optimal dynamics

t
XE£ = _/ Q2E [VVES(XES)IR] ds + We.
! ,

t,

> For the sine-Gordon model, simple a priori estimates can be used to remove the
cut-offs via stochastic calculus/BSDEs

> Variational description for the infinite volume EQFT the Laplace transform &
characterisation as a shift of the free field

vsG = Law(Weo + Zoo) = Law(X%! ).

20
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Dependence on g

Is the limit (X, @) still optimal for T = oo, & = 17?
> Problem: The cost functional for £ = 1 is ill-defined

S%(u)=E {)\/RZ £(x) Viso (Xoo (1)) (x)dx + % /:OHustzds} .

> Dependence of R on g is local in the sense that for any n

) 0,
E |: sup HRtg.f. - Rt’.f.

2 m| < Cogn-
te[0,T] B(x) )] = Ve

> transfers again to the optimal control u8-¢

£ [T IuEt _ 06
o ””t,Tfut,T

2
‘L2(<x>”) < CVg,n-
>Try to pass to
lim inf J&¢(u) — inf JO¢(u) = 5|imliangv€(u) — J%5(@d).
u — u

£E—1 u

which provides a variational problem for

W) = [ e P usq(dp)

22



Variational Description on the Infinite Volume

For n sufficiently large, A > 0 small enough,

£T(g) =

with the cost functional
F) =€ |20 @+ )+ [ (VeolXo+ 1)) = Vo e (@) + @)

Here,
Xoo(U) = loo(u) + Weo
is the shifted free field.

T is an adapted stochastic process which does not depend on g, v

I is a linear functional, which increases regularity by 1 and does not depend on
g.

& is a quadratic functional, also independent of g, and

A(g) contains the adapted controls v such that E [ HVSHL2 (o)) ds < Cyg,n-

23









Convergence of «; cos

For any p > 1, the Wick-ordered cosine satisfies

sggE |I[cos BWA]||P 2 < 00,
5 _B2_
- Bp,p47r ((x) _Z)

2
Y
and converges in LP(P, B, ;™ : ((x)=*)) and almost surely to a limit which we
denote by [cos(8Woss)]. The analogous statement holds also for the Wick-ordered

sine.

J. Junnila, E. Saksman, and C. Webb. “Imaginary multiplicative chaos: Moments, regularity, and...”. In: Ann. App. Prob. 30.5 (2020)



